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Abstract  Review Article 
 

The intrinsic estimation for parameters are extensively studied in the literatures, which does not depend on the 
coordinate systems or model parametrization. In this paper, the intrinsic variance estimation for Gaussian mixture 
distribution is provided. The optimal estimators are proposed by minimizing the mean squared Rao distance and the 
mixture of symmetrized Kullback–Leibler divergence between normal distributions. 
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INTRODUCTION 

Mean square error (MSE), as a classical metric, 
is extensively applied to parameter estimation. However, 
it is heavily dependent on the coordinate systems. For 
example, given two parameters of some specific 
distribution according to a one-to-one nonlinear 
reparametrization, the corresponding minimum mean 
square error estimators usually do not satisfy this 
mapping [1]. Therefore, the intrinsic version of MSE 
should be considered. 

Although the loss function is an effective 
instrument for modeling, the choice of a suitable loss 
function still presents a concern. The selected loss 
function should enable us to measure the discrepancy 
between probability density functions. Entropy loss or 
Kullback–Leibler (KL) divergence, Hellinger distance 

and symmetrized KL divergence [2-5] were successively 
used to develop the parameter intrinsic estimation. As 
for intrinsic Bayesian estimation, the Rao distance was 
considered as the most proper loss [6]. The intrinsic 
estimators of Bernoulli distribution, multivariate normal 
distribution with known covariance matrix, normal 
distribution with known mean (a multiple of sample 
variance) [6] and multivariate normal distribution with 
zero mean (the same form as [6]) [7] have been provided. 

In this paper, we obtain the intrinsic variance 
estimation for Gaussian mixture distribution. Like [6] 
and [7], the provided estimators are different scale 
numbers times sample variance. Firstly, we propose the 
definition of the intrinsic MSE. Then, the intrinsic 
estimators are provided by minimizing the mean squared 
Rao distance and the mixture of symmetrized KL 
divergence. 
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Intrinsic Variance Estimation 

Set  is the sample space of the random variable  and  is the probability density function, where  X  |f x 

 is continuous parameters in the parameter space . Suppose that the probability density function 1[ , , ]n     
satisfies the certain regularity conditions 8. Then, the information matrix is defined as 
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where  is the mathematical integration with regard to . Then, the Riemannian metric in the parameter  ( | )f x 
space is 
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For two probability density functions  and , the Rao distance  is the geodesic  1|f x   2|f x   1 2,  
distance with respect to the Riemannian metric. 

As for two probability density functions  and , the symmetrized KL divergence is  1|f x   2|f x 
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Next, we adopt the squared Rao distance or mixture of KL divergence as the loss of intrinsic MSE instead of square 
error. 

Suppose that the probability density function of the random variable  is 1, , NX X
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where  are mixing coefficients and  are positive numbers. Let , 1, ,j j M   , 1, ,jc j M 
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where is the variance of random variable . 2
X 1, , NX X

Then, we propose the intrinsic variance estimator , where  is a scalar. 2
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Theorem 1. By minimizing the mean squared Rao distance , we obtain the intrinsic variance estimator  2 ,X S  
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Proof. Obviously, the random variable  follow elliptical distribution. From 9, we have 1, , NX X
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We can exchange the expectation and differentiation. Thus, 
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 is constant for any . Therefore,  minimizes the mean squared Rao distance.  2 2 ,X S     c 2ln
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Thus, the scalar of intrinsic variance estimator is 
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There is no analytical expression for KL divergence about Gaussian mixture distribution. Thus, the discrepancy 
between Gaussian mixture distributions is measured in the sense of the mixture of symmetrized KL divergence between 
normal distributions in this paper. 

    (1)          2 2 2 2
1 2 1 2

1 1
1 0, , 0, 0, , 0, ,

M M

j j j j
j j

J N N J N c N c   
 

 
  

 
  

Junhao Guo; Sch J Phys Math Stat, July, 2019; 6(7): 124-129



 

Junhao Guo; Sch J Phys Math Stat, July, 2019; 6(7): 124-129

© 2019 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                       127 

where  is normal distribution with mean 0 and variance .  2
10,N  2

1

Lemma 1. By minimizing the expectation of metric (1) between variance and estimator, we obtain the intrinsic variance 
estimator 
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Proof. From Error! Reference source not found. and metric (1), the mixture of symmetrized KL divergence between 

variance  and estimator  is 2
X S
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Then, let 
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We can exchange the expectation and differentiation. Then, 
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Lemma 2. If the joint probability density function of the random variable  is 1, , NX X
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Then, the intrinsic variance estimator in the sense of minimizing mean squared  is  2 ,X S  
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where  is digamma function.  x
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Proof. From lemma 2.1 in 9, the probability density function of the random variable  is S
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Then, the probability density function of the random variable  is 1 2
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Thus, the expectation of the random variable  is 2ln S
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Then, the scale factor of intrinsic variance estimator is 
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CONCLUSION 

For Gaussian mixture distribution with zero 
mean, we obtain intrinsic variance estimation by 
minimizing the mean squared Rao distance and the 
mixture of symmetrized KL divergence, which is a 
scalar times sample variance. Finally, the intrinsic 
estimator is proposed when the joint probability density 
function of the random variable is mixture of N

multivariate normal distribution with a diagonal 
covariance matrix. 
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