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Review Article

In this paper, the two-dimensional discrete time open quantum walk and its quantum entropy are studied. The
connection and difference between classical random walk and open quantum random walk are introduced through two
examples. Furthermore, the quantum entropy and other properties of these two examples have also been studied.
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INTRODUCTION

Quantum computation and quantum
information is an interdisciplinary subject of
mathematics, physics, computer science and
information theory. In 2000, Nielsen et al. [1]
systematically introduced quantum computation and
quantum information.

Quantum walk is one of the hot issues in
quantum computation algorithms in recent years, which
was first introduced by Aharonov [2]. It is the quantum
version of the classical random walk. A classical
random walk is defined by a walker moving left or right
by transition probability, while a quantum walk
describes the position where a walker may exist by
probability amplitude. In 2012, Venegas-Andraca [3]
gave a comprehensive review about quantum walk. By

H(x) = H(pl' D2,

However, the entropy in quantum state is Von
Neumann entropy associated with density operators
(positive semidefinite operators with unit trace)
replacing probability distributions. In 1993, Ohya and
Petz[8] introduced entropies for finite quantum systems
and general quantum systems, which let people
understand the concept and use of quantum entropy
more concretely.

By considering the uncertainty in two-
dimensional open quantum walk, we combine quantum

the category of system time, quantum walk can be
divided into discrete time quantum walks and
continuous time quantum walks. By the influence of the
system environment, quantum walk can be divided into
closed quantum walks and open quantum walks (For
briefly, we short it as OQWSs). In 2012, Attal et al. [4]
were first detailly introduced OQWs. Since then, many
scholars have become interested in OQWSs, which has
been studied such as quantum Bernoulli noise [5],
quantum Markov semigroups [6], central limit theorems

[71.

Quantum entropy is one of the key concepts in
quantum information theory, which is used to measure
the uncertainty in the state of a physical system. It is
well-known that the Shannon entropy associated with
probability distribution is defined by

“,Pp) = - Z Px l0g, Dy
X

information with quantum computation. Therefore, in
this paper, we mainly study discrete time OQWSs in two
dimensions and its quantum entropy. We use density
operators in OQWs to replace probability distribution in
closed quantum walk. Our work is as follows. In section
2, we briefly recall the basic properties of OQWs and
give two examples about OQWs with different transfer
operators. In section 3, we define the quantum entropy
in OQWs and introduce some properties about it. At
last, we give some conclusions.
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Open quantum walks
Let 'H be a separable Hilbert space, which stands for the space of degrees of freedom. Let K be the state
space of a quantum system, which consists of K, and /), thatis, K=K, ®K,,. Consider a bounded operator

Bij on H, which stands for the effect of passing from j to i. We assume that, for each
>:B/"B] =1,
where the above series is strongly convergent (if infinite).
Consider the space H®J. We shall especially be interested in density matrices on H®K with the form
P =D Py XNV, @
xy

where each Py is a positive and trace-class operator, and satisfied the following conditions
{ Tr(pxy) * 1,
Zx_yTr(pxy) =1.

Pry is not exactly a density matrix on 7. It is same as transition probability matrix in Markov chain.

2)

Let R, L, B, F be four bounded operators on A such that
R*'R+L'L =1, B*B+ F'F =1.
Then we can define an open quantum random walk on Z? by saying that one can only jump to nearest neighbors:
a jump to the left is given by L, a jump to the right is given by R, a jump to the behind is given by B, a jump to the
forward is given by F. In other words, we put

_1
R = Bx+1,l — Bx_l,B — BY+1, F = By
for all X,y € Z, all the others Bl] bei g equal to 0.

Starting with an initial state p(® = p,,®|0)(0]0)(0], after one step we have the state
pD = FRpooR*F*®|1){1|1)(1] + BRpooR*B*®|1)(1|—1)(—1]
+FLpooL  F*®|—1)—=1|1)(1]| + BLpyoL*B*®|—1)(—1|—1)(—1].

The probability of presence in |1)x|1)y, |1)x|—1)y, |—1)x|1)y, |—1)x|—1)y are Tr(FRpyoR*F*), Tr(BRpyoR*B™),
Tr(FLpooL*F*), Tr(BLpyoL*B*) respectively.
After the second step, the state of the system is
p® = FRFRpyoR*F*R*F*®|2)(2]|2)(2| + BLBLpyoL*B*L*B*®|—2)(—2|—2)(—2|
+ BRBRpyoR*B*R*B*®|2)(2|—2)(—2| + FLFLpyoL*F*L*F*®|—2){(—2|2)(2|
+ (BRFRpyoR*F*R*B* + FRBRpyoR*B*R*F*)®|2)(2]0){0|
+ (FLFRpooR*F*L'F* + FRFLpyoL'F*R*F*)®|0)(0]2)(2|
+ (BLFLpyoL*F*L*B* + FLBLpyoL* B* L' F*)®|—2)(—2]0)(0|
+ (BLBRpooR*B*L*B* + BRBLpyyL*B*R*B*)®]0)(0|—2)(—2|
+ (BLFRpooR*F*L*B* + FLBRpyoR*B*L*F*+BRFLpy,L*F*R*B*
+ FRBLpooL*B*R*F*)®]0)(0]0){0].

The probability of presence in |2),12),, [2),1=2),, [=2),12),,, [=2),1=2),, 12),10},, 10),12),, |=2),10),,
|0)x|—2)y and |0)x|0)y are then

Tr(FRFRpyoR*F*R*F*), Tr(BRBRpyoR*B*R*B*), Tr(FLFLpy,L*F*L*F*), Tr(BLBLpy,L*B*L*B*),
Tr(BRFRpyoR*F*R*B* + FRBRpooR*B*R*F*), Tr(FLFRpooR*F*L*F* + FRFLpyoL*F*R*F*),
Tr(BLFLpooL*F*L*B* + FLBLpyoL*B*L*F*), Tr(BLBRpyoR*B*L*B* + BRBLp,,L*B*R*B"),
and

Tr(BLFRpy R*F*L*B* + FLBRpyoR*B*L*F* 4+ BRFLpyoL*F*R*B* + FRBLpy,L*B*R*F*),
respectively.

One can iterate the above procedure and generate our open quantum random walk on Z2.
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Assume that p,,, = Mpgo M *, where M represents the effect of the combination of operators R, L,
B, F suchas M=FR and M" = R*F* in one step at position (1,1).

Theorem 1. p,,, is a normal operator, and it can be represented as
Py = Y prliNil 3
B i
Proof. Let first prove that Dy is a normal operator.

PxyPyy = (MpgM™) Mpgg M = (M) pje M Mpgg M™ = Mpi M Mpooe M =Mpj M.,

nypy*cy = Mpoo M (MpooM™)* = MpooM* (M) pgoM™ = Mpoo M MpjoM™ = MP%OM*-

Then we have px, pyy = PyxyPxy, Which means p,,, is a normal operator. It is well-known that the spectral
decomposition is an extremely useful representation theorem for normal operators. Thus, we have

Pry = Z p(x,y) iNil,
Xy

where p(x,y) are the eigenvalues of p,,, |i) is an orthonormal basis for H, and each [i) an

eigenvector of p,,, with eigenvalue p(x,y).

In other words, p,, = X, p(x,y) |i)i| also means the system is in the state |i) with probabilityp(x, y).

Example 1

If we take
_-_161 0 _p_1(-1 0
R—F—ﬁ(o _1)andL—B—ﬁ(0 1),

which the operators R, L, B, F do satisfy R*R + L'L = I, B*B + F*F = I. Let us consider the associated open quantum
random walk on Z2. Starting with the state

p@ = (o) ®I0)0l0)0l,

We find the following probabilities for the 2 first steps

Table-1
(x,y) 11) 1 34,-1) | (=11) | (=1,-1)
Probability | 1/4 1/4 1/4 1/4
Table-2

Probability | 1/16 | 1/16 | 2/16 | 2/16 | 4/16 | 2/16 | 2/16 | 1/16 | 1/16

Table 1 shows the probabilities for the 2 first steps.

From Table 1 and Figure 1, we can clearly see that it is a symmetric Gaussian distribution, which means that the
random walk in the classical case can be represented under certain conditions by quantum random walk. In the classical
random walk, as time tends to infinity, the one will eventually return to origin, which can be clearly seen in Figure 1.

Example 2
If we take
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Fig-1: Shows the probability distributions for the third and fourth steps

which the operators R, L, B, F do satisfy R*"R + L*L = I, B*B + F*F = I. Let us consider the associated open quantum
random walk on Z2. Starting with the state

0@ =(5 o) ®I0X0[0)0l,

we find the following probabilities for the 3 first steps:

Table-1
(x.y) 1LYy | @G- | =LY | (=1L,-1)
Probability | 1/9 2/9 1/9 5/9
Table-2

(x' }’) (2'2) (21 _2) (210) (_2'0) (010) (0, _2) (0,2) (—2,2) (—2, _2)
Probability | 1/81 | 1/81 | 4/81 | 14/81 | 24/81 | 12/81 | 6/81 | 2/81 17/81

Table-3
(x' }’) (3'3) (3' _3) (311) (3' _1) (1'3) (1; _3) (1'1) (1' _1)
Probability | 1/729 2/729 6/729 9/729 7/729 | 29/729 | 45/729 | 81/729
(x' }’) (_3'3) (_31 _3) (_3'1) (_31 _1) (_1;3) (_1' _3) (_Ll) (_L _1)
Probability | 2/729 | 85/729 | 24/729 | 87/729 | 8/729 | 94/729 | 72/729 | 177/729

Fig-2

From Table 2 and Figure 2, it is obvious that the distribution is asymmetric, but it will gradually form a
Gaussian distribution with the number of steps tends to infinity.

Quantum entropy

Definition 1. [1] Von Neumann defined the entropy of a quantum state p by the formula
S(p) = —Tr(plogp), 4)

Where the logarithms are taken to base two and p actually is a density operator.
Without confusion, all logarithms throughout this article are taken to base two.

Theorem 2. The quantum entropy presents by 2-D open quantum walk is
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S(0) = = ) Tr(pylogpy,). )
xy
Proof. From Equation (1) we have
p = puy XXl
xy
Bringing it into Equation (4)
S(p) = —Tr(plogp)
= —Tr Z pay |x><x|y><y|1ogz pry X1
Z Tr(pxy|x><x|y><yllogpxy|x><x|y><y|)
Z Tr(paylogpay) (1) 1)
- z Tr(pxylogpxy)
X,y
Theorem 3. The quantum entropy S(p) = — X.».,, Tr(pxylogpyy) in 2-D open quantum walk can be presented as
Shannon joint entropy of random variables X and Y
S(p) = H(X,Y) = — z p(x, y)logp(x,y) (6)
X,y
where p(x,y) are the eigenvalues of p,,,.
Proof. From Equation (3) we have
= ) PN,
xy
Bringing it into Equation (5)
S(p) = Z Tr(pyy 1002y
ZTr(p(x y)|iXillogp(x, y)[iXil)
Zp(x ylogp(x, ) GiliNili)
- Z p(x,)logp(x, )
x,y
=HX,Y)
It is obvious that the space of degrees of freedom of separable Hilbert space H is (t + 1)%, where t stands
for the number of steps. Therefore, our quantum entropy has its range.
Theorem 4. The quantum entropy S(p) in 2-D open quantum walk has its range that
0 < S(p) < 2log(t + 1), (7
where t represent the number of steps.
We briefly calculate the first 3 steps of two examples as follows.
Quantum entropy of Example 1
S(p™W) = —Zp(x,y)logp(x,y) =2<2,
Xy
S(p@) = —zp(x,y)logp(x,y) = 3 < Zlog3
X,y
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2409

X,y

Quantum entropy of Example 2

665

867

S(pW) = - Z p(x, ylogp(x,y) = = ~ 1.6577 < 2,

X,y
o 757
S(p@) = _Z p(x,y)logp(x,y) = 7o5 ~ 2.6194 < Zlog3,
xy
1134
S(p(3)) = —Zp(x, ylogp(x,y) = 353~ 3.2125 < 4.

x,y

By comparing the two examples, it can be
found that the quantum entropy of Example 1 in each
step is generally larger than that of Example 2 in
corresponding step, and both Examples are in the
normal range [0,2log(t + 1)]. We all know that the
larger the entropy, the greater the uncertainty, which
shows that the uncertainty of Example 1 is obviously
greater than that of Example 2.

CONCLUSIONS

In this paper, we mainly consider the two-
dimensional discrete time OQWs. It has widely studied
in limit distribution, central limit theorem and large
deviation principle. However, we are more interested in
quantum Bernoulli noise. This work will be prepared
for two-dimensional OQWs in terms of quantum
Bernoulli noise.
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