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Abstract  Review Article 
 

In this paper, we prove new composition theorems for generalized Stepanov-like almost automorphic functions and 

generalized Stepanov-like pseudo almost automorphic functions. And applying the Banach fixed point theorem, we 

study the existence and uniqueness of pseudo almost automorphic solutions to a class of semilinear integral equations. 
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INTRODUCTION 

The concept of almost automorphic functions, 

which was introduced by Bochner [1, 2], is an 

important generalization of the classical almost 

periodicity in the sense of Bohr. The concept of pseudo 

almost automorphy was introduced by Liang et al. [10], 

and the authors studied the composition theorem under 

uniformly continuous condition. The concept of   -

pseudo almost automorphy was introduced by Diagana 

[16], and obtained the existence of pseudo-almost 

automorphic solutions to some differential equations 

with   -pseudo almost automorphic coefficients. In 

2012, Diagana [17] introduced the concept of   
 

-

pseudo almost automorphy, and investigated the 

existence and uniqueness of solutions to some classes of 

nonautonomous differential equations of sobolev type.  

 

Fan et al.[7] proved new composition 

theorems for Stepanov-like almost automorphic 

functions and Stepanov-like pseudo almost automorphic 

functions under locally integrable Lipschitz conditions, 

and given application to a class of evolution equations 

with Stepanov-like pseudo almost automorphic 

coefficients. Rui et al. [5] established some new 

composition theorems for Stepanov-like weighted 

pseudo almost automorphic functions, and investigated 

the existence and uniqueness of weighted pseudo 

almost automorphic mild solutions to a class of 

nonautonomous evolution equations with   -weighted 

pseudo almost automorphic coefficients. More 

investigation of new composition theorems under 

different Lipschitz condition, one can see [3-10] and the 

references therein. 

 

In recent years, the existence of (pseudo) 

almost automorphic, Stepanov-like (pseudo) almost 

automorphic, generalized Stepanov-like (pseudo) 

almost automorphic, Stepanov-like weighted (pseudo) 

almost automorphic solutions on kinds of differential 

equations has been extensively investigated. Such as 

Diagana and G. M. N'Guérékata
 

[15] studied the 

existence and uniqueness of an almost automorphic 

solution to the semilinear equation with   -almost 

automorphic coefficients. One can see [11-25] and the 

references therein. 

 

In this paper, we study and obtain the 

existence and uniqueness of pseudo almost automorphic 

solutions to a class of semilinear integral equations 

given by 

 

 ( )  ∫  (   ),  ( )   (   ( ))-  
 

  

        

 

where     (  ),    ( )      is the generator of an integral resolvent family defined on a complex Banach 

space  , and         is a   
 

-pseudo almost automorphic function satisfying suitable Lipschitz conditions. 
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We establish new composition theorems for 

generalized Stepanov-like almost automorphic 

functions and generalized Stepanov-like pseudo almost 

automorphic functions under suitable Lipschitz 

conditions. And using the Banach fixed point theorem 

and new composition theorems proved in this paper, we 

study the existence and uniqueness of pseudo almost 

automorphic solutions to the class of semilinear integral 

equations with generalized Stepanov-like pseudo almost 

automorphic coefficients. 

 

Preliminaries 

Throughout this paper, let   ,   ), and 

(     ) and (     ) are two Banach space. Let  (   ) 

(respectively,  (     )) denote the collection of all 

continuous functions(respectively, the collection of all 

jointly continuous functions). Furthermore,   (   ) 

(respectively,   (     )) denote the collection of 

all bounded continuous functions with supremum 

norm(respectively, the collection of all jointly bounded 

continuous functions). 

 

       
 
-almost automorphy 

Definition 2.1 A continuous function       is said 

to be almost automorphic if for every sequence of real 

numbers (  
 )   , there exist a subsequence (  )    

such that 

 

 
 

( )     
   

 (    )     ( )     
   

 
 

(    )     r          

The collection of all almost automorphic functions        is denoted by   (   ). 
 

Definition 2.2[23] The Bochner transform  (   ),     ,   ,   - of a function       is defined by 

  (   )   (   ) 

 

Remark 2.1 (i)A function  (   )       ,   -, is the Bochner transform of a certain function f,  (   )    (   ), if 

and only if  (       )   (   ) for all       ,   - and   ,     -; 
 

 (ii)Note that if      , then         . Moreover, (  )     for each scalar  . 

 

Definition 2.3[15] The Bochner transform  (     ),   ,   ,   -,    of a function         is defined by 

  (     )   (     ) 
for each    . 

 

Definition 2.4[23] The space    (   ) of all Stepanov bounded functions consists of all measurable functions Y on   

with values in   such that      (    (        )). This is a Banach space when it is equipped the norm defined by 

            (    )    
   

(∫  
   

 

 ( )     )
 
     

   
(∫  

 

 

 (   )     )
 
  

 

Definition 2.5[21] A function      (   ) is called Stepanov-like almost automorphic (or   -almost automorphic) if 

     (    (     )). In other words, a function       
 

(      ) is called   -almost automorphic if its Bochner 

transform        (        ) is almost automorphic in the sense that for every sequence of real numbers (  
 )   , 

there exist a subsequence (  )    and a function  
 

     
 

(      ) such that 

 

(∫  
   

 

 (    )   
 

( )     )
 
        (∫  

   

 

 
 

(    )   ( )     )
 
    

 

as     pointwise on  . The collection of such functions is denoted by    (   ). 

 

Let   denote the collection of all measurable (weights) functions  (   )  (   ), satisfying the following 

condition: 

       
   

∫  ( )
 

 

   ∫  ( )
 

 

                
  (   )

 ( )    

Let    denote the collection of all functions   , which are differentiable. 

 

Definition 2.6 Let     . The space    
 
(   ) denote all generalized Stepanov spaces consists of all    -measurable 

functions Y on   with values in   such that its Bochner transform      (    (        )). This is a Banach space 

when it is equipped the norm defined by 

     
     

   
(∫  (   )

   

 

  ( )     )
 
     

   
(∫  ( )

 

 

  (   )     )
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Definition 2.7[21] Let    . The space    
 (   ) of all generalized Stepanov-like almost automorphic (or   

 
-almost 

automorphic) functions consists of all      
 (   ) such that for every sequence of real numbers (  

 )   , there exist a 

subsequence (  )    and a function  
 

     
 

(     
   ) such that 

(∫  (   )
   

 

  (    )   
 

( )     )
 
    

(∫  (   )
   

 

  
 

(    )   ( )     )
 
    

as     for each    . 

 

Remark 2.2 Let    . if         and       
 

(       ) is   
 
-almost automorphic, then Y is   

 
-almost 

automorphic. 

 

Definition 2.8[15] Let    . A function       , (   )   (   ) with  (   )       
 

(     

   ) for each    , is called   
 

-almost automorphic in     uniformly in     if    (   ) is   
 

-almost 

automorphic for each    , that is, for every sequence of real numbers (  
 )   , there exist a subsequence (  )    and a 

function  
 

(   )      
 

(       ) such that 

 

(∫  (   )
   

 

  (      )   
 

(   )     )
 
    

(∫  (   )
   

 

  
 

(      )   (   )     )
 
    

 

as     pointwise on   for each    . The collection of all   
 

-almost automorphic functions is denoted by    
 
(  

   ). 
 

Theorem 2.1 Let      
 (     ) and suppose   satisfies the Lipschitz condition as follows, that is, there exits 

  ,   ) and  ( )     
 
(   ), such that for all         

 
(       ),     

  (   )   (   )    ( )                                      (   ) 

and      
 
(   ) such that   * ( )    +    is a compact subset. Then the function       given by  ( )  

 (   ( )) is    
 
(   ). 

 

Proof.  First, we prove that  (   ( ))      
 

(       ). 
 

Since   * ( )    + is compact, we can find finite open ball   (           ) with center       and radius 

  small enough such that * ( )    +  ⋃   
 

   
,    *     ( )    + and   ⋃   

 

   
. Let       ,    

   ⋃   
   

   
(     ), then        , when            . 

 

Define the step function       by  ( )    ,                 . It's easy to obtain that   ( )   ( )     

for all    . Using Hölder inequality (where    
 

   
    

 

 
), we can obtain 

∫  (   )
   

 

  (   ( ))     

 ∫  (   )
   

 

  (   ( ))   (   ( ))      ∫  (   )
   

 

  (   ( ))     

 ∫  (   )
   

 

 ( )   ( )   ( )      ∑∫  (  
,     -   

 

   

 )
(  

 
  )   (   )

 
    (    )     

      
  
 

 
   

 
  

∑(

 

   

∫  (   )
,     -   

  (    )     )
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Since the arbitrariness of   and  (    )      
 

(       ), for every            , we get  (   ( ))  

    
 

(       ). 

Next, we prove that  ( ) is    
 
(   ).  

 

Let (  
 )    be an arbirary sequence of real numbers. Since      

 (   ) and      
 (     ), there exist a 

subsequence (  )    and functions  
 

     
 (       ),   

 

(   )      
 

(     
   ) such that 

(∫  (   )
   

 
  (    )   

 

( )     )
 

                     (2.1)     

(∫  (   )
   

 
  

 

(    )   ( )     )
 

                      (2.2) 

as     for each    . 

(∫  (   )
   

 
  (      )   

 

(   )     )
 

                  (2.3) 

(∫  (   )
   

 
  

 

(      )   (   )     )
 

                 (2.4) 

as     pointwise on   for each    . 

 

Let us consider the function  
 

     defined by  
 

( )   
 

(   
 

( )). Note that 

 (    )   
 

( )   (      (    ))   (      
 

( ))   (      
 

( ))   
 

(   
 

( )) 

Let     
  

   
, obviously         . By Remark 2.2,  ( )     

  (   ). Using Hölder inequality, we can 

obtain 

 

∫  (   )
   

 

  (    )   
 

( )     

 ∫  (   )
   

 

  (      (    ))   (      
 

( ))     

 ∫  (   )
   

 

  (      
 

( ))   
 

(   
 

( ))     

 ∫  (   )
   

 

 (    )
   (    )   

 

( )     

 ∫  (   )
   

 

  (      
 

( ))   
 

(   
 

( ))     

    
  
  

 
(∫  (   )

   

 

  (    )   
 

( )     )
 
 

   

 
  
(∫  (   )

   

 

  (      
 

( ))   
 

(   
 

( ))     )
 
 

 

 

We can deduce from (2.1), (2.3) that 

∫  (   )
   

 

  (    )   
 

( )        

as     pointwise on  . 

 

Similarly we can deduct from (2.2), (2.4) that 

∫  (   )
   

 

  
 

(    )   ( )        

as     pointwise on  . Thus  ( )   (   ( )) is    
 
(   ). The proof is complete.    

   

2.2   
 
-pseudo almost automorphy 

Define the classes of functions: 

    (   )  *    (   )    
   

 

  
∫  

 

  

 ( )      + 

    (     )  *    (     )    
   

 

  
∫  
 

  
 (   )      ,  (   ) is bounded for each    + 
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Definition 2.9[25] A function    (   ) is called pseudo almost automorphic if it can be expressed as      , 

where     (   ) and       (   ). The collection of such functions is denoted by    (   ). 
 

Proposition 2.1[25] The space    (   ) equipped with the sup norm      is a Banach space. 

 

Definition 2.10[25] A function    (     ) is called pseudo almost automorphic if it can be expressed as     
 , where     (     ) and       (     ). The collection of such functions is denoted by    (     ). 

 

Define the following collections 

    (    (         ))  * ( )      
 

(       )  

   
   

 

  
∫ (∫  (   )  

   

 

 

  

 ( )     )
 
     + 

    (      (         ))  * (   )      
 

(       )  

   
   

 

  
∫ (∫  (   )  

   

 

 

  

 (   )     )
 

     ,  (   ) is bounded for each    + 

 

Definition 2.11[17] Let     . A function      
 
(   ) is called   

 
-pseudo almost automorphic (or generalized 

Stepanov-like pseudo almost automorphic) if it can be expressed as      ,  where      (    (         )) and 

       (    (         )). The collection of such functions is denoted by     
 
(   ). 

 

Remark 2.3 By definition, the decomposition of   
 

-pseudo almost automorphic functions is unique. Furthermore,   
 

-

pseudo almost automorphic spaces are translation-invariant. 

 

Proposition 2.2[17] If      (   ), then       
 
(   ). In other words,    (   )      

 
(   ). 

 

Proposition 2.3[17]Let     . The space     
 
(   ) equipped with the norm      

  is a Banach space. 

 

Definition 2.12[17] Let     . A function        , (   )   (   ) with  (   )      
 

(       ) for each 

   , is called   
 

-pseudo almost automorphic if there exist functions           such that       where 

     (      (         )) and        (      (         )). The collection of such functions is denoted 

by     
 
(     ). 

 

Theorem 2.2 Let           
 (     ) such that its Bochner transform      (      (         ) and 

       (      (         )). Assume that   and   satisfy (H1). Furthermore, if           
 (   ) with 

     (    (         ) and        (    ( 

         )) and such that   * ( )    + is compact, then there exits   ,   ) such that  (   ( )) belongs to 

    
 
(   ). 

 

Proof.  We have 
 (   ( ))   (   ( ))   (   ( ))   (   ( ))

  (   ( ))   (   ( ))   (   ( ))   (   ( ))
 

Denote by 

  ( )    (    ( )

   (    ( ))    (    ( ))    (    ( ))    (    ( ))
 

Next, we shall show that   ( )     (    (         )) by several steps. 

 

Step 1: we claim that   (    ( ))    (    (         )). In fact, we know that the function   satisfies (H1) and 

its Bochner transform      (      (         )),      (    (       

   ). Moreover,   * ( )    + is compact. Thus, by Theorem 2.1, we have   (    ( ))    (    (         )). 

 

Step 2: we claim that   ( )    (    ( ))    (    ( ))      (    (         )). Since     satisfy (H1), 

using Hölder inequality (where    
 

   
    

 

 
), we can obtain 
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∫  ( )
 

 

  (   )      ∫  (   )
   

 

  ( )     

 ∫  (   )
   

 

  (   ( ))   (   ( ))     

 ∫  (   )
   

 

  (   ( ))   (   ( ))     

 ∫  (   )
   

 

  (   ( ))   (   ( ))     

  ∫  (   
   

 

)
(  

 
  ) ( )   (   )

 
    ( )   ( )     

  (∫  (   )
   

 

 ( ) 
    )

 
   (∫  (   )

   

 

  ( )     )
 
 

     
  
  

 
(∫  (   )

   

 

  ( )     )
 
 

 

 

where     
  

   
. Thus, for any     

 

  
∫ (

 

  

∫  ( )
 

 

  (   )     )
 
    

     
  

 
∫ (

 

  

∫  (   )
   

 

  ( )     )
 
    

 

Since        (    (         )), we can obtain 

   
   

 

  
∫ (

 

  

∫  ( )
 

 

  (   )     )
 
      

 

which implies   ( )      (    (         )). 

 

 

Step 3: we also claim that   (    ( ))      (    (         )). Since   * ( )    + is compact, we can 

find finite open ball   (           ) with center      and radius   small enough such that * ( )    +  

⋃   
 

   
,     *     ( )    + and   ⋃   

 

   
. Let      ,       ⋃   

   

   
(     ), when       

     . 

 

Define the step function       by  ( )    ,                 . It's easy to obtain that   ( )   ( )     

for all    . It follows that 

∫  (   )
   

 

  (   ( ))     

 ∫  (   )
   

 

  (   ( ))   (   ( ))      ∫  (   )
   

 

  (   ( ))     

 ∫  (   )
   

 

 ( )   ( )   ( )      ∑∫  (   )
,     -   

 

   

  (    )     

      
  
 

 
   

 
  

∑(

 

   

∫  (   )
,     -   

  (    )     )
 
 

 

Thus, for any     

 

  
∫ (

 

  

∫  (   )
   

 

  (   ( ))     )
 
   

 
 

  
∫ *

 

  

     
  
 

 
   

 
  

∑(

 

   

∫  (   )
,     -   

  (    )     )
 
 +

 
   

 

 

Since the arbitrariness of   and        (      (         )), we can obtain 
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∫ (

 

  

∫  (   )
   

 

  (   ( ))     )
 
      

which implies   (    ( ))      (    (         )). The proof is complete.  

 

Pseudo almost automorphic solution 

In this section, we study the semilinear equation 

 ( )  ∫  (   )
 

  
[  ( )   (   ( ))]               (3.1) 

 

Definition 3.1 Let   be the generator of an integral resolvent family  ( )   . A continuous function       is called a 

mild solution of equation (3.1) if it satisfies the integral equation 

 ( )  ∫  ( 
 

  

  ) (   ( ))        r         

 

Theorem 3.1 Assume that A generates an integral resolvent family  ( )    such that 

  ( )    ( )    r           w t      (  ) 
 

where   is a decreasing function such that     ∑   
   ( )   . Let        ,       

 
(     )   (  

   ), and   satisfies the Lipschitz condition 

  (   )   (   )    ( )          r               

 

where     (  ),        
   

 ∫  
   

 
( )    . Then equation (3.1) has a unique pseudo almost automorphic mild 

solution whenever       . 

 

Proof.  First we prove that the integral operator   defined by 

  ( )  ∫  ( 
 

  

  ) (   ( ))   

maps    (   ) into    (   ). 

Since       
 
(     ) and      (   )      

 
(   ). By Theorem 2.2, it follows that  ( )  

 (   ( ))      
 
(   ). Now let      , where their Bochner transform      (    (         ) and    

    (    (         )). Consider for each          , the integral 

  ( )  ∫  ( )
 

   

 (   )  

 ∫  ( 
 

   

) (   )   ∫  ( 
 

   

) (   )  

 

and set   ( )  ∫  
 

   
( ) (   )   and   ( )  ∫  

 

   
( ) (   )  . 

Let us show that      (   ). For that, letting      , we obtain 

  ( )  ∫  
     

   

(   ) ( )       

Using the Hölder inequality (where      , 
 

   
 

    ) and mean value theorem of integrals, it follows that 

   ( )    ∫  
     

   

(   ) ( )   

 ∫  
     

   

 (   )    ( )    

 ∫  
     

   

(   ) (     )
 

 
    (     )

 
    ( )    

 (∫  
   

 

( ) 
 
 (   )

 
  

    )
 
   (∫  

     

   

(     )   ( )   
 
  )

 
  

   

 
 
 
     

 (∫  
   

 

( ) 
 
  )

 
  

 

Since     (  ) and    
(  )    (  ), then 

  

 
 
      

 ∑(

 

   

∫  
   

 

( ) 
 
  )

 
     

 
 
      

    
   

(  )
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We deduce from the well-known Weirstrass theorem that the series ∑   
 
   ( ) is uniformly convergent on  . 

Furthermore, 

 ( )  ∫  
 

  

(   ) ( )   ∑  

 

   

( ) 

 ( )   (   ), and 

  ( )    ∑  

 

   

( )   ∑  

 

   

  ( )  +    

 

We deduce from the well-known Weirstrass theorem that  ( ) is bounded. 

 

Since      
 
(   ), then for every sequence of real numbers (  

 )   , there exist a subsequence (  )    and a 

function  
 

    
 
(   ) such that 

   
   

  (    )   
 

( )    
           

   
  

 

(    )   ( )    
        (3.2) 

Let 

  

 

( )  ∫  
 

   

( ) 
 

(   )   

 

Then, using the Hölder inequality and mean value theorem of integrals, it follows that 

   (    )    

 

( )  

  ∫  
 

   

( ), (      )   
 

(   )-   

 ∫  
 

   

( ) (     )
 

 
    (     )

 
    (      )   

 

(   )    

 (∫  
 

   

( ) 
 
 (     )

 
  

    )
 
   (∫  

 

   

(     )   (      )   
 

(   )     )
 
 

   

 
 
 
   

     (    )   
 

( )    
 

 

 

Now using (3.2) and Lebesgue dominated convergence theorem, it follows that 

   (    )    

 

( )         s     

 

Similarly, using (3.2) and Lebesgue dominated convergence theorem, it follows that 

   

 

(    )    ( )        s     

 

Thus, each      (   ) for each  . Hence their uniform limit  ( )    (   ). 

 

Let us show that        (   ). Using the Hölder inequality and mean value theorem of integrals, we can obtain 

   ( )    ∫  
     

   

(   ) ( )   

   

 
 
    

   (∫  
     

   

(     )   ( )     )
 
 

 

Thus, for any     

 

  
∫  

 

  

  ( )     
  

 
 
    

   

  
∫ (

 

  

∫  
     

   

(     )   ( )     )
 
   

 

Since        (    (         )), then 

   
   

 

  
∫  

 

  

  ( )       

that is,        (   ). Furthermore, 
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 ( )  ∫  
 

  

(   ) ( )   ∑  

 

   

( ) 

 ( )   (   ), and 

  ( )    ∑  

 

   

( )   ∑  

 

   

  ( )   

Then 

   
   

 

  
∫  

 

  

 ( )       

Consequently the uniform limit  ( )      (   ). Thus,   ( )   ( )   ( )     (   ). 

 

Next, we prove that the existence and uniqueness of pseudo almost automorphic solution applying the Banach 

fixed point theorem. 

 

Since   is a decreasing function such that    ∑   
   ( )   , and let          (   

 ). Using mean value theorem of integrals, we have 

 

     ( )     ( )       
   

 ∫  
 

  

(   ), (    ( ))   (    ( ))-   

    
   

∫  
 

  

 (   )    (    ( ))   (    ( ))    

    
   

∑∫  
     

   

 

   

(   ) ( )    ( )    ( )    

             

 

 

Since       , hence by the Banach fixed point theorem,   has a fixed point     (   ). The proof is 

complete.    

 

CONCLUSION 
This paper mainly studied new composition 

theorems for   
 
-(pseudo) almost automorphic 

functions. By using Hölder inequality, mean value 

theorem of integrals and the Banach fixed point 

theorem, we obtained the existence and uniqueness of 

pseudo almost automorphic solutions to a class of 

semilinear integral equations, under some suitable 

conditions. 

 

There are two direct issues which require 

further study. We will study the existence of pseudo 

almost automorphic solutions of a class of stochastic 

differential equations perturbed noise, under   
 
 -pseudo 

almost automorphic coefficients. Also, we will 

investigate generalized Stepanov-like weighted pseudo 

almost automorphic functions, which are more 

generalized than   
 
-pseudo almost automorphic 

functions, and study theirs new composition theorems 

and applications. 
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