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Abstract: In this paper various methods are compared for solving linear systems of 

equations. Both direct and iterative methods are considered. Different direct and indirect 

methods exist for the computation of linear system of equations. For direct methods, 

three methods are considered: Crammer’s rule, Gaussian elimination and LU (lower and 

upper triangular matrices) Decomposition. Jacobi method, Gauss-Seidel method, 

Successive over-relaxation method will be considered for iterative methods. The results 

show that Successive over-relaxation method is more efficient than other methods 

considering convergence, number of iterations, memory requirements and accuracy.  

Keywords: linear, direct, indirect, methods. 

 

INTRODUCTION 

A lot of problems occur in science, and engineering which may be modelled 

into a system of linear equations. For example, finding the current flowing in some 

electrical network, determination of stress in a building, characterization of connections 

in network of roads connecting various cities, etc. When the need to get solutions to 

these problems arises, economical solutions are sought.  

 

A system of n-linear equations in n-unknowns has a general form: 

 
                                      

                                       

   
                                      

          }       

 

Where     are constant coefficient       and d1, d2,- - -,dn are given real constants in the system of n- linear algebraic 

equation in n- unknowns with n- variable or unknown X1, X2,- - -,Xn. the solution of the linear equation can be classified 

into the following ways; (i) if a system of linear equations solved and solved and unique value for X1,X2, - - -,Xn  are 

obtained then, the system is consistent and independent (ii) if on the other hand the system has no definite solution then, 

it is said to be inconsistent and (iii) where there are infinitely many solutions to the linear system, it is said to be 

consistent but dependent. Different direct and indirect methods exist for the computation of linear system of equations. 

Many authors like Rajasekeran [1], Kalambi, [2 and Turner [3] investigate the solutions of linear equations by direct and 

indirect methods. Many scientific and engineering domains of computation may take the form of linear equations. 

Bakari1 & Dahiru [4] worked on iterative methods used for solving sparse and dense system of linear equation by 

considering   Jacobi method and Gauss-Seidel methods. Their results show that Gauss-Seidel method is more efficient 

than Jacobi method by considering maximum number of iteration required to converge and accuracy. The equations in 

this field may contain large number of variables and hence it is important to solve these equations in an efficient manner 

[5]. 

 

DIRECT METHOD 

In direct methods, consideration will be on Crammer’s rule, Gaussian elimination and LU (lower and upper 

triangular matrices) Decomposition. 

 

CRAMMER’S RULE 

Crammer’s rule is an explicit formula for the solution of a system of linear equations with as many equations as 

unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of 

from it by replacing one column by the vector of the equations. 

Consider a two linear equation: 

a   + bx2 = p     (2.1) 

  cx1 + dx2 = q     (2.2) 
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With condition that         , we can solve for the variable    by eliminating the variable  . This is 

accomplished by multiplying the top equation by d and the bottom equation by b and then subtract.    

i.e 

   
             
             

                
                  

Hence,  

                     (2.4) 

 

And we can solve for     and obtain 

 

    
     

     
                                                                    

  

Similarly,   

    
     

     
                                                                    

 

Which can be expressed (using determinant) as 
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Where  
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| is the determinant of (
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| is the determinant of (
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  | is the determinant of (

  
  )   

 

GAUSSIAN ELIMINATION 

Gaussian elimination is an algorithm for solving system of linear equations.  The process of Gaussian 

elimination has two parts. The first part (Forward Elimination) reduces a given system to either triangular or echelon 

form, or results in a degenerate equation, indicating the system has no unique solution but may have multiple solutions 

(rank<order). This is accomplished through the use of elementary row operations. The second step uses back substitution 

to find the solution of the system above. 

 

Stated equivalently for matrices, the first part reduces a matrix to row echelon form using elementary row 

operations while the second reduces it to reduced row echelon form, or row canonical form. 

 

Consider a linear equation AX = B which is an upper–triangle system and the diagonal element are non-zero. 

                                              

                                        

                                
     
                                

                (Upper-triangle system) 

If                         then, there exists a unique solution. 

  

The last equation involves only  , so we solve it first. 

    
  

    

 

Now    is known and it can be used in the next to last equation. 
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Now    and      are used to find      

 

      
                          

        

 

Once the value   ,     , ,      are known, the general step is 

    
    ∑       

 
     

    

 

   For               

 

The uniqueness of the solution is easy to be seen. The Nth equation implies 
  

  
⁄    is the only possible value 

of   , so     ,     ,  ,    are unique. 

 

LU- DECOMPOSITION METHOD 

 In linear algebra, LU decomposition (also called LU factorization) factorizes a matrix as the product of a lower 

triangular matrix and an upper triangular matrix. The product sometimes includes a permutation matrix as well. The LU 

decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of 

linear equations using the LU decomposition, and it is also a key step when inverting a matrix, or computing the 

determinant of a matrix. 

  

Let A be a square matrix. An LU- decomposition is a decomposition of the form 

  A = LU       (2.3.1) 

 L   lower triangular matrix 

 U   upper triangular matrix 

 

This means that L has only zeros above the diagonal and U has only zeros below the diagonal. 

    (

   
     
   

   

   

   

 
   

      

 
 
 
 

)       (2.3.2) 

     (

       

     

 
 

 
 

 
 

      

   

   
   

 

)    (2.3.3) 

Let 

            (2.3.4) 

Substituting equation (2.3.1)    

            (2.3.5) 

If    is set equal to Z,   

            (1.2.3.7) 

 Equation (2.3.7) is solved by back substitution to give X. 

 

ITERATIVE METHODS 

 An iterative method is a mathematical procedure that generates a sequence of improving approximate solutions 

for a class of problems.  

 

Some well-known iterative schemes, which will be discussed in this paper, are Jacobi method, Gauss-Seidel 

method, Successive over-relaxation method. 

 

JACOBI ITERATIVE METHOD 

 The Jacobi method is an algorithm for determining the solutions of a system of linear equations with largest 

absolute values in each row and column dominated by the diagonal element. Each diagonal element is solved for, and an 

approximate value plugged in. The process is then iterated until it converges.  Consider the general system of linear 

algebraic equations,     , written in index 

 

Notation 
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∑   

 

   

       

                                      ( = 1, 2 ..... n)    (2.4.1) 

 

In Jacobi iteration, each equation of the system is solved for the component of the solution vector associated 

with the diagonal element, that is,   . Thus, 

    
 

   
 (     ∑    

   
       ∑    

 
       )                          (2.4.2) 

( = 1,2 ..... n)         

 

An initial solution vector X
(0)

 is chosen. The superscript in parentheses denotes the iteration number, with zero 

denoting the initial solution vector. The initial solution vector      is substituted into Eq. (2.4.2) to yield the first 

improved solution vector     . Thus, 

  
    

 

   

 (     ∑   

   

   

  
     ∑    

 

     

  
   ) 

                                      (  = 1,2 .....n)                    (2.4.3) 

 

This procedure is repeated (i.e., iterated) until some convergence criterion is satisfied. The Jacobi algorithm for 

the general iteration step (k) is: 

  
         

     
 

   

 (     ∑   

   

   

  
     ∑    

 

     

  
   ) 

                      ( = 1,2, n)                                    (2.4.4) 

 

GAUSS-SEIDEL METHOD  

The Gauss-Seidel method of solving for a set of linear equations can be thought of as just an extension of the 

Jacobi method. Start out using an initial value of zero for each of the parameters. Then, solve for   
    as in the Jacobi 

method. When solving for  
   , insert the just computed value for  

   . In other words, for each calculation, the most 

current estimate of the parameter value is used. Gauss-Seidel converges about twice as fast as Jacobi, but may still be 

very slow. 

 

In the Jacobi method, all values of        are based on     . The Gauss-Seidel method is similar to the Jacobi 

method, except that the most recently computed values of all    are used in all computations .In brief, as better values of 

   are obtained, use them immediately. Like the Jacobi method, the Gauss-Seidel method requires diagonal dominance to 

ensure Convergence. The Gauss-Seidel algorithm is obtained from the Jacobi algorithm, Eq. (2.4.4), by using   
      

values in the summation from j = 1 to    1 (assuming the sweeps through the equations proceed from     to n). Thus, 

  
         

     
 

   

 (     ∑   

   

   

  
     ∑    

 

     

  
   ) 

 (  1 2, .,n)      (2.5.1) 

 

Equation (2.50.1) can be written in terms of the residuals    by adding and subtracting   
    from the right-hand 

side of the equation and rearranging to yield 

    
         

     
  

   

   
  

      ( i = 1,2 ..... n)  (2.5.2) 

  
         ∑    

 

     

  
     

      (i = 1,2 ..... n)   (2.5.3) 

 

The Gauss-Seidel method is sometimes called the method of successive iteration because the most recent values 

of all    are used in all the calculations.  

 

SUCCESSIVE OVER-RELAXATION (SOR) METHOD 
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The Gauss-Seidel method can be modified to include over-relaxation simply by multiplying the residual   
   

 in 

Eq. (2.5.2), by the over-relaxation factor,  . Thus, the Successive – over –relaxation method is given by, 

  
         

      
  

   

   

  

      (  = 1,2 ..... n)  (2.6.1) 

  
          ∑   

   

   

  
       ∑   

 

   

  
                                             

 

When   = 1 (2.6.1) yields the Gauss-Seidel method. When 1 <   < 2, the system of equations is over-relaxed. Over-

relaxation is appropriate for systems of linear algebraic equations. When   < 1.0, the system of equations is under 

relaxed. Under-relaxation is appropriate when the Gauss-Seidel algorithm causes the solution vector to overshoot and 

move farther away from the exact solution. This behaviour is generally associated with the iterative solution of systems 

of nonlinear algebraic equations. The iterative method diverges if   > 2. 

 

ANALYSIS OF RESULTS 
The efficiency of the three methods iterative methods will be compared in this section.  

 

JACOBI ITERATION METHOD 

To illustrate the Jacobi iteration method, let’s solve the following system of linear algebraic equations: 

Example 1: 

 

             ,                 and              

 

Table-1: Solution by the Jacobi Iteration Method 

Iteration X(1) X(2) X(3) 

0 0 0 0 

1 -0.6 0.9 2.8 

2 0.12 0.7 2.89 

3 -0.04 1.285 2.87 

4 0.428 1.155 2.9285 

5 0.324 1.53525 2.9155 

6 0.6282 1.45075 2.953525 

7 0.5606 1.697913 2.945075 

8 0.75833 1.642988 2.969791 

9 0.71439 1.803643 2.964299 

       

52 0.999981 1.999973 2.999998 

62 0.999998 1.999997 3 

63 0.999997 1.999998 3 

64 0.999999 1.999998 3 

65 0.999998 1.999999 3 

 

Table-2: Solution by the Jacobi Iteration Method 

Iteration  x(1)    x(2)   x(3)    x(4)   x(5) 

0 0 0 0 0 0 

1 0.25 0.5 0.5 0.5 0.5 

2 0.375 0.6875 0.75 0.6875 0.75 

3 0.421875 0.78125 0.84375 0.78125 0.84375 

4 0.445313 0.816406 0.890625 0.816406 0.890625 

5 0.454102 0.833984 0.908203 0.833984 0.908203 

6 0.458496 0.840576 0.916992 0.840576 0.916992 

7 0.460144 0.843872 0.920288 0.843872 0.920288 

8 0.460968 0.845108 0.921936 0.845108 0.921936 

9 0.461277 0.845726 0.922554 0.845726 0.922554 

            
19 0.461538 0.846154 0.923077 0.846154 0.923077 
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Example 2: Consider another example; 

          

              

              

               

           

 

The gauss-seidel iteration method 

 Let’s rework the problem presented in Example 1 in (3.1.) using Gauss-Seidel iteration. 

                

                  

               
 

To initiate the solution, let       = [0.0 0.0 0.0 ]. 

 

Table-3: Solution by the Gauss-Seidel Iteration Method 

Iteration          

0 0 0 0 

1 -0.6 0.42 2.842 

2 -0.264 0.973 2.8973 

3 0.1784 1.33245 2.933245 

4 0.46596 1.566093 2.956609 

5 0.652874 1.71796 2.971796 

6 0.774368 1.816674 2.981667 

7 0.853339 1.880838 2.988084 

8 0.904671 1.922545 2.992254 

9 0.938036 1.949654 2.994965 

        
31 0.999995 1.999996 3 

  

Consider the example 2 

          

              

              

               

           

 

Table-4: Solution by the Gauss-Seidel Iteration Method 

ITERATION X(1) X(2) X(3) X(4) X(5) 

0 0 0 0 0 0 

1 0.25 0.5625 0.640625 0.660156 0.830078 

2 0.390625 0.757813 0.854492 0.921143 0.960571 

3 0.439453 0.823486 0.936157 0.974182 0.987091 

4 0.455872 0.848007 0.955547 0.98566 0.99283 

5 0.462002 0.854387 0.960012 0.98821 0.994105 

6 0.463597 0.855902 0.961028 0.988783 0.994392 

7 0.463976 0.856251 0.961259 0.988913 0.994456 

8 0.464063 0.85633 0.961311 0.988942 0.994471 

9 0.464083 0.856348 0.961323 0.988948 0.994474 

10 0.464087 0.856352 0.961325 0.98895 0.994475 

11 0.464088 0.856353 0.961326 0.98895 0.994475 

12 0.464088 0.856354 0.961326 0.98895 0.994475 

13 0.464088 0.856354 0.961326 0.98895 0.994475 
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The successive-over relaxation method 

 Let’s rework the problem presented in Example 1 in (3.1.) using Successive-Over Relaxation iteration. 

                  (3.10.1) 

                     (3.10.2) 

                   (3.10.3) 

 

To initiate the solution, let       = [0.0 0.0 0.0 ]. 

 

Table-5: Solution by the Successive-Over Relaxation Iteration Method 

Iteration X(1) X(2) X(3) 

0 0 0 0 

1 -0.72 0.3888 3.406656 

2 -0.20275 1.216397 2.824636 

3 0.488291 1.644437 2.992405 

4 0.761001 1.840762 2.98241 

5 0.894932 1.928871 2.994982 

6 0.95273 1.968244 2.997193 

7 0.978969 1.985824 2.99886 

8 0.990597 1.993672 2.999469 

9 0.995806 1.997175 2.999767 

10 0.998127 1.998739 2.999895 

11 0.999164 1.999437 2.999953 

12 0.999627 1.999749 2.999979 

13 0.999833 1.999888 2.999991 

14 0.999926 1.99995 2.999996 

15 0.999967 1.999978 2.999998 

16 0.999985 1.99999 2.999999 

17 0.999993 1.999996 3 

18 0.999997 1.999998 3 

19 0.999999 1.999999 3 

20 0.999999 2 3 

   

For example 2 in 3.1 we have 

          

              

              

               

           

 

Table-6: Solution by the Successive-Over Relaxation Iteration Method 

iteration X(1) X(2) X(3) X(4) X(5) 

0 0 0 0 0 0 

1 0.275 0.625625 0.722047 0.748563 0.96171 

2 0.419547 0.801376 0.904028 0.988222 0.997351 

3 0.453424 0.843162 0.963228 0.990337 0.99495 

4 0.461527 0.857491 0.96183 0.989081 0.994499 

5 0.464657 0.856535 0.961361 0.988954 0.994475 

6 0.464081 0.856343 0.961321 0.988948 0.994474 

7 0.464086 0.856353 0.961326 0.98895 0.994475 

8 0.464088 0.856354 0.961326 0.98895 0.994475 

9 0.464088 0.856354 0.961326 0.98895 0.994475 

 

CONCLUSION 
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The three main iterative methods for solving linear equation have been presented; these are Successive-Over 

Relaxation, the Gauss-Seidel and the Jacobi technique. In the examples considered the analysis of results shows that 

Jacobi method takes 65 iterations to converge for example 1 and 19 iterations to converge the example 2. The analysis of 

results also shows that Gauss-Seidel method takes about 31 iterations to converge for the example 1 and 13 iterations to 

converge for example 2. More so, the analysis of results also shows that Successive-Over Relaxation takes about 20 

iterations to converge for the example 1 and 9 iterations to converge for example 2 to converge, as compared to other 

method, within the same tolerance factor. This shows that Successive-Over Relaxation requires less computer storage 

than the Jacobi method and Gauss - Seidel method. Thus, the Successive-Over Relaxation could be considered more 

efficient of the three iterative methods considered in this paper. 
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