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Abstract  Original Research Article 
 

In this paper, the stability of retraining system for the same workers in enterprises with double time-delay is 

investigated. Sufficient conditions about the local asymptotic stability and global stability of the positive equilibrium 

and the non-negative equilibrium are derived by using characteristic value method and Hurwitz criterion. Finally, the 

retraining system was numerically simulated with Matlab by taking appropriate parameters and different time delay 

values, and diagrams of all components change and solution curves were given around the critical value.  
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INTRODUCTION 

It is an urgent problem to study the law of technology renewal and communication of the same workers and put 

forward the control policy of retraining workers so as to maximize the benefits of enterprises and workers. 

 

In recent years, with the deep development of the research on mathematical model and dynamic model, 

researchers find that the state of the system at a certain time is affected by the relationship among the various groups at 

that time, also by Environment and time factors. At present, scholars have consider the time delay of various 

mathematical models in the simulation of population change, transmission of infectious diseases, biological science, 

physics, control theory and other fields, so as to study the equilibrium stability of models with time delay(see[1]-[8]). 

Literature [9] studied the stability of a smoking cessation model under the influence of public health education, and 

provided the local stability of smokeless equilibrium point and smoking equilibrium point; In reference [10], a time-delay 

SEIR computer virus propagation model was studied. The incubation period of computer virus was taken as the 

bifurcation parameter, and the local asymptotic stability of the model was discussed; Literature [11] studied the stability 

of SIR infectious disease model with immunisation and population size change; Literature [12] studies the stability 

analysis of enterprise competition model with double time delay. Brauer and Carlos [13] first proposed the retraining 

system for skilled workers in the same sector of private enterprises, and iterature [14] divided the system population into 

interrelated compartments based on the characteristics of the dynamic model, and qualitatively analyzed it, proving that 

under certain conditions, non-negative equilibrium points and positive equilibrium points have local and global 

asymptotic stability. 
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Where ( ), ( ), ( ), ( ), ( )P t M t R t U t I t  denote the number of technical workers, regular workers, returning workers, 

foreman, non-expendable workers (injured or pregnant) and sabotage workers at time t , respectively. The parameters

, , , , , ,   r q K  are positive constants, in which 


K
 is the contact rate between foreman and regular worker; q is 

the transformation rates from the training workers into regular workers ;  is the removal rate of all kinds of skilled 

workers;   is the transformation rates from the returning workers into regular workers;   is the transformation rates 

from the returning workers into non-expendable workers; r  is the transformation rates from the foreman into sabotage 

workers; K  is the constant. 

 

When the model was established, it did not take into account the influence of environment and time among 

various groups of workers. Since the non-expendable workers include the workers who are injured and pregnant workers 

at time t , they can return to formal workers and receive training after the time delay  ; sabotage workers returns to 

regular workers after conversion time due to their own needs. When time pass , some of the non-expendable 

( )  aR t e will return to receive retraining after time; some of the sabotage workers ( )   M t e  returned to 

retraining over time.  

 

So this article consider non-expendable and sabotage workers after a delay return to ordinary workers, in the 

model has been added to the conversion time, through the analysis of the characteristic equation method and Hurwitz 

theorem, the local stability and global stability of non-negative equilibrium point, the positive equilibrium point global 

stability and the sufficient condition of locally asymptotically stable, and USES Matlab to validate related conclusion. 

 

The model is established as follows: 
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According to the system (1), the total number of workers can be obtained to satisfy the equation: 

 

  N K N .                       (2) 

Where ( ) ( ) ( ) ( ) ( ) ( )    N t P t R t M t U t I t , 

( ) ( (0)) 

 

   tK K
N t N e  

According to the comparison theorem
 
[15], there is 0T   , and when t T ，then, 0 ( ) /  N t K . 

 

Stability of the equilibrium points 

Existence of equilibrium point 

The first three equations of model (1) do not contain variables U and I , therefore, only the first three equations 

in the model need to be discussed later, and the following model can be obtained: 
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Based on the practical significance of model (3), it is assumed that it has initial conditions 

 

1( ) ( ) {[ ,0], }    P t t C R ， 2( ) ( ) {[ ,0], }    R t t C R  

 

3( ) ( ) {[ ,0], }    M t t C R ， 1(0) 0  ， 2 (0) 0  , 3(0) 0         (4) 

 

It is well known by the fundamental theory of functional differential equations [26] that system (2.4) has a 

unique solution ( ), ( ), ( )P t R t M t satisfying initial conditions (3). The equilibrium 0 0 0 0( , , )E P R M  and 

* * * *( , , )E P R M  of system (3) satisfy the 

 

Following combined equations. 
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Let      a ,
  A ae ，  d r ，From (5) we obtain 
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, the unique positive equilibrium point of 

system (3) can be obtained. 
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Theorem 1 If 1R  , there exist a non-negative equilibrium 0 0 0 0( , , )E P R M and a unique positive equilibrium 

* * * *( , , )E P R M for system (3). 

 

STABILITY OF NON-NEGATIVE EQUILIBRIUM POINTS 

 

Theorem 2 If 0 1 0，  R  , the non-negative equilibrium 0E  is local stability;  if 1R  , It is not stability. 

 

Proof : The characteristic equation of
0EA is 
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There are always two negative roots for the eigenvalues of
0EA , 1 0    , and 2 0   A ，the other roots 

are determined by the following equation 
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When 1R , all the characteristic roots of the characteristic equation
0EA  are negative, so 0E  is locally 

asymptotically stable. When 1R  , 0E is unstable in region D. The proof is complete. 

 

Theorem 3 IF 0 1， R  and  
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The non-negative equilibrium 0E  is globally asymptotically stable. 

Proof:  Let 0 x P P , 0 y R R , 0 z M M  

 

Then model (1) can be deformed into 
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Construct the Lyapunov function 
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And derive the derivative of the orbit along the model (9) 
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According to LaSalle’s invariance principle
 

[15], the non-negative equilibrium point 0E  is globally 

asymptotically stable. The proof is complete. 

 

STABILITY OF EQUILIBRIUM POINTS  
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
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
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M K
 hold, then  ' 0V z  . When 1R  , According to the Lyapunov stability theorem [16, 17], 

the only positive equilibrium point 
*E of model (1) is globally asymptotically stable. The proof is complete. 

 

NUMERICAL SIMULATION 

In the following, we select several sets of parameters listed in the table. The influence of each parameter on the 

equilibrium point can be seen. This is consistent with theorems. 

(1) the global stability of 0E  

 

Table-1: Effect of parameters on values , , , ,P R U M I  steady-state within system (3) 

  q        r    P  R  R  

0.79 0.9 0.8 0.07 0.01 0.2 0.42 56.7529 5.7469 0.8967 

0.69 0.9 0.8 0.07 0.01 0.2 0.42 56.7529 5.7469 0.7832 

0.79 0.76 0.8 0.07 0.01 0.2 0.42 48.7068 13.7925 0.7696 

0.59 0.77 0.6 0.12 0.2 0.5 0.02 66.1674 17.1488 0.7226 

0.53 0.65 0.5 0.02 0.4 0.6 0.02 66.3436 33.5893 0.6393 

 

Let 0.9q ， 50k ， 0.07  ， 0.79  ， 0.8  ， 0.01  ， 0.2r ， 0.42  , 0.005T , 3  , 

Then model (3) is 

 

0.0040 0.0040

( )
0.9 0.0158 ( ) ( ) 0.07 ( ) 0.8 ( )  

( )
0.1 0.8700 ( ) 0.42 ( ) ( )

( )
0.0158 ( ) ( ) ( )

  


   




     



 


dP t
K P t M t R t P t

dt

dR t
K R t M t e aR t e

dt

dM t
P t M t M t

dt  
 

Then we have   0.8967 1 R , and 0 (56.7529,  5.7469,0,  0,0)E , Let (0)=30P ， (0)=3R ，

(0)=2M ，From Fig. 1, we can see that the component curve shows that the interior equilibrium 0E  is global 

asymptotically stable.  
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Fig-1: The global stability of non-negative equilibrium points 

 

(2) the global stability of 
*E  

 

Table-2: Effect of parameters on values , , , ,P R U M I  steady-state within system (3) 

  q        r    P  R  M R  

0.99 0.6 0.579 0.37 0.01 0.65 0.45 62.07 21.61 1.67 1.051 

0.69 0.5 0.4 0.27 0.01 0.2 0.42 43.47 71.12 41.01 2.016 

0.99 0.65 0.25 0.25 0.12 0.35 0.01 60.606 72.26 113.19 5.445 

0.83 0.62 0.65 0.05 0.32 0.05 0.02 84.337 54.686 14.166 1.180 

0.59 0.5 0.104 0.67 0.05 0.9 0.42 85.084 64.314 59.006 5.270 

 

Let 0.5q ， 50k ， 0.67  ， 0.59  ， 0.104  ， 0.05  ， 0.9r ， 0.42  , 0.001T ,

10  , Then model (4) is 
 

  1.0400e-04   1.0400e-04

0.0118

 0.5  0.8240 0.05 ( ) 0.42 ( )

0.0118 1.004

0.5 0.67

0

0.104

  


   




     



 


dP
PM R P

dt

dR
K R R t e R t e

dt

K

dM
PM M

dt

 

 

Then we have 5.2708 1 R ，and 
* ( 85.0847,  64.3148,  59.0061)E .Let (0)=30P ， (0)=3R ，

(0)=2M . From Fig. 2, we can see that the component curve shows that the interior equilibrium 
*E  is global 

asymptotically stable.  
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Fig-3: The global stability of a unique positive equilibrium point 

 

CONCLUSION 

In this paper, we analyze the stability of the retraining model of the same department workers with double time 

delays in private enterprises by using the method of characteristic equation analysis and Hurwitz decision theorem. The 

results show that there is a non-negative equilibrium point in the model when the number of workers returning to work is  

 

very large or the transfer rate of workers returning to work is large. When
(1 ) 



 


qA q
R

A d
, 

  ae and

1
 


e

Ad
, training strategies have been around for a long time, which requires that in real life controls must be  

 

Strengthened on the number of returning workers and the rate at which returning workers are transferred to non-

expendable workers. Return to non-expendable workers and sabotage workers transfer rate, the greater the removed the 

less workers, do not eliminate a worker retraining the shorter the period of validity, will decline in the more unfavorable 

to retraining. Therefore, the control cannot be eliminated worker retraining when fewer people, must pay close attention 

to important influence workers technical level, take more to return the proportion of retraining workers, reduce the 

transfer rate of return to cannot eliminate workers. 
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