Vertex Distinguishing General-total Coloring of $\mathbf{K}_{\mathbf{2}, \mathbf{5}, \mathrm{p}}$
 ZHANG Shuang*, CHEN Xiang'en

College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
DOI: $10.36347 /$ sjpms.2020.v07i01.001
| Received: 06.10.2019|Accepted: 15.10.2019| Published: 08.01.2020
*Corresponding author: ZHANG Shuang

Abstract

Review Article
With the wide application of graph coloring in real life, it has gradually become one of the important fields studied by many scholars. A general total coloring of graph G refers to mapping $\mathrm{f}: V(G) \cup E(G) \rightarrow[1, k]$. For any $x \in V(G)$,let $C_{f}(x)$ or $C(x)$ be the set of colors of vertex x and edges incident with x under f, which is called the color set of point x under f. For any $u, v \in V(G)$, if $C(u) \neq C(v)$, then f is called a k-vertex distinguishing general-total coloring of graph G (k GVDTC).The minimum number of colors required for a VDIETC of G is denoted by $\chi_{g v t}(G)$, which is called the vertex distinguishing general-total chromatic number of graph G. Vertex distinguishing general-total coloring of complete tripartite graph $K_{2,5, p}$ is discussed in this paper by using the methods of distributing the color sets in advance, constructing the colorings and contradiction. The vertex distinguishing general-total chromatic numbers of $K_{2,5, p}$ are determined.
Keywords: complete tripartite graphs; general-total coloring; vertex distinguishing general-total coloring; vertex distinguishing general-total chromatic number.
Copyright @ 2020: This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use (NonCommercial, or CC-BY-NC) provided the original author and source are credited.

AMS Subject Classification (2010):05C15

Introduction

The point distinguishing general edge coloring of graphs are raised by Harary F in [1] and then be studied in [16] deeply. For a total coloring (proper or not) f of G and a vertex x of G, let $C(x)$ be the set of colors of vertex x and edges incident with x under f. For a proper total coloring, if $C(u) \neq C(v)$, for any two distinct vertices u and v, then the coloring is called a vertex distinguishing (proper) total coloring, or a VDT coloring of G for short. The minimum number of colors required for a VDT coloring of G is denoted by $\chi_{g v t}(G)$.The vertex distinguishing (proper) total coloring of graph was introduced and studied in [7]. In the following we consider not necessarily proper general total coloring which are vertex distinguishing. A general total coloring f of G is an assignment of some colors to the vertices and edges of G, for any $u, v \in V(G), u \neq v$, we have $C(u) \neq C(v)$,then f is called a vertex distinguishing general total coloring,or a GVDTC briefly. Vertex distinguishing general-total coloring was presented in [8].The minimum number of colors required for a GVDTC of graph G is denoted by $\chi_{g v t}(G)$.

In this paper,we consider vertex distinguishing general coloring of $K_{2,5, p}$, its general vertex distinguishing chormatic of $K_{2,5, p}$ will be determined as well. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right\}, Z=\left\{z_{1}, z_{2}, \ldots, z_{\mathrm{p}}\right\} . V\left(K_{m, n, p}\right)=X \bigcup Y \bigcup Z$, and $E\left(K_{m, n, p}\right)=\left\{x_{i} y_{j} \mid i=1,2, \ldots, m, j=1,2, \ldots, n\right\} \cup\left\{y_{j} z_{t} \mid j=1,2, \ldots, n, t=1,2, \ldots, p\right\} \cup\left\{x_{i} z_{t} \mid i=1,2, \ldots, m, t=1,2, \ldots, p\right\}$.

For convenience of description,we make the following agreements:When an l-GVDTC of a graph is mentioned or is to be given herein, we always think that the l color used is $1,2, \ldots, l ;$ An i-subset of $\{1,2, \ldots, l\}$ is a subset of $\{1,2, \ldots, l\}$ containing i elements; If A is a subset of $\{1,2, \ldots, l\}$, then \bar{A} is used to denoted the complement set of A.

Preliminaries

Lemma 1: If $k \geq 11$ and $p>\sum_{i=1}^{8}\binom{k-1}{i}-6$, then $K_{2,5, p}$ has no ($k-1$)-GVDTC.
Proof: Suppose $K_{2,5, p}$ has a ($k-1$)-GVDTC coloring f.
Claim 1: Any 1-subset of $\{1,2, \ldots, k-1\}$ cannot be the color sets of vertices in $X \bigcup Y$. Otherwise, if $\{1\}$ is the color sets of the vertices in X,then the subsets of all vertices in Z contain color " 1 ". The number of the subsets of $\{1,2, \ldots, k-1\}$ which may become the color sets of vertices in Z is $\binom{k-2}{1}+\binom{k-2}{2}+\cdots+\binom{k-2}{7}$.However, $p>\sum_{i=1}^{8}\binom{k-1}{i}$-6.This is a contradiction.

Claim 2: There are at least three 1 -subsets of $\{1,2, \ldots, k-1\}$, which cannot be the color sets of vertices in Z.
Otherwise, withoutloss of generality, we may assume that $\{3\},\{4\}, \ldots,\{k-1\}$ are all the color sets of vertices in Z.That is to say, $C\left(x_{i}\right) \cap C\left(y_{j}\right) \supseteq\{3,4, \ldots, k-1\}$.Thus, the color sets of vertices in $X \bigcup Y$ can only be $\{3,4, \ldots, k-$ $1\},\{1,3,4, \ldots, k-1\},\{2,3,4, \ldots, k-1\}$ or $\{1,2, \ldots, k-1\}$, which cannot distinguish the 7 vertices in $X \bigcup Y$.This is a contradiction.

From Claim 2, we can assume that $\{1\},\{2\}$ or $\{3\}$ cannot be the color sets of vertices in Z. Combining Claim 1,we know $\{1\},\{2\}$ or $\{3\}$ are not available for any vertex in the graph.Because $\overline{C\left(x_{i}\right)}$ and $\overline{C\left(y_{j}\right)}, i=1,2, j=1,2,3,4,5$, the 7 subsets are different, and at least 3 of them are not $\varnothing,\{1\},\{2\}$ or $\{3\}$. We can assume that $\overline{C\left(y_{3}\right)}, \overline{C\left(y_{4}\right)}$ or $\overline{C\left(y_{5}\right)}$ are all not $\varnothing,\{1\},\{2\},\{3\}$.
(i)When $\left|\overline{C\left(y_{j}\right)}\right| \leq 3, j=3,4,5$, we know that $\{1\},\{2\},\{3\}, \overline{C\left(y_{3}\right)}, \overline{C\left(y_{4}\right)}$ and $\overline{C\left(y_{5}\right)}$ can not be the color sets of vertices in Z.Then the available color sets of vertices in Z are the 1 -subset, 2 -subset, $\ldots, 8$-subset of $\{1,2, \ldots, k-1\}$,except for $\{1\},\{2\},\{3\}, \overline{C\left(y_{3}\right)}, \overline{C\left(y_{4}\right)}$ and $\overline{C\left(y_{5}\right)}$. So $p \leq \sum_{i=1}^{8}\binom{k-1}{i}-6$, a contradiction.
(ii) $\left|\overline{C\left(y_{j}\right)}\right| \geq 4$ for $j \in\{3,4,5\}$.we know that 1 -subset, 2 -subset,3-subset and 4 -subset of $\overline{C\left(y_{j}\right)}$ cannot be the color sets of vertices in Z. So $p \leq \sum_{i=1}^{8}\binom{k-1}{i}-15$, a contradiction.

Lemma 2: If $k \geq 11$ and $\sum_{i=1}^{8}\binom{k-1}{i}-6<p \leq \sum_{i=1}^{8}\binom{k}{i}-6$, then $K_{2,5, p}$ exist a k-GVDTC.

Proof: In the first,we distribute subsets of $\{1,2, \ldots, k\}$ to the vertices of $K_{2,5, p}$. Put $D\left(x_{1}\right)=\{1,2, \ldots, k\}$, $D\left(x_{2}\right)=D\left(x_{1}\right) \backslash\{2\}, D\left(y_{1}\right)=D\left(x_{1}\right) \backslash\{1\}, D\left(y_{2}\right)=D\left(x_{1}\right) \backslash\{3\}, D\left(y_{3}\right)=D\left(x_{1}\right) \backslash\{4\}, D\left(y_{4}\right)=D\left(x_{1}\right) \backslash\{5\}, D\left(y_{5}\right)=D\left(x_{1}\right) \backslash\{1,3\}$, $D\left(z_{i}\right)=\{i+5\}, \quad i=1,2, \ldots, k-5, \quad D\left(z_{k-4}\right)=\{1,6\}, \quad D\left(z_{k-3}\right)=\{2,6\}, \quad D\left(z_{k-2}\right)=\{3,6\}, \quad D\left(z_{k-1}\right)=\{4,6\}, D\left(z_{k}\right)=\{5,6\}$. Let \mathfrak{R} be the sequence, which is consist of the subsets of $\{1,2, \ldots, k\}$ with cardinal numbers between 2 and 8 ,except for $\{1,3\},\{1,6\},\{2,6\},\{3,6\},\{4,6\}$ and $\{5,6\}$, noticing that $|\mathfrak{R}|=\binom{k}{2}+\binom{k}{3}+\cdots+\binom{k}{8}-6$. Let $D\left(z_{k+1}\right), D\left(z_{k+2}\right), \ldots, D\left(z_{p}\right)$ be the $1,2, \ldots, p-k$ terms in \mathfrak{R},respectively.This is reasonable, for $p-k \leq\binom{ k}{2}+\binom{k}{3}+\cdots+\binom{k}{8}-6$, i.e. $p \leq \sum_{i=1}^{8}\binom{k}{i}-6$.

In the following, we give a k-GVDTC coloring f of $K_{2,5, p}$ using colors $1,2, \ldots, k$.Put $g\left(x_{i}\right)=1, i=1,2, g\left(y_{j}\right)=1, j=1,2, \ldots, 5, g\left(z_{t}\right)=\max D\left(z_{t}\right), \quad t=1,2, \ldots, p . \forall x \in X, y \in Y$, let $g(x y)=\min [D(x) \cap D(y)]$.When $u \in X \bigcup Y$,$\left|\mathrm{D}\left(z_{t}\right)\right|=2$, let $g\left(u z_{t}\right)=\min \left[D(u) \cap D\left(z_{t}\right)\right]$;When $\left|\mathrm{D}\left(z_{t}\right)\right|=3$, we assume that $\mathrm{D}\left(z_{t}\right)=\{a, b, c\}$ and $a<b<c$. Color edges $x_{1} z_{t}, y_{1} z_{t}$ and $x_{2} z_{t}$ with a, b and c. When $u \in\left\{y_{2}, y_{3}, y_{4}, y_{5}\right\}, g\left(u z_{t}\right)=\min \left[D(u) \cap D\left(z_{t}\right)\right]$; When $\left|\mathrm{D}\left(z_{t}\right)\right|=4$, we assume that $\mathrm{D}\left(z_{t}\right)=\{a, b, c, d\}$ and $a<b<c<d$.Color edges $x_{1} z_{t}, y_{1} z_{t}, x_{2} z_{t}$ and $y_{2} z_{t}$ with a, b, c and d. When $u \in\left\{y_{3}, y_{4}, y_{5}\right\}, g\left(u z_{t}\right)=\min \left[D(u) \cap D\left(z_{t}\right)\right]$;When $\left|\mathrm{D}\left(z_{t}\right)\right|=5$, we assume that $\mathrm{D}\left(z_{t}\right)=\{a, b, c, d, e\}$ and $a<b<c<d<e$. Color edges $x_{1} z_{t}, y_{1} z_{t}, x_{2} z_{t}, y_{2} z_{t}$ and $y_{3} z_{t}$ with a, b, c, d and e.When $u \in\left\{\quad y_{4}, y_{5}\right\}, g\left(u z_{t}\right)=\min \left[D(u) \cap D\left(z_{t}\right)\right]$; When $\left|\mathrm{D}\left(z_{t}\right)\right|=6$, we assume that $\mathrm{D}\left(z_{t}\right)=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$ and $a_{1}<a_{2}<a_{3}<a_{4}<a_{5}<a_{6}$. Color edges $x_{1} z_{t}, y_{1} z_{t}, x_{2} z_{t}, y_{2} z_{t}, y_{3} z_{t}$ and $y_{4} z_{t}$ with $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ and a_{6}, let $g\left(y_{5} z_{t}\right)=\min \left[D\left(y_{5}\right) \cap\right.$
$\left.D\left(z_{t}\right)\right]$; When $\left|\mathrm{D}\left(z_{t}\right)\right|=7$ or 8 , we assume that $\mathrm{D}\left(z_{t}\right)=\left\{a_{j} \mid j=1,2, \ldots, l\right\}(l=7$ or 8$)$ and $a_{1}<a_{2}<a_{3}<a_{4}<a_{5}<a_{6}<a_{7}\left(<a_{8}\right)$. Color edges $x_{1} z_{t}, y_{1} z_{t}, x_{2} z_{t}, y_{2} z_{t}, y_{3} z_{t}, y_{4} z_{t}$ and $y_{5} z_{t}$ with $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ and a_{7}.

It is not hard to see that $C(v)=D(v), \forall v \in V\left(K_{2,5, p}\right)$.Therefore our coloring g is a vertex distinguishing general-total coloring.

MAIN RESULTS AND ITS PROOFS

Theroem 1: For any positive integer $p \geq 5$, we have:

$$
\chi_{\text {gvt }}\left(K_{2,5, p}\right)= \begin{cases}5, & \text { when } 5 \leq p \leq 18 \\ 6, & \text { when } 19 \leq p \leq 50 \\ 7, & \text { when } 51 \leq p \leq 114 \\ 8, & \text { when } 115 \leq p \leq 242 \\ 9, & \text { when } 243 \leq p \leq 498 \\ 10, & \text { when } 499 \leq p \leq 1006 \\ k, & \text { when } \sum_{i(k-1}^{8}\binom{k}{i}-6<p \leq \sum_{i}^{8}\binom{k}{i}-6, k \geq 11\end{cases}
$$

Proof: From Lemma 1 and Lemma 2, we know that if $l \geq 11$ and $\sum_{i=1}^{8}\binom{k-1}{i}-6<p \leq \sum_{i=1}^{8}\binom{k}{i}-6$,then the conclusion is true.Now we consider the other 6 cases.

Case 1: If $499 \leq p \leq 1006$, then $\chi_{g v t}\left(K_{2,5, p}\right)=10$.
Assume that $K_{2,5, p}$ has a 9-GVDTC g.From Claim 1 in Lemma 1, when $l=10$, we know that any 1 -subset of $\{1,2, \ldots, 9\}$ cannot be the color sets of vertices in $X \bigcup Y$.From Claim 2 in Lemma 1, when $l=10$, we know that at least three 1 -subsets of $\{1,2, \ldots, 9\}$ cannot be any color set of vertex in Z. So we can assume that $\{1\},\{2\}$ or $\{3\}$ cannot be the color sets of vertices in the graph. Because $\overline{C\left(x_{i}\right)}$ and $\overline{C\left(y_{j}\right)}, i=1,2, j=1,2,3,4,5$, the 7 subsets are different, and at least 3 of them are not $\varnothing,\{1\},\{2\}$ or $\{3\}$. We can assume that $\overline{C\left(y_{3}\right)}, \overline{C\left(y_{4}\right)}$ or $\overline{C\left(y_{5}\right)}$ are all not $\varnothing,\{1\},\{2\},\{3\}$.
(i)When $\left|\overline{C\left(y_{j}\right)}\right| \leq 3, j=3,4,5$, the available color sets of vertices in Z are the 1 -subset, 2 -subset, $\ldots, 8$-subset of $\{1,2, \ldots, 9\}$, except for $\{1\},\{2\},\{3\}, \overline{C\left(y_{3}\right)}, \overline{C\left(y_{4}\right)}$ and $\overline{C\left(y_{5}\right)}$ and at least 6 color sets of vertices in $X \bigcup Y$.So $p \leq \sum_{i=1}^{8}\binom{9}{i}-$ $12=498$, a contradiction.
(ii) $\overline{C\left(y_{j}\right)} \mid \leq 4$ for $j \in\{3,4,5\}$.we know that 1 -subset, 2 -subset, 3 -subset and 4 -subset of $\overline{C\left(y_{j}\right)}$ cannot be the color set of any vertex in Z. So $p \leq \sum_{i=1}^{8}\binom{9}{i}-15=496$, a contradiction.

A 10-GVDTC of $K_{2,5, p}$ can be obtained by $10-$ GVDTC of $K_{2,5,1006}$, which is limited by $\left\{x_{1}, x_{2}, y_{1}, y_{2}, \ldots, y_{5}, z_{1}, z_{2}, \ldots, z_{p}\right\}$.Then we give a 10-GVDTC of $K_{2,5,1006}$. Put $D\left(x_{1}\right)=\{1,2, \ldots, 10\}, D\left(x_{2}\right)=D\left(x_{1}\right) \backslash\{2\}, D\left(y_{1}\right)=$ $D\left(x_{1}\right) \backslash\{1\}, D\left(y_{2}\right)=D\left(x_{1}\right) \backslash\{3\}, D\left(y_{3}\right)=D\left(x_{1}\right) \backslash\{4\}, D\left(y_{4}\right)=D\left(x_{1}\right) \backslash\{5\}, D\left(y_{5}\right)=D\left(x_{1}\right) \backslash\{1,3\}$. Put 1-subset, 2 -subset, $\ldots, 8$-subset of $\{1,2, \ldots, 10\}$, except for $\{1\},\{2\},\{3\},\{4\},\{5\},\{1,3\}$,as the color sets of vertices in Z.By the second paragraph of Lemma 2,we could get the specific coloring method of $K_{2,5,1006}$.

Case 2: If $243 \leq p \leq 498$,then $\chi_{g v t}\left(K_{2,5, p}\right)=9$.
Assume that $K_{2,5, p}$ has a 8-GVDTC g.From Claim 1 in Lemma 1 , when $l=9$, we know that any 1 -subset of $\{1,2, \ldots, 8\}$ cannot be the color set of vertices in $X \cup Y$.From Claim 2 in Lemma 1, when $l=9$, we know that at least three 1 -subset of $\{1,2, \ldots, 8\}$ cannot be a color set of vertex in Z. So we can assume that $\{1\},\{2\}$ or $\{3\}$ are not the color sets of vertices in the graph. Because $\overline{C\left(x_{i}\right)}$ and $\overline{C\left(y_{j}\right)}, i=1,2, j=1,2,3,4$,

5,the 7 subsets are different, and at least 3 of them are not $\varnothing,\{1\},\{2\}$ or $\{3\}$. We can assume that $\overline{C\left(y_{3}\right)}, \overline{C\left(y_{4}\right)}$ or $\overline{C\left(y_{5}\right)}$ are all not $\varnothing,\{1\},\{2\},\{3\}$.
(i) When $\left|\overline{C\left(y_{j}\right)}\right| \leq 3, j=3,4,5$, the available color set of vertices in Z are the 1 -subset, 2 -subset, $\ldots, 8$-subset of $\{1,2, \ldots, 8\}$, except for $\{1\},\{2\},\{3\}, \overline{C\left(y_{3}\right)}, \overline{C\left(y_{4}\right)}$ and $\overline{C\left(y_{5}\right)}$ and all color sets of vertices in $X \cup Y$.So $p \leq \sum_{i=1}^{8}\binom{8}{i}-13=242$, a contradiction.
(ii) $\left|\overline{C\left(y_{j}\right)}\right| \leq 4$ for $j \in\{3,4,5\}$.we know that 1 -subset, 2 -subset, 3 -subset and 4 -subset of $\overline{C\left(y_{j}\right)}$ cannot be the color set of any vertex in Z. So $p \leq \sum_{i=1}^{8}\binom{8}{i}-15=240$, a contradiction.

A 9-GVDTC of $K_{2,5, p}$ can be obtained by 9-GVDTC of $K_{2,5,498}$, which is limited by $\left\{x_{1}, x_{2}, y_{1}, y_{2}, \ldots, y_{5}, z_{1}, z_{2}, \ldots, z_{p}\right\}$.Then we give a 9-GVDTC of $K_{2,5,498}$. Put $D\left(x_{1}\right)=\{1,2, \ldots, 9\}, D\left(x_{2}\right)=D\left(x_{1}\right) \backslash\{2\}, D\left(y_{1}\right)=D\left(x_{1}\right) \backslash\{1\}, D\left(y_{2}\right)=D\left(x_{1}\right) \backslash\{3\}, D\left(y_{3}\right)=$ $D\left(x_{1}\right) \backslash\{4\}, D\left(y_{4}\right)=D\left(x_{1}\right) \backslash\{5\}, D\left(y_{5}\right)=D\left(x_{1}\right) \backslash\{1,3\}$. Put 1 -subset, 2 -subset, $\ldots, 8$-subset of $\{1,2, \ldots, 9\}$, except for $\{1\},\{2\},\{3\},\{4\},\{5\},\{1,3\}$, as the color sets of vertices in Z.By the second paragraph of Lemma 2, we could get the specific coloring method of $K_{2,5,498}$.

Case 3: If $\mathbf{1 1 5} \leq p \leq 242$, then $\chi_{g v t}\left(K_{2,5, p}\right)=8$.

Assume that $K_{2,5, p}$ has a 7-GVDTC g.From Claim 1 and Claim 2 in Lemma 1 , when $l=8$, we can assume that $\{1\},\{2\}$ or $\{3\}$ are not the color sets of vertices in the graph. Because $\overline{C\left(x_{i}\right)}$ and $\overline{C\left(y_{j}\right)}, i=1,2, j=1,2,3,4,5$,the 7 subsets are different, and at least 3 of them are not $\varnothing,\{1\},\{2\}$ or $\{3\}$. We can assume that $\overline{C\left(y_{3}\right)}, \overline{C\left(y_{4}\right)}$ or $\overline{C\left(y_{5}\right)}$ are all not $\varnothing,\{1\},\{2\},\{3\}$.
(i)When $\left|\overline{C\left(y_{j}\right)}\right| \leq 3, j=3,4,5$, the available color set of vertices in Z are the 1 -subset, 2 -subset, $\ldots, 7$-subset of $\{1,2, \ldots, 7\}$,except for $\{1\},\{2\},\{3\}, \overline{C\left(y_{3}\right)}, \overline{C\left(y_{4}\right)}$ and $\overline{C\left(y_{5}\right)}$ and all color sets of vertices in $X \cup Y$.So $p \leq \sum_{i=1}^{7}\binom{7}{i}-13=114$,a contradiction.
(ii) $\left|\overline{C\left(y_{j}\right)}\right| \leq 4$ for $j \in\{3,4,5\}$.we know that 1 -subset, 2-subset,3-subset and 4 -subset of $\overline{C\left(y_{j}\right)}$ can not be the color set of any vertex in Z. So $p \leq \sum_{i=1}^{7}\binom{7}{i}-15=112$, a contradiction.

A 8-GVDTC of $K_{2,5, p}$ can be obtained by 8 -GVDTC of $K_{2,5,242}$, which is limited by $\left\{x_{1}, x_{2}, y_{1}, y_{2}, \ldots, y_{5}, z_{1}, z_{2}, \ldots, z_{p}\right\}$.Then we give a 8 -GVDTC of $K_{2,5,242}$. Put $D\left(x_{1}\right)=\{1,2, \ldots, 8\}, D\left(x_{2}\right)=D\left(x_{1}\right) \backslash\{2\}, D\left(y_{1}\right)=$ $D\left(x_{1}\right) \backslash\{1\}, D\left(y_{2}\right)=D\left(x_{1}\right) \backslash\{3\}, D\left(y_{3}\right)=D\left(x_{1}\right) \backslash\{4\}, D\left(y_{4}\right)=D\left(x_{1}\right) \backslash\{5\}, D\left(y_{5}\right)=D\left(x_{1}\right) \backslash\{1,3\}$. Put 1-subset, 2-subset, $\ldots, 8$-subset of $\{1,2, \ldots, 8\}$, except for $\{1\},\{2\},\{3\},\{4\},\{5\},\{1,3\}$, as the color sets of vertices in Z.By the second paragraph of Lemma 2,we could get the specific coloring method of $K_{2,5,242}$.

Case 4: If $51 \leq p \leq 114$, then $\chi_{g v t}\left(K_{2,5, p}\right)=7$.
Assume that $K_{2,5, p}$ has a 6 -GVDTC g.From Claim 1 and Claim 2 in Lemma 1, when $l=7$, we can assume that $\{1\},\{2\}$ or $\{3\}$ are not the color sets of vertices in the graph. Because $\overline{C\left(x_{i}\right)}$ and $\overline{C\left(y_{j}\right)}, i=1,2, j=1,2,3,4,5$,the 7 subsets are different, and at least 3 of them are not $\varnothing,\{1\},\{2\}$ or $\{3\}$. We can assume that $\overline{C\left(y_{3}\right)}, \overline{C\left(y_{4}\right)}$ or $\overline{C\left(y_{5}\right)}$ are all not $\varnothing,\{1\},\{2\},\{3\}$.
(i) When $\left|\overline{C\left(y_{j}\right)}\right| \leq 3, j=3,4,5$, the available color sets of vertices in Z are the 1 -subset, 2 -subset, $\ldots, 6$-subset of $\{1,2, \ldots, 6\}$,except for $\{1\},\{2\},\{3\}, \overline{C\left(y_{3}\right)}, \overline{C\left(y_{4}\right)}$ and $\overline{C\left(y_{5}\right)}$ and all color sets of vertices in $X \bigcup Y$.So $p \leq \sum_{i=1}^{6}\binom{6}{i}-13=50$, a contradiction.
(ii) $\overline{C\left(y_{j}\right)} \mid \leq 4$ for $j \in\{3,4,5\}$.we know that 1 -subset, 2 -subset, 3 -subset and 4 -subset of $\overline{C\left(y_{j}\right)}$ cannot be the color set of any vertex in Z. So $p \leq \sum_{i=1}^{6}\binom{6}{i}-15=48$, a contradiction.

A 7-GVDTC of $K_{2,5, p}$ can be obtained by 7-GVDTC of $K_{2,5,114}$, which is limited by $\left\{x_{1}, x_{2}, y_{1}, y_{2}, \ldots, y_{5}, z_{1}, z_{2}, \ldots, z_{p}\right\}$.Then we give a 7-GVDTC of $K_{2,5,114}$. Put $D\left(x_{1}\right)=\{1,2, \ldots, 7\}, D\left(x_{2}\right)=D\left(x_{1}\right) \backslash\{2\}$, $D\left(y_{1}\right)=D\left(x_{1}\right) \backslash\{1\}, D\left(y_{2}\right)=D\left(x_{1}\right) \backslash\{3\}, D\left(y_{3}\right)=D\left(x_{1}\right) \backslash$
$\{4\}, \quad D\left(y_{4}\right)=D\left(x_{1}\right) \backslash\{5\}, \quad D\left(y_{5}\right)=D\left(x_{1}\right) \backslash\{1,3\}$. Put 1 -subset, 2 -subset, ..., 7 -subset of $\{1,2, \ldots, 7\}$, except for $\{1\},\{2\},\{3\},\{4\},\{5\},\{1,3\}$, as the color sets of vertices in Z. By the second paragraph of Lemma 2, we could get the specific coloring method of $K_{2,5,114}$.

Case 5: If $19 \leq p \leq 50$, then $\chi_{g v t}\left(K_{2,5, p}\right)=6$.
Assume that $K_{2,5, p}$ has a 5-GVDTC g.From Claim 1 and Claim 2 in Lemma 1, when $l=6$, we can assume that $\{1\},\{2\}$ or $\{3\}$ are not the color sets of vertices in the graph. Because $\overline{C\left(x_{i}\right)}$ and $\overline{C\left(y_{j}\right)}, i=1,2, j=1,2,3,4,5$,the 7 subsets are different, and at least 3 of them are not $\varnothing,\{1\},\{2\}$ or $\{3\}$. We can assume that $\overline{C\left(y_{3}\right)}, \overline{C\left(y_{4}\right)}$ or $\overline{C\left(y_{5}\right)}$ are all not $\varnothing,\{1\},\{2\},\{3\}$.
(i) When $\left|\overline{C\left(y_{j}\right)}\right| \leq 3, j=3,4,5$, the available color sets of vertices in Z are the 1 -subset, 2 -subset, $\ldots, 5$-subset of $\{1,2, \ldots, 5\}$, except for $\{1\},\{2\},\{3\}, \overline{C\left(y_{3}\right)}, \overline{C\left(y_{4}\right)}$ and $\overline{C\left(y_{5}\right)}$ and all color sets of vertices in $X \bigcup Y$.So $p \leq \sum_{i=1}^{5}\binom{5}{i}-13=18, \mathrm{a}$ contradiction.
(ii) $\left|\overline{C\left(y_{j}\right)}\right| \leq 4$ for $j \in\{3,4,5\}$.we know that 1 -subset, 2 -subset, 3 -subset and 4 -subset of $\overline{C\left(y_{j}\right)}$ cannot be the color set of any vertex in Z. So $p \leq \sum_{i=1}^{5}\binom{5}{i}-15=16$, a contradiction.

A 6-GVDTC of $K_{2,5, p}$ can be obtained by 6-GVDTC of $K_{2,5,50}$, which is limited by $\left\{x_{1}, x_{2}, y_{1}, y_{2}, \ldots, y_{5}, z_{1}, z_{2}, \ldots, z_{p}\right\}$.Then we give a 6-GVDTC of $K_{2,5,50}$. Put $D\left(x_{1}\right)=\{1,2, \ldots, 6\}, D\left(x_{2}\right)=D\left(x_{1}\right) \backslash\{2\}$, $D\left(y_{1}\right)=D\left(x_{1}\right) \backslash\{1\}, D\left(y_{2}\right)=D\left(x_{1}\right) \backslash\{3\}, D\left(y_{3}\right)=D\left(x_{1}\right) \backslash\{4\}, D\left(y_{4}\right)=D\left(x_{1}\right) \backslash\{5\}, D\left(y_{5}\right)=D\left(x_{1}\right) \backslash\{1,3\}$. Put 1-subset, 2-subset, \ldots, 6subset of $\{1,2, \ldots, 6\}$, except for $\{1\},\{2\},\{3\},\{4\},\{5\},\{1,3\}$, as the color sets of vertices in Z. By the second paragraph of Lemma 2, we could get the specific coloring method of $K_{2,5,50}$.

Case 6: If $5 \leq p \leq 18$, then $\chi_{g v t}\left(K_{2,5, p}\right)=5$.
Assume that $K_{2,5, p}$ has a 5-GVDTC g.
Claim 3: Any 1 -subset of $\{1,2,3,4\}$ cannot be the color sets of vertices in X.
Otherwise, we can assume that $g\left(x_{1}\right)=\{1\}$,then any vertex in $Y \bigcup Z$ contains color "1". There are only 8 subsets which contain color " 1 ",so they cannot distinguishing at least 11 vertices in $Y \bigcup Z \bigcup\left\{x_{1}\right\}$, a contradiction.

Claim 4: There are at least three 1 -subsets of $\{1,2,3,4\}$, which cannot be the color sets of vertices in Z.
Otherwise, we can assume that only $\{1\}$ or $\{2\}$ are not the color sets of vertices in $Z . C\left(x_{i}\right) \cap C\left(y_{j}\right) \supseteq\{3,4\}$,so the color sets which can be assigned are: $\{3,4\},\{1,3,4\},\{2,3,4\}$ and $\{1,2,3,4\}$. That 4 sets can not distinguish the 7 vertices in $X \bigcup Y$.This is a contradiction.

Claim 5: When $p \geq 6$,any 1 -subset of $\{1,2,3,4\}$ can not be the color sets of vertices in Y.
Otherwise, we could assume $g\left(y_{1}\right)=1$, then any vertex in $X \bigcup Z$ must contain color " 1 ". There are only 8 subsets which contain color " 1 ",so they can not distinguish at least 9 vertices in $X \bigcup Z \bigcup\left\{y_{1}\right\}$, a contradiction.

The following are discussed in two cases:
(i)When $p \geq 6$,

From Claim 2, we can assume $\{1\},\{2\},\{3\}$ can not be the color sets of vertices in Z. Because $\overline{C\left(x_{i}\right)}$ and $\overline{C\left(y_{j}\right)}$ $, i=1,2, j=1,2,3,4,5$, the 7 subsets are different, and at least 3 of them are not $\varnothing,\{1\},\{2\}$ or $\{3\}$. We can assume that $\overline{C\left(y_{3}\right)}$, $\overline{C\left(y_{4}\right)}$ or $\overline{C\left(y_{5}\right)}$ are all not $\varnothing,\{1\},\{2\},\{3\}$.Then the available color sets of vertices in Z are the 1-subset,2-subset,3subset, 4 -subset of $\{1,2,3,4\}$, except for $\{1\},\{2\},\{3\}, \overline{C\left(y_{3}\right)}, \overline{C\left(y_{4}\right)}, \overline{C\left(y_{5}\right)}$ and all color sets of vertices in $X \bigcup Y$.So $p \leq$ $\sum_{i=1}^{4}\binom{4}{i}-13=2, \mathrm{a}$ contradiction.
(ii) When $p=5$,
$\{1,2,3,4\}$ has 15 subsets,they could be the color sets of vertices in $K_{2,5,5}$. There are 14 subsets except for $\{1,2,3,4\}$, which are complementary to each other.So there are 7 pairs of sets which are complementary to each other.The color sets in X and Y, Y and Z, Z and X must not complement each other.We consider if there are two vertices complementing to each other in X, then any 1 -subset cannot be the color sets of vertices in $Z . p+7 \leq \sum_{i=1}^{4}\binom{4}{i}-4, p \leq 4, a$ contradiction. Similarly, the color sets of any two vertices in Y or Z cannot complement each other.So there are only 7 subsets which could be the color sets of vertices in $K_{2,5,5}$, a contradiction.

A 5-GVDTC of $K_{2,5, p}$ can be obtained by 5-GVDTC of $K_{2,5,18}$, which is limited by $\left\{x_{1}, x_{2}, y_{1}, y_{2}, \ldots, y_{5}, z_{1}, z_{2}, \ldots, z_{p}\right\}$.Then we give a 5 -GVDTC of $K_{2,5,18}$. Put $D\left(x_{1}\right)=\{1,2, \ldots, 5\}, D\left(x_{2}\right)=D\left(x_{1}\right) \backslash\{2\}, D\left(y_{1}\right)=$ $D\left(x_{1}\right) \backslash\{1\}, D\left(y_{2}\right)=D\left(x_{1}\right) \backslash\{3\}, D\left(y_{3}\right)=D\left(x_{1}\right) \backslash\{4\}, D\left(y_{4}\right)=D\left(x_{1}\right) \backslash\{5\}, D\left(y_{5}\right)=D\left(x_{1}\right) \backslash\{1,3\}$. Put 1-subset, 2-subset, $\ldots, 5$-subset of $\{1,2, \ldots, 5\}$, except for $\{1\},\{2\},\{3\},\{4\},\{5\},\{1,3\}$, as the color sets of vertices in Z.By the second paragraph of Lemma 2, we could get the specific coloring method of $K_{2,5,18}$.

REFERENCES

1. Harary F, Plantholt M. The point -distinguishing chromatic index [M]:F. HARARY, MAYBEE (Eds.) J.S., Graphs and Application, Wiley interscience, New York. 1985:147-162.
2. Horvnak M, Sotak R. The fifth jump of the point-distinguishing chromatic index of $K_{n, n}[J]$. Ars Combinatoria. 1996, 42:233-242.
3. Horňák M, Soták R. Localization of jumps of the point-distinguishing chromatic index of $\$ K_{-}\{n, n\} \$$. Discussiones Mathematicae Graph Theory. 1997;17(2):243-51.
4. ZAGAGLIA SALVI N. On the point -distinguishing chromatic index of $K_{n, n}$. Ars Combinatoria. 1988, 25B: 93104.
5. Zagaglia Salvi N. On the value of the point-distinguishing chromatic index of $K_{n, n}[\mathrm{~J}]$. Ars Combinatoria, 1990, 29B: 235-244.
6. Horvnak M, Zagaglia Salvi N. On the point-distinguishing chromatic index of $K_{m, n}[J]$. Ars Combinatoria, 2006, 80: 75-85.
7. Zhang Z, Qiu P, Xu B, Li J, Chen X, Yao B. Vertex-distinguishing total coloring of graphs. Ars Combinatoria. 2008 Apr 1;87(2):33-45.
8. Liu C, Zhu E. General vertex-distinguishing total coloring of graphs. Journal of Applied Mathematics. 2014;2014.
