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INTRODUCTION
In the 1930s, Orlicz [1] introduced a class of variable exponential Lebesgue spaces ( )pL  that generalize the

classical Lebesgue spaces. In 1991, the generalized Hölder inequality in n was given by Kováčik and Rákosnik[2], and
the basic properties of variable exponential Lebesgue spaces ( )pL  were described in detail. This made a breakthrough in
the study of variable exponential Lebesgue spaces ( )pL  , and attracted extensive attention of scholars (see [3-12]).

As we all know, the classical pA weighted of Muckenhoupt[13] is widely used in harmonic analysis and partial

differential equations. Using Muckenhoupt's classical pA weighted, Cruz-Uribe, Fiorenza and Neugebauer defined a new

class of ( )pA  type condition on weighted in [14]. The equivalence conditions for weighted and the boundedness of

Hardy-Littlewood maximal operators on variable exponential Lebesgue spaces ( ) ( )p nL   were given. Influenced by the
development of variable exponential function spaces, in 2009, Izuki [15] introduced Herz spaces and Herz-Morrey spaces
with variable exponents, and extended the classical Herz spaces and Herz-Morrey spaces to the case of variable exponents.
The boundedness of a class of vector-valued sublinear operators on these two classes of spaces was also proved. The
intrinsic square function was introduced by Wilson [16] in 2007. This function was a kind of Littlewood-Paley operator,
which is an improvement of classical Littlewood-Paley area function. At the same time, the author showed the definition of
vector-valued intrinsic square function, which included Littlewood-Paley g -function and its deformed Littlewood-Paley
g
 -function. Next, Wang Hua studied the boundedness of intrinsic square functions in weighted Morrey spaces and

weighted Herz spaces in [17-19]. The boundedness of  -order intrinsic square function from weighted Herz space to
weighted weak Herz space was also obtained. Kwok-Pun Ho [20] proved the boundedness of vector-valued singular
integral operators and Fefferman-Stein vector-valued maximal operators on Morrey spaces with variable exponents.
Recently, Izuki and Noi using the properties of ( )pA  type weighted and variable exponential space in [21], gave the

boundedness of the  -order intrinsic square function on homogeneous Herz space ,
( ) ( )q
pK
 
 . The results for the intrinsic

square function can also be found in [22]. Here, we are interested in the boundedness of order vector-valued intrinsic square
functions on Herz-Morrey spaces with variable exponents, and obtain satisfactory weighted inequalities.

http://saspjournals.com/sjpms
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In the whole article, for measurable sets nS  , we use | |S to denote the Lebesgue measure of S and s to

denote the characteristic function of S . We also let { :| | }nB y x y r    to denote the sphere which centered at x
radius of r . The constant C may take different values for different conditions but have nothing to do with the main
parameters.

PRELIMINARIES
Firstly, we show the definition of variable exponential Lebesgue space ( ) ( )p nL   .

Definition 1.1 [5] Let ( ) : [1, )np    be a measurable function. The Lebesgue space with variable exponents is as
follows:

There exists 0  and a set of measurable functions f such that ( )| ( ) |( )
n

p xf x dx


  . And

( )
( )

( )

| ( ) |inf{ 0 : ( ) 1}.p n n

p x
L

f xf dx


    
‖‖

Then ( ) ( )p nL   is a Banach function space with the norm ( ) ( )p nL  
‖‖ . Obviously, if 0( )p x p (constant), then

( ) ( )p nL   is classical Lebesgue space 0 ( )p nL  .

For ( ) : (0, )np    , let essinf{ ( ) : }, esssup{ ( ) : }.n np p x x p p x x     
Suppose ( )nP is all of ( )p  that satisfying 1 ( )p p x p      and 0 ( )nP is all of ( )p  that satisfying

0 ( )p p x p     .

( )nB is all ( ) ( )np   P that satisfying Hardy-Littlewood maximal operator M bounded on ( ) ( )p nL   . We

use ( )p  to denote that the conjugate exponent of ( )p  , that is, 1 1 1.
( ) ( )p x p x

 


Let ( )p  P . (1) If there is a constant 0C such that 0| ( ) (0) | ,
log( 1/ | |)

.nCp x p x
e x

  




Then we say that ( )p  is log-Hölder continuous at the origin, and denote by 0( )p LH  .

(2) If there exists p and a constant 0C  , such that | ( ) | , ,
log( | |)

nCp x p x
e x


  




where lim ( )
x

p p x 
 . Then we say ( )p  is log-Hölder continuous at the infinity, and denote by ( )p LH  .

If 0( ) ,p LH LH   we denote by ( )p LH  . Obviously, if ( )p LH  , then ( )p LH   .

Secondly, we give the definition of ( )pA  type weighted [14]: Let  be a locally integrable non-negative function

defined in n and ( ) ( )np   P .

If ( ) ( )

1 1
( ) ( )

( ) ( )
sup ,p n p n

p p
B BL L

B
     


   

 
‖ ‖ ‖ ‖ then  is called ( )pA  type weighted function. If ( )p  is a

constant and (1, )p  , the above definition is equivalent to the pA weighted of Muckenhoupt.
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Definition 1.2[14] Let ( )pA  . Then the weighted variable Lebesgue space ( ) ( )pL  is defined as
1

( ) ( ) ( )( ) ( , )p p n pL L     , whose norm is ( ) ( )

1
( )

( )
.p p

p
L L

f f


 
‖‖ ‖ ‖

Let (0, 2 )kkB B , 1k k kC B B  � ,
kk C  , k . Based on ( )pA  type weighted, we give the definition

of weighted variable exponential Herz-Morrey space. Suppose n  is a measurable set,

( ) : [1, )p    is a measurable function and  is a non-negative local integrable function defined on  .
1

( ) ( )( , )p p
locL   is a set that contains all the functions f satisfying the following condition: for any measurable set

E   , there exists a constant 0  , such that ( )( )| | ( ) .p x

E

f x x dx


 

Definition 1.3[22] Let , 0   , 0 p   , ( ) ( ),nq   P  be a weighted function. Then the weighted

variable exponential Herz-Morrey space ,
, ( ) ( )p qMK  

 is defined as

,
, ( )

1
, ( ) ( )
, ( ) ( )

( ) { ( \{0}, ) : },
p q

q n q
p q loc MK

MK f L f  
 


 



 
    

  ‖‖

where
0

0
, ( )
, ( )

0

1

( ) ( )
sup2 ( 2 ) .q

p q

k
k k p p p

kMK L
k k

f f 
 

 
 





 

 


‖‖ ‖ ‖ Obviously, ,0 ,
, ( ) ( )( ) ( ).p
p q qMK K    

The concept of intrinsic square function is given as follows (see [16], etc.).

For ,nx we define the set 1( ) {( , ) :| | }nx y t x y t
     , where 1 (0, )n n

     . Let 0 1 

be a constant, and the set C be all functions  on n satisfying the following three conditions.

(1)supp {| | 1};x  

(2) ( ) 0;
n

x dx 
(3) 1 2 1 2| ( ) ( ) | | |x x x x     , for 1 2, nx x  .

For any 1( , ) ny t 
 , let ( ) ( )n

t
yy t
t

  . Then for any 1 ( )nlocf L  , we define maximal function

1( , ) sup | ( ) |, ( , ) .n
tA f y t f y y t






 



  

C
The  -order intrinsic square function is defined as follows:

1
2 2

1( )
( ) ( ( , ) ) .nx

dydtS f x A f y t
t  

 

For any nx , suppose 1 2( , ,...)f f f


is a sequence of locally integrable function in n . Then the
vector-valued intrinsic square function is defined as

1
2 2

1

( )( ) ( | ( )( ) | ) .j
j

S f x S f x 
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PRINCIPALLEMMA
Lemma 2.1 [2] (Generalized Hölder inequality) Let ( ) ( )np   P . If ( ) ( )p nf L   and ( ) ( )p ng L    , then fg is

integrable on n and the following inequalities

( ) ( )( ) ( )
| ( ) ( ) | ,p n p nn p L L
f x g x dx r f g    

‖‖ ‖‖ (2.1)

hold，where 1 1/ 1/pr p p    .

Lemma 2.2 [4] If ( ) ( )np LH   P , then ( ) ( )nq   B .

According to [21], if  is a weighted function, then ( ) ( ) 1( ( , )) ( , )p n p nL L      , where ( )p  denotes

conjugate index of ( )p  . There are two following lemmas.
Lemma 2.3 [21] Let ( ) ( ),np   B ( )pA  . Then there exists a constant 0C  , such that for any ball B in n ,

we have

( ) ( )
1

( ) ( ( ))

1 .
| | p pB BL L

C C
B  

  



 ‖ ‖ ‖ ‖ (2.2)

Lemma 2.4 [21] Let ( )( ) ( ),n
pp A   B . Then there exist a positive constantC , such that for any ball B in n

and any measurable set ,E B we have

( )

( )

( )

( )

| |
| |

p

p

B L

E L

BC
E













‖ ‖

‖ ‖
(2.3)

and
( )

( )

( )

( )

| |( )
| |

p

p

E L

B L

EC
B

 











‖ ‖

‖ ‖
, (2.4)

where  is a constant which satisfies 0 1  .

For the intrinsic square function, the following results are obtained.

Lemma 2.5 [21] Let 0 1,  ( ) ( ) ( ),n np LH   P ( ).pA  Then the intrinsic square function S is

bounded on the weighted exponential Lebesgue space ( ) ( )pL  , that is

( ) ( )( ) ( )
.p pL L

S f C f   ‖ ‖ ‖‖

Lemma 2.6 [19] Let 0 1,  1 ,p   .pA Then there exists a constants C which is independent of

1 2( , ,...)f f f


, such that
1 1

2 22 2
( ) ( )

( | ( ) | ) ( | | ) .p pj jL L
j j
S f C f  

 ‖ ‖ ‖ ‖

Lemma 2.7 [9] (Extrapolation theorem) Assuming that 0 0p  , any 0 1A  and ( , )f g is included in a family of

non-negative ordered pairs F . Then

0 0
0 0( ) ( )

, ( , ) .p pL L
f C g f g

 
 ‖‖ ‖‖ F .

Let 0( )p  P , such that 0p p  and M be bounded on 0 0( ( )/ ) ( )p p pL   . Then

( ) ( )( ) ( )
.p pL L

f C g
  ‖‖ ‖‖

Combining Lemma 2.6 and the Extrapolation Theorem, the following conclusions can be easily drawn.

Lemma 2.8 Let 0 1  , ( )( ) ( ) ( ), .n n
pp LH A     P Then there exists a constant C which is independent

of 1 2( , ,...)f f f


, such that
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( ) ( )

1 1
2 22 2

( ) ( )
( | ( ) | ) ( | | ) .p pj jL L

j j
S f C f    ‖ ‖ ‖ ‖

MAINRESULT

Theorem 3.1 Let 0 1, ( ) ( ) ( )n nq LH     P , 0 , 0p     ,
1 1r
q

  ,

( )rqA  and (1 )n n r      , (0 1)  . Then there exists a constant C which is independent of

1 2( , ,...)f f f


, such that

, ,
, ( ) , ( )

1 1
2 22 2

( ) ( )
( | ( ) | ) ( | | ) .

p q p q
j jMK MK

j j
S f C f      

  ‖ ‖ ‖ ‖ (3.1)

Proof For any
1

2 ,2
, ( )( | | ) ( )j p q

j
f MK     , ,i j , we denote that

( ) ( ) ( ) ( ).i
j j i j

i i

f x f x x f x
 

 

   
By the definition of the weighted Herz-Morrey space with variable exponents, we have

0
0

, ( )
, ( )

0

1
2 2

( ) ( )
1

( ) sup2 ( 2 ( | ( ) | ) )q
p q

k
k pp k p p

j kMK L
k k j

S f S f 
 

  
 






  

  



‖ ‖ ‖ ‖

0
0

( )

0

12
2 2

( )
1

sup2 ( 2 ( ( | ( ) | ) ))q

k k
k p k p i p

j k L
k k i j

C S f 
 

 

 


   

   


‖ ‖

0
0

( )

0

11
2 2

( )
1 1

sup2 ( 2 ( ( | ( ) | ) ))q

k k
k p k p i p

j k L
k k i k j

C S f 
 

 

 


    

   


‖ ‖

0
0

( )

0

1
2 2

( )
2 1

sup2 ( 2 ( ( | ( ) | ) ))q

k
k p k p i p

j k L
k k i k j

C S f 
 

 

 


    

   


‖ ‖

1 2 3.F F F  
Firstly, we estimate 2F . Using lemma 2.8, we obtain

0
0

( )

0

11
2 2

2 ( )
1 1

sup2 ( 2 ( %( | ( ) | ) ))q

k k
k p k p i p

j k L
k k i k j

F C S f 
 

 

 


    

   


‖ ‖

0
0

( )

0

11
2 2

( )
1 1

sup2 ( 2 ( ( | | ) ))q

k k
k p k p i p

j k L
k k i k j

C f 


 

 


    

   


‖ ‖

,
, ( )

1
2 2

( )
1

( | | ) .
p q

p
j MK

j
C f   





  ‖ ‖

Next, we estimate 1F . By 2, ki k x A   and ( , ) ( )y t x , for any , C we have

{ :| | }
| ( ) ( ) | | ( ) ( ) | | ( ) | .

i i

i n
j t t j jA z A y z t
f y y z f z dz Ct f z dz  

  
     (3.2)

For ,iz A and | | ,y z t  we obtain

21 1 1 1 | |(| | | |) | | (| | 2 ) (| | 2 ) .
2 2 2 2 4

i k xt x y y z x z x x            (3.3)

Using (3.2) and (3.3), we have
1

2 2
1( )

| ( )( ) | ( sup | ( ) | )i i
j j t nx

dydtS f x f y
t




  
 

C
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1
2 2

| | 1{ :| | } { :| | }
4

1( ( | ( ) | ) )
i

x jn ny x y t z A y z t

dydtC f z dz
t t



    
   

1 1
2 2

| | | |3 1 2 1{ :| | }
4 4

( | ( ) | )( ( ) ) ( | ( ) | )( )
i i

x xj jn nA y x y t A

dt dtC f z dz d y C f z dz
t t

 

  
     

| | | ( ) | .
i

n
jA

C x f z dz  (3.4)

By the duality and Cauchy-Schwarz inequality, there is

1
2 2

1 1
2 22 2

( | | ) 1

( | ( )( ) | ) ( | | | ( ) | ) sup (| | | ( ) | )| |
i i

j
j

i n n
j j j jA A

j j j
S f x C x f z dz C x f z dz



 



   


   

1
2 2( | | ) 1

| | sup | ( ) |( )
i

j
j

n
j jA

j

C x f z dz






 




1
2 2| | ( | ( ) | ) .

i

n
jA

j
C x f z dz   (3.5)

Next, by using (2.1), lemma 2.2 and (2.2), notice that for any ,kx A 1| | | |n
kx C B  . Then

1 1
2 22 2( | ( )( ) | ) | | ( | ( ) | )

i

i n
j jA

j j
S f x C x f z dz

  

( ) ( )

11
2 ( )2

( ) ( )
| | ( | | ) q q ni

n q
j i BL L

j
C x f


   


   
‖ ‖ ‖ ‖

( ) ( )

1
2 12

( ) ( )
| | ( | | ) | |q qi

n
j i i BL L

j
C x f B

 
  

  ‖ ‖ ‖ ‖

( ) ( )

1
2 12

( ) ( )

| | ( | | ) .
| | q qi

i
j i BL L

jk

BC f
B  

  
 ‖ ‖ ‖ ‖ (3.6)

By (3.6), we obtain
0 ( )

0
( )

( )0

12
( ) 2 2

1 ( )
( )

| |sup2 ( 2 ( ( | | ) ) ).
| |

qk
q

qi

k k B Lk p k p pi
j i L

k k i jk B L

BF C f
B

 

















  

   


‖ ‖
‖ ‖

‖ ‖
(3.7)

For ,k i and 2,k i  we have i kB B . For ( ) ( ) ( )n nrq LH   P , then (2.3) in Lemma 2.4, can tell us

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

| |( ) ( ) 2 .
| |

q rqk k

q rqi i

B BL L r r k i nrk

B B iL L

BC C
B

 

 

 

 
 

 

  
‖ ‖ ‖ ‖

‖ ‖ ‖ ‖
(3.8)

On the other hand, notice that

( ) ( )

11 1
2 22 2

( ) ( )
( | | ) 2 ( 2 ( | | ) )q q

i
j l p p p

j i j lL L
j l j
f f 

 
  





  ‖ ‖ ‖ ‖

,
, ( )

1
( ) 2 2

( )
2 ( | | ) .

p q

i
j MK

j
C f  

 


  ‖ ‖ (3.9)

By combining (3.7), (3.8) , (3.9) and (1 )n r   , we obtain
0

0
( )

0

12
( 1)( ) 2 2

1 ( )
sup2 ( 2 ( 2 ( | | ) ) )q

k k
k p k p n r k i p

j i L
k k i j

F C f 


 


  

  

   


‖ ‖

0
0

,
, ( )

0

1 2
2 ( )( (1 ) )2

( )
( | | ) sup2 ( 2 ( 2 ) )

p q

k k
k pp k p i k n r p

j MK
kj k i

C f  
   




    

  

   


‖ ‖

0
0

,
, ( )

0

1
2 2

( )
( | | ) sup2 ( 2 )

p q

k
k pp k p

j MK
kj k

C f  
 





 

  


‖ ‖
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,
, ( )

1
2 2

( )
( | | ) .

p q

p
j MK

j
C f   

  ‖ ‖ (3.10)

At last, we estimate 3.F For any , , 2, ( , ) ( ),k ik x A i k y t x z A      and | |y z t  , we obtain that

31 1(| | | |) (| | | |) 2 .
2 2

it x y y z z x       

Similar to (3.4), there is 1| ( )( ) | | | | ( ) | .
i

i
j i jA

S f x C B f z dz
  Therefore,

1 1
2 1 22 2( | ( )( ) | ) | | ( | ( ) | ) .

i

i
j i jA

j j
S f x C B f z dz

  (3.11)

By using (3.11), Lemma 2.1 and Lemma 2.3, we have
1 11 1

2 1 2 2( ) ( )2 2( | ( )( ) | ) | | ( | ( ) | ) | ( )
n i

i p p
j i j A

j j
S f x C B f z dz   


      

( ) ( )

1 11
1 2 ( ) ( )2

( ) ( )
| | ( | | ) q n q ni i

q q
i j A AL L

j
C B f      


     
‖ ‖ ‖ ‖

( ) ( )

11
2 1 ( )2

( ) ( )
( | | ) | |q q ni

q
j i i BL L

j
C f B


    


    

‖ ‖ ‖ ‖

( ) ( )

1
2 12

( ) ( )
( | | ) .q qij i BL L

j
C f

 
  

 ‖ ‖ ‖ ‖ (3.12)

From (2.4) of Lemma 2.4 and ,n    similar to (3.10) as above, we can get that

0 ( )
0

( )

( )0

1
( )2 2

3 ( )
2 ( )

sup2 ( 2 ( ( | | ) ) )
qk

q

qi

k
B Lk p k p p

j i L
k k i k j B L

F C f  

















   

   


‖ ‖
‖ ‖

‖ ‖

0
0

( )

0

1
2 ( )2

( )
2

sup2 ( 2 ( ( | | ) 2 ) )q

k
k p k p n k i p

j i L
k k i k j

C f  


 


 

   

   


‖ ‖

0
0

,
, ( )

0

1
( ) ( ) 2 2

( )
2

sup2 ( 2 ( 2 2 ( | | ) ) )
p q

k
k p k p i n k i p

j MK
k k i k j

C f  
    




  

   

    


‖ ‖

0
0

,
, ( )

0

1
2 ( )( )2

( )
2

( | | ) sup2 ( 2 ( 2 ) )
p q

k
k pp k p i k n p

j MK
kj k i k

C f  
    




   

   

   


‖ ‖

,
, ( )

1
2 2

( )
( | | ) .

p q

p
j MK

j
C f   

  ‖ ‖

In combination with the estimation of 1 2 3, ,F F F , we obtain

, ,
, ( ) , ( )

1 1
2 22 2

( ) ( )
( | ( ) | ) ( | | ) .

p q p q
j jMK MK

j j
S f C f      

  ‖ ‖ ‖ ‖ 
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