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Abstract  Review Article 
 

In this paper, the (2+1)-dimensional breaking soliton equation is studied by the bifurcation theory of dynamical 

system. Based on this theory, phase portraits of different topological structures of the equation are obtained, which 

clearly show all bounded orbits corresponding to the bounded traveling waves of the equation. Furthermore, the 

periodic wave solution of the (2+1)-dimensional breaking soliton equation are obtained by calculating complex elliptic 

integrals.  
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INTRODUCTION 
In recent decades，nonlinear evolution 

equations (NLEE) have been widely used in many 

scientific fields, such as plasma physics, nonlinear 

optics, fluid dynamics, solid-state physics, and chaos 

theory and so on. By studying this kind of nonlinear 

partial differential equation, we find that the traveling 

wave solution of partial differential equation plays an 

important role in the study of the solution's long time 

behavior and complex nonlinear wave phenomenon. 

The search for exact travelling wave solutions of partial 

differential equation has been widely concerned by 

scholars, and many effective methods to reveal the 

characteristics and properties of these equations have 

been obtained, such as Hirota bilinear method [1], tanh 

function method [2], Jacobi elliptic function expansion 

method [3], homogeneous balance method [4], the F-

expansion method [5,6], Exp function method [7], 

bifurcation theory of dynamical system [8,9,10,11], etc. 

 

This paper considers the following (2+1)-dimensional breaking soliton equation 

                         𝑈𝑥𝑥𝑥𝑦 − 4𝑈𝑥𝑈𝑥𝑦 − 2𝑈𝑥𝑥𝑈𝑦 + 𝑈𝑥𝑡 = 0,                                                     (1. 1) 

 

This equation was used to describe the (2+1)-

dimensional interaction of a Riemann wave propagating 

along the y-axis with a long wave along the x-axis [12-

18]. For 𝑦 = 𝑥, and by integrating the resulting 

equation in Eq. (1.1), the equation is reduced to the 

KdV equation. The Painlevé property, the Lax pair, the 

Hamiltonian structure, and various exact solutions have 

been studied [16, 19-27]. A class of overturning soliton 

solutions has been introduced in Refs [16, 28]. 

Moreover, Eq. (1) was studied in [15] using the 

homogeneous balance principle followed by the 

simplified Hirota’s method. The analytic interaction 

solutions between solitons and cnoidal periodic waves 

for the (2+1)-dimensional breaking soliton equation are 

shown in [29] by means of the nonlocal symmetry 

method. In reference [30], a simplified Hirota method is 

used to obtain multiple soliton solutions for each 

developed breaking soliton equation. The generalized 

dispersion relation is established for the typical 

breaking soliton equations and the generalized negative-

order breaking soliton equations.  

 

Although there are many profound results 

about the traveling wave solutions of e Eq. (1.1), which 

are helpful for our understanding of nonlinear physical 

phenomena and wave propagation, it is a pity that the 

traveling wave solutions of Eq. (1.1) is not fully 

discussed, especially for its bounded traveling wave 

solutions. Therefore, the purpose of this paper is to seek 

all possible bounded traveling wave solutions in Eq. 

(1.1). Motivated by them, our strategy is to transform 

the traveling wave equation of Eq. (1.1) into a 
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dynamical system in   . Fortunately, there exists a 2-

dimensional invariant manifold which determines most 

of dynamical behaviours. Then, bifurcation analysis is 

applied to seek the parameter bifurcation sets which 

determine various qualitatively different phase portraits. 

Finally, by calculating the complex elliptic integrals 

along these orbits, the expressions of all bounded 

traveling wave solutions in the (2+1)-dimensional 

breaking soliton equation are obtained. 

 

Traveling wave system and bifurcation analysis 

 

With the following traveling wave transformation 

 

𝑈 = 𝑈( , 𝑥, 𝑦) =  ( ) =  (𝑥 +  𝑦 −   )， 

equation (1) can be transformed into its raveling wave system 

 

                          ′′′′ − 4  ′ ′′ − 2  ′′ ′ −   ′′ = 0,                                                                (2.1) 
 

where ＇stands for 𝑑/𝑑 ,  ≠ 0 represent the wave numbers in the direction y respectively and  ≠ 0 is the wave speed. 

Integrating (2.1) once and retaining an integral constant, the following equation is obtained 

 

                        ′′′ − 3 ( ′)2 −   ′ = 𝑒,                                                              (2.2) 
 

where parameter 𝑒 is the integral constant, equation (2.2) has the following equivalent form  

{
 
 

 
 
 ′ = 𝑝,                      

                
𝑝′ = 𝑞,                       

               

𝑞′ = 3𝑝2 +
 

 
𝑝 +

𝑒

 
,

                                                                        (2.3)  

which is a dynamical system in 𝑅 . Obviously, system (2.3) has a 2-dimensional invariant manifold in 𝑅 . Flows on it 

can be determined by the last two equations in system (2.3), i.e.  

{

𝑝′ = 𝑞,                        
 

𝑞′ = 3𝑝2 +
 

 
𝑝 +

𝑒

 
,
                                                                       (2.4) 

which is exactly a Hamiltonian system with the energy function 

 (𝑝, 𝑞) =
1

2
𝑞2 − 𝑝 −

 

2 
𝑝2 −

𝑒

 
𝑝.                                                     (2.5) 

Firstly, we start with equilibrium of system (2.4). 

 

Theorem 2.1. When  2 − 12 𝑒  0, system (2.4) has two equilibrium, a saddle   (−
 

  
+ √

    2  

    
, 0), and a 

center  2 (−
 

  
− √

    2  

    
, 0). When  2 − 12 𝑒 = 0, system (2.4) has a unique equilibrium of higher order 

  .−
 

  
, 0/. When  2 − 12 𝑒  0, system (2.4) has no equilibrium. 

 

Proof. When  2 − 12 𝑒  0, a direct calculation shows that system (5) has two equilibrium 

  (−
 

  
+ √

    2  

    
, 0),  2 (−

 

  
− √

    2  

    
, 0). Let  (𝑝, 𝑞)

 
to denote the Jacabian matrix of system (2.4) at point 

(𝑝, 𝑞), we have 

 (  ) = [

0 1

√
 2 − 12 𝑒

 2
0
], 

 ( 2) = [

0 1

−√
 2 − 12 𝑒

 2
0
]. 

 

 

From this, we can find 
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𝑑𝑒  (  ) = −√
 2 − 12 𝑒

 2
 0 

𝑑𝑒  ( 2) = √
 2 − 12 𝑒

 2
 0. 

 

By the theory of plane dynamic system [31-33] and the properties of Hamiltonian system [32], it is not difficult 

to check that    is a saddle and  2 is a center in this case.  

 

When  2 − 12 𝑒 = 0, the system (2.4) has only one equilibrium   .−
 

  
, 0/ with a nilpotent matrix 

 (  ) = .
0
0

0
1
/, 

this shows that    is a high-order equilibrium. In order to be able to further determine the type of   , we do the following 

homeomorphic transformation 

 = 𝑝 +
 

6 
,  = 𝑞, 

at this point, the system (2.4) can be transformed into its normal form below 

{
 ′ =  ,

 ′ = 3 2.
 

 

By the qualitative theory of differential equation [33 Theorem 7.3, Chapter 2], we have  = 2 and   = 0, 

which indicates that    is a cusp.  

 

When  2 − 12 𝑒  0, it is easy to see that there is no equilibrium of system (2.4).  

 

Next we need to illustrate the parameter bifurcation sets with*( ,  , 𝑒)| 2 − 12 𝑒  0+, *( ,  , 𝑒)| 2 − 12 𝑒 =
0+ and*( ,  , 𝑒)| 2 − 12 𝑒  0+. 

 

Based on the analysis of the equilibrium and the properties of the Hamiltonian system [19], we have the 

following results. 

 

Case 1: Consider  2 − 12 𝑒  0, there is a homoclinic orbit  connected to the saddle   . The center  2 is surrounded 

by the family of periodic orbits 

 ( ) = * (𝑝, 𝑞) =  ,   ( ( 2, ),  (  , ))}, 
Where 

 (  ) =
−  + (  2 − 12𝑒 2)√

 2 − 12 𝑒
 2

+ 1  𝑒 

10   
, 

 ( 2) =
−  − (  2 − 12𝑒 2)√

 2 − 12 𝑒
 2

+ 1  𝑒 

10   
. 

 

Moreover,  ( ) tends to  2 as    ( 2) and tends to   as    (  ), besides the homoclinic orbit and 

periodic orbits, other orbits of system (2.4) are unbounded, as shown in figure1(a).   

 

Case 2: Consider  2 − 12 𝑒 = 0, the system (2.4) has two types of orbits, of which orbit   was different from 

other orbits, but all the orbits here were unbounded, as show in figure1(b). 

 

Case 3: Consider  2 − 12 𝑒  0, system (2.4) has only one type of orbits, and each orbit is unbounded, as 

show in figure1(c). 
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Fig-1: The phase portraits of (2.4) 

 

It can be seen from the phase diagram that only case 1 has bounded orbits, namely a family of periodic orbits 

 ( ) and a homologous orbit   {see figure1 (a)}, which correspond to the periodic wave and shock wave of system (2.4) 

respectively. The expressions of traveling wave solutions corresponding to these bounded orbitals are given below. 

 

Explicit traveling wave solutions of Eq. (1.1)  

In this section, we will give the explicit expression of all bounded traveling wave solutions for Eq. (1.1), 

according to the system (2.4), in order to derive the final traveling wave solutions  ( ) of the (2+1)-dimensional 

breaking soliton equation, we need to integrate the solutions of system (2.4) once with respect to  . 

 

3.1 Consider the periodic orbits, from the energy function (2.5), any one of the periodic orbits  ( ) can be expressed by 

 

𝑞 =  √2(𝑝 − 𝑝 )(𝑝2 − 𝑝)(𝑝 − 𝑝), 
 

Where 𝑝 , 𝑝2 and 𝑝  are reals and 𝑝  𝑝  𝑝2  𝑝 . Assume that the period of these closed orbits is 2T, and 

choose𝑝(0) = 𝑝 , we have 

∫
𝑑𝑝

√2(𝑝 − 𝑝 )(𝑝2 − 𝑝)(𝑝 − 𝑝)

 

  

= ∫ 𝑑 
 

 

, 0     . 

−∫
𝑑𝑝

√2(𝑝 − 𝑝 )(𝑝2 − 𝑝)(𝑝 − 𝑝)

  

 

= ∫ 𝑑 
 

 

, −    0. 

 

Which can be rewritten as 

∫
𝑑𝑝

√2(𝑝 − 𝑝 )(𝑝2 − 𝑝)(𝑝 − 𝑝)

 

  

= | |, −     . 

 

By calculating the elliptic integral 

∫
𝑑𝑝

√(𝑝 − 𝑝 )(𝑝2 − 𝑝)(𝑝 − 𝑝)

 

  

=       (√
𝑝 − 𝑝 
𝑝2 − 𝑝 

,  ), 

 

Where  2 =
     

     
 and  =

2

√     
, we get the expression of periodic wave solution of the system (2.4) 

𝑝 ( ) = 𝑝 + (𝑝2 − 𝑝 )  
2 (√

𝑝 − 𝑝 
2

| |) , −     .                               (3.1) 

 

It is not difficult to check that expression (3.1) can be further simplified to 

𝑝 ( ) = 𝑝 + (𝑝2 − 𝑝 )  
2 (√

𝑝 − 𝑝 
2

 ) , −     .     

 

Then, the first type of traveling wave solution of Eq. (1.1) can be calculated by 

  ( ) = ∫𝑝 ( ) 𝑑 == ∫*𝑝 + (𝑝2 − 𝑝 )  
2 (√

𝑝 − 𝑝 
2

 )+ 𝑑 , 

 

By calculating the elliptic integral 

∫  2  𝑑 =
1

 2
, −  ( )- 
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where  ( ) =  ( ,  ). We can conclude that 

 

  ( ) = 𝑝   − √2(𝑝 − 𝑝 ) (√
𝑝 − 𝑝 
2

 ) , −     . 

 

Consider the homologous orbit, by (2.5), the homologous orbit  
 
can be expressed by 

𝑞 =  √2(𝑝 − 𝑝 )
2(𝑝 − 𝑝 ) =  √2(𝑝 − 𝑝 )√𝑝 − 𝑝 , 

 

Where 𝑝 , 𝑝  are reals,−  𝑝  𝑝  𝑝, 𝑝 = −
 

  
− 2√

    2  

  
  and 𝑝 = −

 

  
+ √

    2  

  
, and choosing initial 

value 𝑝(0) = 𝑝 , we have 

∫
𝑑𝑝

√2(𝑝 − 𝑝 )√𝑝 − 𝑝 

 

  

= ∫ 𝑑 
 

 

,   0, 

−∫
𝑑𝑝

√2(𝑝 − 𝑝 )√𝑝 − 𝑝 

  

 

= ∫ 𝑑 
 

 

,   0, 

 

Which can be rewritten as 

∫
𝑑𝑝

√2(𝑝 − 𝑝 )√𝑝 − 𝑝 

 

  

= | |, −    + . 

Noting that 

∫
𝑑𝑝

(𝑝 − 𝑝 )√𝑝 − 𝑝 

 

  

=
1

√𝑝 − 𝑝 
ln
√𝑝 − 𝑝 − √𝑝 − 𝑝 

√𝑝 − 𝑝 + √𝑝 − 𝑝 
 , 

 

we get the expression of solitary wave solution of the system (2.4) 

𝑝2( ) = 𝑝 +
(𝑝 − 𝑝 ) .1 + exp(√2(𝑝 − 𝑝 )| |)/

2

.1 − exp(√2(𝑝 − 𝑝 )| |)/
2 , −    + . 

 

It’s easy to check that 𝑝2( ) = 𝑝2(− ), It means that 𝑝2( ) can be simplified to the following form 

𝑝2( ) = 𝑝 +
(𝑝 − 𝑝 ) .1 + exp(√2(𝑝 − 𝑝 ) )/

2

.1 − exp(√2(𝑝 − 𝑝 ) )/
2 , −    + .  

 

Then, the second type of traveling wave solution of Eq. (1.1) can be calculated by 

 2( ) = ∫𝑝2( ) 𝑑 = ∫(𝑝 +
(𝑝 − 𝑝 ) .1 + exp(√2(𝑝 − 𝑝 ) )/

2

.1 − exp(√2(𝑝 − 𝑝 ) )/
2 )𝑑 

= 𝑝   − √
𝑝 − 𝑝 
2

*
√2(𝑝 − 𝑝 ) + exp(√2(𝑝 − 𝑝 ) ) +

1
2

exp(2√2(𝑝 − 𝑝 ) )

1 − exp(√2(𝑝 − 𝑝 ) )
+ +  2 

where −    +  and  2 is a constant. 

 

CONCLUSIONS 
In this paper, we apply the dynamical system 

methods to investigate all bounded traveling waves of 

the (2+1)-dimensional breaking soliton equation. 

Although it is a high dimensional dynamical system, we 

find that there existsts a 2-dimensional invanrant 

manifold which makes it possible to completely 

investigate all bounded orbits of it by detailed analysing 

the phase space geometry, and all possible bounded 

traveling waves of the (2+1)-dimensional breaking 

soliton equation and corresponding existence conditions 

can be identified clearly. Among them, using complex 

elliptic function uniformly is a new solution. 
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