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Abstract  Original Research Article 
 

This paper mainly deals with the trajectory of a near-Earth satellite constrained to move in a great-circle plane by 

means of a propulsion system contained in it. The vector equations of motion of the satellite with respect to a 

rectangular frame rigidly fixed to the surface of the Earth are formed. Its trajectory relative to the rotating Earth is 

analyzed taking into consideration that it is acted on by two forces: gravitational force and coriolis force; the 

aerodynamic forces being very small are neglected. The component of the coriolis force perpendicular to the great-

circle plane is balanced by the side thrust generated in the satellite at all time instants. Two numerical examples related 

to an elliptic orbit and a circular orbit respectively is cited. The centrifugal force being very small compared to the 

coriolis force is also neglected. Finally, an approximate formula has been derived to determine the drift of a satellite 

from its initial plane, ie, great-circle plane, if it is allowed to move freely for a short interval of time compared to its 

orbital period, ie, the satellite propulsion is shut off during that interval of time and the magnitude of deflection caused 

by the coriolis force has been numerically found in two cases. 
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INTRODUCTION 

This paper deals with trajectory of an artificial satellite that travels in the neighborhood of the Earth and is 

characterized by relatively small interval of time  
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ie, small with respect to the period of revolution of the Earth around the Sun and the moon around the Earth. 

The trajectory of the satellite with reference to non-rotating frame with the origin rigidly fixed to the centre of the Earth 

is an unperturbed circular or elliptic orbit depending on the initial conditions of projection. The time period of such a 

satellite is 90 to100 minutes, far less than the time of the Earth’s one revolution around the Sun. So linear motion of the 

Earth is negligible compared to that of the satellite. 

   

For analysis of the trajectory relative to a frame rigidly attached to the rotating Earth, we have considered along 

with gravitational force, another force known as coriolis force which arises due to interaction of the Earth’s rotation 

about the polar axis with the high velocity of the satellite. Motion of the satellite over the spherical rotating Earth is, 

however, discussed with assumptions that inertia terms associated with the transport (centrifugal) acceleration and effects 

of lift and drag are negligible as compared to the weight of the satellite. Because of high velocity of the satellite the 

coriolis force is much greater than the centrifugal force which is negligible.  

 

Nomenclature 

X, h =the distance on the Earth’s surface of the satellite (o), its altitude respectively from the point E on the Earth’s 

surface. 

  
 

  
= its true anamoly ,ie, angular travel from QE,Q   the centre of the Earth 

m=the mass of the satellite,                             
                                                        

h1=the height of satellite at the time of launching.   =      

g0=acceleration due to gravity on the Earth’s surface. 

http://saspjournals.com/sjpms
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  = initial velocity of projection of the satellite at an angle                  , relative to the Earth,       
  

                        V= its velocity at time t. 
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 =     =the radius vector joining the instantaneous position (o) of the satellite to the centre (Q) of the Earth. 

(         =the components of the angular velocity   ⃗⃗⃗⃗  of the Earth on the Earth axes. 

  ⃗⃗⃗⃗     +j       ,  (i,j,k) =unit vectors along the Earth axes in order         
    

   

( ̂   ̂  )= unit vectors directed along the wind axes in order    
    

    
. 

   unit vector along the polar axis, giving the direction of rotation of the Earth. 

                                                                ⃗⃗⃗⃗  =   ,  

                                                                               to the great-circle plane. 

P=the magnitude of the instantaneous balancing force directed perpendicular to the great-circle plane.  ̂ =the unit vector 

along QO.    ̂=unit vector perpendicular to QO, being positive in the direction of                ⃗⃗ =g ̂  

 

System of axes 

So as to deal with motion of the satellite in a great-circle plane let us define several co- ordinate systems and 

establish relationships which describe the position and orientation of one system with respect to another system. 

 

Earth Axes System: The Earth axes system is a Cartesian reference frame rigidly attached to the surface of the 

Earth. The origin E is a point on the surface; the     axis is perpendicular to the    axis and is lying in the great-circle 

plane, while    axis is perpendicular to       plane and is directed in such a way that trihedral E         is a right-handed 

system.                         Is positive             
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Wind Axes System:It is defined as follows: The    axis is the tangent to the flight path and is positive in the 

forward direction; the    axis is perpendicular to the    axis and is lying in the great-circle plane. Finally    axis is 

perpendicular to           plane in such a way that trihedral O        constitutes a right-handed system. Body axes 

meant to study orientation of thrust has no role to play in this design because of the tangent to the flight path and the 

thrust lying in the same vertical plane [1]. 

 

Equations of motion 

The equations
2,3

 governing  motion of the satellite are given by  

 

m ⃗ =m(
  ⃗ 

  
+2 ⃗⃗   ⃗ )                  (1) 

 

where   ⃗   is the acceleration due to gravity, t the time,  ⃗⃗                              Earth with respect to the fixed stars 

and m the mass of the satellite: (vide Figure 1to 6) 

 

 ⃗  
   ⃗⃗⃗⃗⃗⃗ 

  
                                   (2)  

 

represents the velocity of the satellite relative to the Earth,   ⃗⃗⃗⃗  ⃗ being the vector joining the point E on the surface of the 

Earth to the satellite O. m(2 ⃗⃗   ⃗ ) is the coriolis force, which vanishes when the flight is parallel to the polar axis and is 

maximum when it is perpendicular to this axis.In the Northern hemisphere the coriolis force tends to deflect a projectile 

from the initial plane of projection to the right of the direction of travel. In the Southern hemisphere the coriolis 

deflection being zero at the Equator, reverses its direction. The coriolis force is to be taken into consideration in case of 

vehicles travelling at satellite speed or vehicles approaching escape velocity. The magnitude of the coriolis acceleration 

with v as the satellite velocity, when maximum, is 2              

 

km/sec
2
.  =.0098km/sec

2
 on the Earth’s surface If v=6km/sec,this coriolis force per unit mass is 9        sec

2
 [2]. 
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The scalar equations associated with vectorial relationships (1) and (2) can be derived for the general case of 

paths in three- dimensions and in this case, are reduced to those relevant to flight in great- circle plane by employing 

necessary side thrust by means of a propulsion system carried by the satellite. If  ⃗⃗  be the instantaneous side thrust 

required to constrain the satellite to travel in the great-circle plane, equation (1) assumes the form
1
 

 

 ⃗⃗    ⃗ = m (
  ⃗ 

  
+2 ⃗⃗   ⃗ )                         (3) 
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where  i =   ̂    (      ̂    (                          (4)                           

 

 j =  ̂    (      ̂    (                              

 

which are obtained in conformity with Figure 1. 

   =                                                                   (5) 

 

which denotes the component of the Earth’s angular velocity   along the z axis of the Earth axes system. Using 

equations (3),(4) and (5) the kinematic and dynamical relationships describing the satellite motion with its velocity V in 

great-circle plane can be obtained as 

 

 ̇ = ̇=V                                       (6) 

 

r ̇=
  ̇

  
=Vcos                                     (7) 

 
 ⃗⃗ 

 
+   =  ̇+2( ⃗⃗   ⃗ )    

 

Or,  
 ⃗ 

 
 

 

  ( ̂       ̂       =  ̇̂   ( ̇    ̇ ) ̂   (               ̂              

 

  
 

         ̇                  (8) 
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            [( ̇    ̇ )        ]                             (                   

          

    ⃗⃗         so that using (3), (4) and(8), we get 

 

P=2mV[  sin(  
 

  
     cos(  

 

  
                               (10) 

 

Where the dot sign denotes the derivative with respect to time t. The side force P equal to the coriolis force, is a function 

of the satellite velocity and the components of the Earth’s angular velocity along the Earth axes. 

 

Solutions to the equations 

The situation clearly indicates that the coriolis force perpendicular to the great circle plane has to be balanced by 

a side force to maintain the satellite in that plane. In fact this variable side force is necessary to convert three-dimensional 

motion into two-dimensional motion of the  

 

                                                        (       (9) by cos      

sin                                    one gets 

 

 ̇      ( ̇   ̇+2               
 

Using (6) and (7), 

 
 (   ̇

  
  ̇ ̇ =2  ̇     

 
 

 

 (    ̇

  
=2  ̇     

 

Or,    ̇ =           

 

In order to find the constant A, we assume that initially when r=        , 

 

   ̇    sin   
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 ̇        
 

                              (11) 

 

where K=            
                (11.1) 
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Now combining equations(6) and (8) is obtained 

 
  

  

  

  
= V

  

  
, integrating which,  

 

 
=

  

 
    

 

Initially when r=                                                                B=
 

  
 

  
 

 
  so that 

 

     
    (

 

 
 

 

  
                              (12) 

 

Using equations (6), (7),(11)and (12), equation (12) reduces to the form 

 

(      
 

  
  (

  

  
     

    (
 

 
 

 

  
)    (      

 

  
    

 

Since motion of the satellite is considered in the neighborhood of the Earth as such 

r                                                                    
    by   (

         

 
   for approximation 

without sacrifice of the accuracy: 

 

d  
(      

 

  
   

√  
    (

 

 
 

 

  
)         

  

  
     

      

 

 

=
   (

 

 
 

√   
  

  
 

  

 

+
       

√   
  

  
 

  

 

                                    (13) 

 

where   -C=  
    (

 

  
)              

                    (13.1) 

 

√
  

  
 =Escape velocity 

 

  
    (

 

  
)              

                

      

Integrating               and r from                 
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  ∫
  (

 

 
 

 

 
 

√  

     (
 

 
 

 

 
  

 

  
+     ∫

   

√           

 

  
 

 

=    

  

 
  

 
 

√  

    

      

  

 
  

 
 
 

√  

    

          

 

where I =∫
   

√            
 

 

  
=

 

√ 
∫

,(  
 

 
) 

 

 
-  

√(
  

   
  

 
) (  

 

 
   

         ( 
 

  

  

   
  

 
>0      or       ) 
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=
 

√ 
  √(

  

   
  

 
)  (   

 

 
    √(

  

   
  

 
)  (  

 

 
    +

 

 
    

  
   

 
 

√  

   
  

 
    

  
  

 
 

√  

   
  

 
 ] 

 

=
 

 
 √           

  √          ]+
 

 
 
 

    

  
   

 
 

√  

   
  

 
    

  
  

 
 

√  

   
  

 
  

 

Again, utilizing equations (6), (7),(11) and (12)along with approximate relationship          
   one can write 

 

 ̇ +2   os  
  

  =  
 +2 (

 

 
 

 

  
)      

        

 

Or,  ̇ =
          

              ∫
   

√            
 

 

  
   (At t=0,r=    

 

t=
 

 
 √           

  √          ]+
 

 
 
 

    

  
   

 
 

√  

   
  

 
    

  
  

 
 

√  

   
  

 
  (14) 
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Now                        

 

     

  

 
 
 

 
 

√  

    
            

 

where     

  

 
  

 
 
 

√  

    

   

 
 

 
 

 

 

√  

    

     (              

 

Or     r=

  

 

  √  
   

        (
 

  
           

                                        (15) 

 

Using  equations (14)  and (15) we can find out the instantaneous anomaly   and altitude h of the satellite as 

functions of time t.The trajectory of the satellite in the great-circle plane can be determined by eliminating t between 

equations(14) and (15).But employing equations(7),(11) and (12) we get 

 

cos  
       

 

 

√  
    (

 

 
 

 

  
 
                                        (16) 

 

Now combining equations (10) and (12) we determine the magnitude of the instantaneous side force given by 

 

P=2 √  
    (

 

 
 

 

  
       (  

 

  
)       (  

 

  
)              (17) 

 

Hence the instantaneous side force or thrust can be found out as a function of time by means of equations (14) to 

(17). Thus equation (17) can be employed a  
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Posteriori in order to predict the time history of the side force required to maintain the satellite motion in the 

great-circle plane. Thrust generated by the propulsion system carried by the satellite can cater to such force. 

 

DISCUSSION 

  If we consider coriolis force as a perturbation,the basic orbit of the satellite is an ellipse represented by the 

equation 

 

r=

   

 

  √  
    

       (
 

  
    

                        (18) 

where     =2
 

  
   

 ,             ,         (

  

  
  

 

  

√
  

   
   

              (18.1) 

It can be mentioned that the same equation is obtained when we consider motion of the satellite with respect to 

the fixed stars or with respect to the non-rotating Earth where                    (                                
which is obtained on consideration variation of the basic elliptic orbit defined by three elements: 

 

(1) Its eccentricity (2) the direction of the major axis (3) length of the major axis. It is usually assumed in Astronomical 

work that the perturbed orbit remains an ellipse but the elements continuously vary, ie, the real orbit is split up into 

infinitesimal lengths of a myriad of different ellipses. Hence the equation of the perturbed orbit which is an ellipse  

can be in the present contest  rewritten as 

 

     r=

  

 

  √  
   

        (
 

  
     

               (19) 
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where   (            governs the rotation of the major axis such that 
  

  
                                                                 

                                                                          at different stages. 

 

                    

 Let us take the case of a satellite constrained to orbit in a great-circle plane as discussed in the foregoing 

analysis where 

 

   = 8Km/sec,         ,        ,   =6800Km,            radians/second,     =6378Km,     =.0098Km/     .     

  

Then K= =            
                 /sec ,   

  

  
                radians/sec,       

            

 

   

       =   
    (

 

  
)              

         =57.26     /    ,  
   

          ,    √  
   

   =.0424 , 
  

 
  

        From equation (15) the minimum and maximum values of r : 

 

      
    

      
         

 

    = 
    

     
=7258Km 

 

Hence the minimum and maximum altitudes of the satellite are 289 and 880 kilometers respectively. With such 

data the orbit of the satellite becomes an ellipse whose major axis rotates at the rate of 3.75radians /sec. 

 

Example 2 

In this example we deal with a nearly circular orbit where 

   =7.9965 Km/sec,        

The rest of the data remain the same as in the example1. 



 

    
Soumendra Nath Maitra., Sch J Phys Math Stat, March, 2019; 6 (3): 42–52 

© 2019 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          48 

 

 

Page12 

K=52601.6,     C=57.31,    
   

    (             
  

 
=6782Km. 

Hence the orbit of the satellite is roughly circular with radius equal to 6800 Km. 

 

Three–dimensional motion of the satellite of short duration 

In the last section of the paper we study three-dimensional motion of the satellite relative to the Earth for a short 

interval of time as compared to its period of revolution around the Earth. Such a maneuver can be accomplished by 

shutting off the propulsion engine of the satellite so that it can travel freely leading to its three-dimensional motion as it 

gradually deviates from the original great- circle plane of motion. Since the free movement of the satellite is of short 

duration, the orientation of the plane of its motion is so small that the component P of the coriolis force can be assumed 

to act along Ze axis (perpendicular to the great-circle plane) during that interval of time [3]. 

  

The instantaneous position of the satellite can approximately be defined by the cylindrical co-ordinates 

(r,                                            
                                                                                   of the satellite on the great-circle 

plane and                                  (           (    can be roughly determined as functions of time t from 

equations (14)and (15).So as to find the coriolis deviation of the satellite from its initial plane of motion, equation (10) 

gives  

 
   

   
=2V[  sin(  

 

  
     cos(  

 

  
   =2V[(                   (                                   ( Using 

equations (6) and (7) ) 

 
   

   
    ̇    (        ̇    (      √  

    
        (20) 

 

where tan   
  

  
  and√  

    
                             (21) 

 

If initially at t=0; z= ̇=0,      and r    ,then 
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 ̇ ={2     (              (                             (22) 

 

Using equation (11) and neglecting the small term                      

 
  

  
 = 

       (          

 
 

         (          

 
                      (23)  

 

 Using equation (15) where a=
  

 
 and 

 

b=√  
   

    and neglecting            term    cos   we get 

 
  

  
  

       (          

        (      
   

         (           

        (      
          

 

Recalling the value of        (                                                                   
 

z=∫ * 
            (           

           
   

         (          

           
+    

        
     

                                                                    

=
        

 
 ∫

        (         

          
 

   (      

      (     
∫

   

          
   

 

=
        

 
     (     ∫

       

          
    (     ∫

       

          
 

 

 
   (      

      (     
∫
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=
        

 
*

    (     

            
 

   (     

 
 ∫

   

          
 ∫

   

          
  

   (      

       (      
∫

   

          
+ +(constant)  

                               (24) 

w        = ∫
   

          
 

      

(     (        
 

  

(     
    

 

  =∫
       

          
 

      

 (               
+

   

 (     
 

  

 (     
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   ∫
  

       
=

 

√    
   

   (   
 

 
 √

    

     

  

Value of the constant can be evaluated by use of the initial conditions. Thus relationship (24) is an approximate 

expression for the drift of the satellite from the great-circle plane during a short interval of time of shutting off the 

propulsion engine. 

 

Numerical example 3 

In order to cite a simple numerical example relating to equation (24), let us take the case of the satellite having 

the conditions of projection: 

 

 +  =         , and the same orbital elements given in the example1.Now the magnitude of the linear deflection of 

the satellite  , perpendicular to its initial plane of motion in the light of the foregoing theory can be calculated as 

 

  =
        

  
*

 

(          
 

 

(          
+    ( where           and           

=         
 

The minus sign indicates that the deflection takes place towards the Southern Hemisphere. The time taken by 

the satellite for this travel can be determined with the help of equations (14) and (15). 

 

Numerical example 4 

In the last numerical example we compute the deviation of the satellite after five minutes of its free  motion 

while it was originally executing circular orbit in a great-circle plane as referred to in example 2.If        and initially 

at t=0, z=0, ̇=0, the solution to equation (20) takes up the form 

 

z=          
     

    
 =

    

          (
  

 
                   (25) 

 

where    ̇=
  

  
= constant for circular orbit. Hence for small values of t, 
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z=          , sin(
  

 
)  

  

 
                                  (26) 

 

Using the data mentioned in example2, deflection at t= 5 minutes is z=46.8 Km 

 

Propell ant consumption 

  In order to maintain the satellite orbit in a great-circle plane, thrust is applied leading to consumption of 

propellant carried by it. The thrust equation is given by 

 

P=   
  

  
           (27) 

 

where m is the instantaneous mass of the satellite and VE  its exhaust velocity, ie, velocity of the gaseous elements 

emitted through the nozzles. 

 

Combining equation (27) with equation (6),(7) and(10) is obtained 
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 =       ̇    (        ̇    (                      (     ̇  

 

Introducing the initial conditions:  t=0,          and  r=                     to equation (27.1) becomes 

 

log
 

  
 =

     

  
 

   (     

       (     
 

     

       (     
             (28)   

 

where     
   

 
   and   =1 

     

                                     (29) 

 

The values of   ,      are mentioned along with equation (18) and the satellite travels in the same hemisphere. 

For each initial mass   , altitude h1, launch velocity V1, angular travel    exhaust velocity VE of the satellite, latitude   of 

the reference point E depending on    and angle   of inclination of the orbital plane to the Equator there exists an 

angle                                             propellant consumption is minimum. By use of (28). it can be found that 

 
 

  
(   

 

  
)                           or 0 
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   (   
 

  
)                    (30) 

 

Hence m is maximum,ie, propellant consumption is minimum  if the satellite is launched horizontally while 

other aspects of the orbital program are pre-assigned. 

       

Let us determine the propellant consumption during a complete orbital period, ie, the time taken by the satellite 

to complete one revolution around the Earth with respect to the line QE rigidly fixed to the Earth. Propellant 

consumption of the satellite during its travel in the Northern Hemisphere can be determined by integrating equation 

(27.1) with respect to                           Since the coriolis force perpendicular to the great circle-plane 

reverses its direction as soon as the satellite moves into the Southern Hemisphere. From the Northern Hemisphere or 

vice-versa, the thrust required to balance this coriolis force is to be applied in the reversed direction. By means of 

equation (29) it can be readily shown that the propellant consumption during the travel in the Northern Hemisphere is 

equal to that in the Southern Hemisphere and as such the total propellant consumption can be obtained as 

 

Log(1-      
         

            (       
                    (31) 

 

w         is the propellant consumption to initial mass ratio. It can easily be verified that the propellant consumption is 

minimum for initial angle of projection        the other elements in equation (31) being pre-chosen. In the following 

analysis we have expressed the components           of the Earth’s angular velocity in terms of the latitude of the place 

E of observation and have proved that the angular travel of the satellite at the time of crossing the Equatorial plane is    
    

Let us assume a right-handed frame of axes Q                           that Q   is the line of intersection of 

the great-circle plane and the Equatorial plane  and is perpendicular to Q                                   finally QZ is   
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Perpendicular to Q   and Q       Figure 5.If (         be the unit vectors along Q  ,  

 

Q                                                             

 

-i=                           (32) 

 

where                                    and Q    
 

  =kcos                        (33) 

 

The dot product of (32) and (33) yields 

 

     =                               (34) 
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                     given by 

 

                                        (35) 

 
  

  
 =           , ie      

 

Hence the angular displacement of the satellite, when it cuts the line 

                                                              (       (           
 

           and      √                      (36) 

 

Thrust analysis 

Recollecting equation (10) and (35) we observe that the coriolis force perpendicular to the great-circle plane 

disappears when 

 

tan(      
  

  
        

 

        .n           (                

 

ie, the thrust reduces to zero at that instant. As referred to in Figure 6 the tangent to the satellite path makes an angle 

    ((     )                                ich the thrust vanishes, it  
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Makes an     (    .n             (            with the line QE, ie, the satellite travels at right angles 

to the nodal line QX’ (Figure 6). Now let us find the time at which the instantaneous thrust is maximum for a given 

exhaust velocity and other given initial conditions. 

 
  

  
 =2(V

  

  
  

  

  
       (          (       

 

+         (          (      
 (    

  
 =0 

 

Employing equations (8), (9) and (27) and neglecting the term containing      
 
   

  
      (          (       = 

  

      (    )               (37) 

 

where          

 

Hence the time at the end of which the instantaneous thrust is maximum during travel of the satellite in the same 

Hemisphere can be determined by solving simultaneous equations (12), (14),(15) and (37): 

 

       √ 
(       

  
     (                      

 

where (           and the thrust is maximum when m=    r=    
          Which can be evaluated as functions of time t by solving the simultaneous equations (12),(14),(15), (28) 

and (37). 

  

CONCLUSION 

In the meridian plane where     , coriolis affect leading to deflection of the satellite is maximum. But there 

is no such effect in the Equatorial plane(                                                                           

present analysis can only approximately be applied for practical purpose as the shape of  
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The Earth deviates from a perfect sphere, as a result of which, the gravitational field is not of that value assumed 

in this paper and moreover the effects of aerodynamic forces even at high altitudes (200-600Kms) cannot be totally 
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neglected. The deviation of the gravitational field from the Inverse-square law and the aerodynamic forces, however 

small may be, may cause perturbations to the satellite orbit. Hence the balancing force required to constrain the satellite 

to move in a great-circle plane may not be exactly given by equation (17). However, discussion about a satellite falling 

into the atmosphere is out of scope in this paper. 

      

As the satellite goes on orbiting the Earth, it happens that it is gradually dragged more and more into the Earth’s 

atmosphere and is ultimately burnt to decay following the tremendous amount of heat generated owing to the friction 

between the atmosphere and surface of the satellite. Finally it can be noted that instantaneous orbital plane of a free 

satellite, defined by the plane inclined at a constant angle to the Equator which instantaneously contains the satellite, 

rotates about the polar axis. 
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