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Abstract  Review Article 
 

Nonparametric regression analysis refers to the absent of the regression estimation of the parameters. There are many 

drawbacks of using the parametric modeling due to the restrictions imposed on the regression function, as well as the 

lack of flexibility provided. The answer to the rigidity of parametric regression is to assume that the regression 

function f does not belong to a parametric family. This will lead us to the nonparametric regression modelling. The 

scope of nonparametric regression is very broad, ranging from "smoothing" the relationship between two variables in a 

scatter plot to multivariate regression analysis where we encounter what so called" the curse of dimensionality". This 

paper aims to propose two methods of the nonparametric regression, namely; the Multivariate Local Polynomial 

Kernel (MLPK) Regression, and Multivariate Regression Splines (MRS). The theoretical development of these two 

nonparametric methods, that includes the asymptotic bias, variance, and mean squared errors are presented. Then, 

data-driven methods of bandwidth selection of the two multivariate nonparametric estimators are derived. Several 

simulation studies are conducted in order to evaluate and compare the estimated regression curves resulting from 

utilizing two different classes of the Multivariate Nonparametric regression curve estimation procedures, namely: 

MLPK estimator, and MRS estimator. Such a study is necessarily to be restrictive, because there are many 

possibilities for the number of explanatory variables d, the choices of regression functions f(x), sample size (n), and the 

choice of σ. In this study, we conducted three main simulation studies depending upon d=1, d=2, and d=3. Several 

interesting results have been achieved. Applications on real dataset also been considered. The dataset used is the Cross 

Country Growth Panel Data. Lastly, the advantages and disadvantages of these two nonparametric regression 

estimators have been discussed.  

Keywords: Nonparametric Regression, Local polynomial kernel estimator, Smoothing Spline estimator, Multivariate 

Local Polynomial Kernel (MLPK) Regression, Multivariate Regression Splines (MRS), and GDP growth panel data. 
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INTRODUCTION 
In statistics, regression analysis examines the causal relation of a dependent variable Y (response variable) with 

to specified independent variables (explanatory variables). The mathematical model of their relationship is the regression 

equation. The dependent variable is modeled as a random variable because of uncertainty as to its value, given only the 

value of each independent variable. A regression equation contains estimates of one or more hypothesized regression 

parameters. These estimates measure are constructed using data for the variables, such as from a sample. The estimates 

measure the relationship between the dependent variable and each of the independent variables. They also allow 

estimating the value of the dependent variable for a given value of each respective independent variable [1]. 

 

Uses of regression include curve fitting, prediction, modeling of causal relationships, and testing scientific 

hypotheses about relationships between variables. 

 

Non-Parametric Regression Models 
Nonparametric regression analysis refers to the absent of the regression estimation of the parameters. There are 

many drawbacks of using the parametric modeling due to the restrictions imposed on the regression function(   ), as 

well as the lack of flexibility provided. The answer to the rigidity of parametric regression is to assume that the 

regression function f does not belong to a parametric family. This will lead us to the second kind of the regression 

modeling, the nonparametric regression models. 

https://saspublishers.com/sjpms/
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The scope of nonparametric regression is very broad, ranging from "smoothing" the relationship between two 

variables in a scatter plot to multiple-regression analysis and generalized regression models (for example, logistic 

nonparametric regression for a binary response variable). Unthinkable only a few years ago, methods of nonparametric 

regression analysis have been used widely because of advances in statistics and computing, and are now a serious 

alternative to more traditional parametric-regression modeling.  

 

Table-1: Some of the most widely used smoothing methods are listed below: 

1-1-Kernel Based Smoothing 2-2-Spline Smoothing 3-3-Wavelet 

4-4-K-Nearest Neighbor 5-5-Orthogonal Series Estimators 

 

Some of these methods are based on quite simple ideas and straightforward applications while others are based 

on highly sophisticated Mathematics [16]. Of particular interest is the Kernel based smoothing method and the 

Smoothing Splines because they are mathematically tractable and intuitively simple.  

 

Table-2: Within the context of the Kernel-based smoothing, there are many well-known approaches 

(estimator) namely: 

1-Nadaraya-Watson Estimator 2-Priestley-Chao Estimator 3-Gasser-Muller Estimator 

4-LOWESS estimator 5- Local Polynomial Kernel Estimator 

 

Table-3: On the other hand, within the context of the Cubic Smoothing Splines, there are as well many well-

known approaches (estimator) namely: 

1- Cubic Smoothing Splines 2- Natural Smoothing Splines 3- B-Smoothing Splines 

4- P-Smoothing Splines 5- Thin-plate Smoothing Splines 

 

This paper aims to provide a broad introduction to two methods of the nonparametric covering the following: 

introduction to nonparametric regression; Local Polynomial Kernel regression and Smoothing Splines; the statistical 

inference for nonparametric regression with emphasis on the role of nonparametric regression in data analysis. Then, 

extend the analysis of these two methods to case of the Multivariate Nonparametric Regression Estimation.   

 

The general nonparametric regression model can be defined as follows 

                         (  )                      (1)                  

Where   (  )  represent some function that needed to be estimated, and the    are independent variables with zero mean 

and constant variance for all              
 

In the next sub-sections, we will present some important definitions of these two chosen nonparametric methods 

to smooth the mean regression functions, namely: the Kernel Based Smoothing and the Smoothing Splines. 

 

The Kernel Based Smoothing  
The kernel based smoothing method is of particular interest to many statisticians because it is precisely 

manageable and is based on quite simple idea. The historical development of this method is as follows:        

 

Nadaraya  Watson  Estimator [2] 

The Nadaraya-Watson estimator is independently proposed by (Nadaraya and Watson, 1964)  

and can be written as 

 

                         ̂(   )  
∑   (    )  
 
   

∑   (    )
 
   

  (2) 

 

Priestley-Chao Estimator [3] 

The Pristley-Chao estimator (Priestley and Chao, 1972) which has the following form 

                               ̂(   )  
 

  
∑  .

    ⁄

 
/ 

              (3)      

 

Locally Weighted Scatter Plot Smoother (LOWESS) [4] 

The locally Weighted Scatter plot smoother LOWESS (Cleveland [4] is defined as the smoothed point at    

using locally weighted regression of degree   is (    ̂ ), where  ̂  is the fitted value of the regression at   . Thus  
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                                  (4) 

 

Where    (  )  does not depend on   , .  We have used the notation    to remind ourselves 

that these are the coefficients for the  that arise from the regression.  

 

Gasser – Muller   Estimator (1984) 

The Gesser-Muller estimator (Gasser and Muller, 1984) is based on the convolution of a kernel function with a 

modification of the regress gram, and has the following form 

               ̂(   )  ∑ ∫   (   )    
  
    

 
                     (5) 

 

Local polynomial   kernel Estimator [2] 

 

The Local Polynomial Kernel estimator [5] is defined as  

          ̂(     )    
 (    

    )
  
(    
    )             (6) 

 

Local polynomial kernel regression estimation was introduced in several different fields in the late nineteenth 

and early twentieth century’s. A comprehensive review of it is appealing features and properties are given in [5] in 

chapter 5, [6] have given a pleasing preliminary exposition [7] have presented an innovative teaching tool which 

demonstrates local polynomial smoothing via a movie and several new (graphical devices and loader [8] the underlying 

principle is that a smooth function can be well approximated by a low degree polynomial in the neighborhood of any 

point Mami [9]. 

 

The Smoothing Splines Estimators 
A smoother is a tool for summarizing the trend of a response variable y as a function of one or more linear 

explanatory variables x’s. Since it is an estimate of the trend, it is less variable than y, that it is why it is called smoother. 

There are several types of nonparametric regression, but all of them rely on the data to specify the form of the model. The 

curve at any point depends only on the observations at that point and some of the specified neighboring points. 

 

The term spline originally referred to a tool used by draftsmen to draw curves. For our purposes, splines are 

piecewise regression functions we constrain to join at points called knots. In their simplest form, splines are regression 

models with a set of explanatory variables on the right hand side of the model that we use to force the regression line to 

change direction at some point along the range of x . Within the context of splines, one must choose the degree of a 

polynomial for the piecewise regression functions, the number of knots, and the location of the knots. 

 

Perhaps the most confusing aspect of splines is that there are so many different types. For example, there are 

regression splines, cubic splines, B-splines, P-splines, Natural splines, Thin-plate splines, and smoothing splines, etc.  

Moreover, there are often combinations such as Natural cubic with B-splines. The wide variety of splines partially stems 

from the progress in research on splines. Often a new type of spline either supplants an older type of spline or adds a 

refinement to existing methods. The splines most often used in statistics is the smoothing splines. See Keele [10] for 

more comprehensive details on Splines. 

 

LITERATURE REVIEW 
Local Polynomial Regression has been shown to curve estimation an excellent adaptation and reasonably simple 

implementation. Therefore, it has received considerable attention in the statistics communities. 

 

For multivariate Local Polynomial Regression, the bias-variance tradeoff problem is more complicated. It is 

because the bandwidth H is a matrix in multidimensional curve estimation. Not only is the kernel scale important, but 

also the kernel shape has significant effects on the estimation results. It explains why there were not many publications 

concerning the bandwidth matrix selection of multivariate Local polynomial Regression. Although the adaptive 

bandwidth selection for univariate Local Polynomial Regression has been systematically and intensively studied (Fan and 

Gijbels [11]. 

 

Traditionally, the bandwidth matrix selection for multivariate Local Polynomial Regression is simplified by 

using kernels with a specific shape, which is usually symmetric. More precisely, using a symmetric basis kernel K(u) and 

a bandwidth matrix H=h*I with h the scale parameter and I the identity matrix, the kernel KH(u) is simplified into d-
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dimension of the multivariate Local Polynomial Regression. As a result, the selection of the scale h is much easier than 

the selection of a d-dimensional bandwidth matrix H. With this assumption, Ruppert et al. [12] have studied the 

asymptotic bias, variance, and MSE of multivariate Local Polynomial Regression and developed the empirical-bias 

bandwidths selection algorithm for multivariate Local Polynomial Regression. Based on Ruppert’s work, Fan and Gijbels 

[11], Yang and Tschernig [13] also developed similar scale selection methods for multivariate local linear regression 

[14]. 

 

The so-called regression spline or the least-squares spline approximates the regression function by piecewise 

polynomials, each defined over a different sub region of the domain of the spline. Many approaches to constructing 

regression splines have been presented in the literature. Poirier [16] has introduced the cubic spline and the bilinear 

spline. Buse and Lim [15] have proved that the cubic spline can be computed by the restricted least-squares method. 

Afterward, Smith [17] has showed that the univariate regression splines of any degree of regression function may be 

represented in the additional function. This enables us to compute univariate regression splines simply by the least 

squares method. As a generalization, the bilinear spline presented by Poirier [16] is a model of continuous piecewise 

multivariate polynomial function of order two. Eubank [18] has pointed out that multivariate regression splines have 

received only brief attention and further research is required before multivariate regression splines can become a standard 

method of multivariate surface fitting.  

 

Most recently Chen [19] has proposed a Multivariate regression spline of arbitrary finite polynomial order by 

the restricted least-squares method. 

 

Theoretical Development 

In the study of nonparametric regression, we are given n-pairs of observations(     ) (     )    (     ), 
then we can write that 

 

    (  )                             (7) 

 

where    represent the response variables,  (  )represent some function, and   are independent variables with zero mean 

and constant variance for all              
 

The idea behind smoothing covers many regression problems. Given noisy data, we desire to extract general 

structure in the observations without following local fluctuations due to noise. Good smoothing methods strike a balance 

between error and bias. 

 

In regression smoothing, we typically use the variables h(the bandwidth in Kernel smoothing context) or (the 

measure of roughness in the smoothing Splines context) to quantify the amount of "smoothing". 

 

Depending on how one measures error, different ideal h or values emerge. Regardless each idea value for h or

 depends upon the sample size n and specific aspects of the problem. For instance, suppose one measures accuracy via 

the mean integrated squared error, or 

 

E[∫ ( ̂ ( )   ( ))
   

 

  
  ] 

 

Here m(t)= E[x(t)], and  ̂h(x) is an estimate of m(t) with bandwidth h or measure of roughness . 

 

Evaluating this integral and performing a detailed asymptotic analysis shows that as  n ~ ∞,the best bandwidth 

satisfies 
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where K2 is some constant, and K(.) is the kernel function. We usually simplify the optimal value to cn
-
 where c is a 

constant.  

 

 Other optimal values of h or  are of a similar fashion [20]. Since the optimal value of h or  depends on the true 

mean function m(.), we can never, in truth, know the best value of h or . It is not hard, however, to determine bad 

values for h or theoretically [11]. 
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Local Polynomial Kernel Regression 
The Local Polynomial Kernel (LPK) estimator which is defined as  

        (9) 

Where   (           )
 ,      be the diagonal matrix of weights with      (    )and      is the (   )  

 vector having 1 in the first entry and zeros elsewhere, and     denotes the design matrix (  (   ))Whose (i, j) the 

element is  (    )
    (Fan and Gijbels [11], and Mami [9]. 

 

The Definition of the Local polynomial Kernel Estimator  

The basic idea of this estimator is the local fitting of      order polynomial to the data via weighted least 

squares at a particular point of the regression function. 

 

Suppose a set of multidimensional observations: (Yi, Xi), i=1,2,…..,n, where for each i, Yi is a scalar response 

variable and Xi = (Xi,1 , Xi,2 ,…., Xi,d) is a d- dimensional explanatory variable, therefore we have two setting depending 

on d = 1 (univariate case) or d> 1 (multivariate case).  

 

Univariate Local Polynomial Kernel Regression (d = 1) 

Let the response variables as being generated from the model which ordered and non-random numbers are 

having the difference between        being the same (equally-spaced design). 

 

    (  )                                                (10) 

where the errors    are independent random variables with 

 

 (  )   ,        (  
 )     

 

f is called the mean regression function because 

 (  )   (  ),              ,  -    
 
 

 

If for all   , the model is considered to be homoscedastic otherwise, the model is said to be 

heteroscedastic. 

 

The Elements of LPK Estimator 

There are three elements that form the LPK estimator: 

 

Firstly, the Kernel function K 

The term kernel refers to any smooth function such K that   

 

 and satisfies the following conditions: 

 

 ,   ,   

 

The usual assumptions that needed in the kernel smoothing techniques for the kernel  

 

K are as follows 

 the function is continuous on [0,1]  

 the kernel K is symmetric about zero and is supported on [-1,1] Moreover; it has a bounded first derivative K
’
. 

 

There are several choices of kernel functions that can be used such as: 

 the Boxcar kernel(uniform): ( )  
 

 
 ( ) 

 the Gaussian kernel:    ( )  
 

√  
  

  
 
⁄

 

 the Epanechnikov kernel: ( )  
 

 
(    ) ( ) 

 the Tri cube kernel: ( )  
  

  
(  | | )  ( ) 
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In this work, the principle kernel function to be used is the Gaussian kernel.  

 

Secondly, the order of the polynomial p 

Recall (9), the explicit expression for the local polynomial kernel estimator of order p (in the matrix notation) 

can be seen as: 

           (11) 

 

The Nadaraya-Watson estimator can be seen as a special case of LPK estimator when (p=0) can be written in a 

simple formula as: 

 ̂(   )  
∑   (    )  
 
   

∑   (    )
 
   

                      (12) 

 

 

Thirdly, the Smoothing Parameter or the Bandwidth h 

The right choice of the smoothing parameter or bandwidth h is considered to be the most sensitive matter when 

using the Local Polynomial Kernel estimator. Thus, taking a very small bandwidth, the modeling bias will be small since 

the number of data points falling in this local neighborhood is also small but the variance will be large. On other side, 

taking a very large bandwidth creates a large modeling bias depending on the underlying function. In conclusion, the 

bandwidth governs the complexity of the model through the trade-off between quantities of bias and variance [11]. 

 

Some of the well-known bandwidth selection strategies are: 

 Rule of thumb 

 Rice’s criterion 

 Solve the equation 

 Cross-validation criterion (CV) 

 Direct plug-in selection strategy (DPI) 

 Residual squares criterion (RSC) 

 

The Exact Bias and Variance of LPK Estimator 

The bias expression in the case of local linear kernel estimator (x; 1, h) when utilizing the equally-spaced 

design case can be seen as: 

        

 E[ (x; 1, h)] f  O( )o( ),          (13) 

 

Where: (k) =  and the notation O ( ) means that some quantity is less than a constant 

multiplied of    once   n is sufficiently large (i.e.  C); and the notation o ( ) means that   h= 

0 the quantity O ( ) converges to zero with rate of   (i.e.    =0) for complete details of the 

derivations see Ruppert, et al. [12].   

 

While, the variance expression in the case of local linear kernel estimator (x; 1, h) when utilizing the equally-

spaced design case can be seen as: 

 

var [ (x; 1, h) ]= (  )  R( )v(x) o( -     )                  (14) 

 

is defined as above moreover, for complete details of the derivation. The appropriate global loss criterion is the mean 

integrated squared error (MISE) of (. ; 1,h) ,and it is given by : 

 

MISE [ (x; 1, h)] =   E {∫  * (      )                 

                            =  -     R( ) +∫  ( )   + 

   *  ( )/(2)!}
2
∫       ( )    + op(        )}                              (15)        



 

    
Ahmed M. Mami et al., Sch J Phys Math Stat, Feb 2020; 7(2): 11-29 

© 2020 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          17 

 

 

 

In this work, the selection of h is based on Direct Plug-In strategy. The formula to obtain hopt is simply 

minimizing MISE [ (x; 1, h)] with respect with h. 

 

Multivariate Local Polynomial Kernel Regression (d > 1) 

In Multivariate Local Polynomial Kernel(MLPK)regression context, we have a set of multidimensional 

observations: (Yi, Xi), i=1,2,…..,n, where for each i,Yi is a scalar response variable and Xi =(Xi,1 , Xi,2 ,….,Xi,d) is a d-

dimensional explanatory variable. We assume the homscedastic model 

 

Yi = f(Xi,j)+ԑi,j,     such that      i=1,2,…..,n , j=1,2,…..,d         (16) 

 

Where f(Xi,j) is a smooth function specifying the conditional mean of Yi given (Xi,j),ԑi,j is an independent identically 

normally distributed with zero mean and unit variance. 

 

The goal is to estimate f(Xi,j) and its partial derivatives from the noisy samples Yi . Based on the work of Zhang 

and Chan [14], the smooth function f(X i,j) can be approximated locally, say at a given point X=(X1 , X2 ,…., X d)
T
, by a 

multivariate polynomial of a certain degree 

 

f(X: x) =f (x) + {∇f(x)}
T
 (X-x) + 

 

 
 (X-x){Hf (x)}

T
(X-x)+…… 

 = f (x) + {∇f(x)}
T
 (X-x) + 

 

 
vec

T
{Hf (x)}.vec{(X-x)(X-x)

T
}+… 

 = β0+β∇
T
. (X-x)+βH

T
 . vech{(X-x)(X-x)

T
}+…….                        (17) 

 

Where β0 = m (x), β∇ = ∇m(x)= [
  ( )

   
  .., 

  ( )

   
]

T
, 

                  βH = vech{Hf (x)}=
 

 
[ 

 
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


      ,2

 

21

2
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xm




,……., 

 
2

2
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xm




  ]

T
, 

 

X=(X1 , X2 ,….,Xd)
T
 is neighborhood of  x, ∇f 

is the d×1gradient operator, Hf is the d×d Hessian matrix of f(x), 

vec(∙) is the vectorization operator which converts a matrix into a column vector lexicographically, and vech(∙)is the half-

vectorization operator which converts, for example   

 

A=[
    
    

] in to vech (A)= [ a1, a3 ,a4 ]
T
. 

 

Since  i,j is i.i.d and normally distributed, the maximum likelihood (ML) estimation of the coefficient vector β at 

location x can be obtained by solving the following weighted least-squares (WLS) regression problem 

 

             ̂(x ; H) = arg


min {J(x; H)}                                                        (18) 

Where 

J(x; H) = 
2
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,
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is a least-squares cost function and KH ( Xi – x) = 
 

 
 k(H

-1
 ( Xi – x)) ,is a d-variate non-negative kernel function 

which gives emphasis to neighboring observations around x in estimating β(x).The bandwidth matrix H determines the 

weights of neighboring samples around x to be used in estimating β(x). For separable windows, we have 

 

         Kh( Xi – x) = 











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 


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h
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j1d11

d

j

hj

d

j

hj KK             (20) 

 

To facilitate the development of the MLPK estimator, we assume that the basis-kernel K(u) is known a priori. 

The WLS solution to (18) is: 

 

 ̂ (x;h)=( 
T
  )

-1 
T
  ,                            (21) 
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Where   [

 (    )
     *(    )(    )

 +  

 (    )
     *(    )(    )

 +  

 (    )
     *(    )(    )

 +  

]     and    Y=[y1,y2,…..yn]
T
,  

     

W=diag{kh(X1-x),….., kh(Xn-x)},  kh (xn –x)is the weighting matrix. 

 

Recall the key problem in LPK regression, is the appropriate selection of the scale parameter h. Therefore, you 

do need to achieve the best bias-variance tradeoff in estimating m
(k)

(x). Now, we need to examine the analytical 

expressions for the conditional bias, variance and MSE of the polynomial coefficient estimate ̂. 
 

The asymptotic bias and variance of the k-th partial derivative  ̂(k)
(x;h)   are 

Bias{  ̂(k)
 (x;h)}=  

kph 1Β               (22) 

Var{  ̂(k)
 (x;h)}=  h

-(d+2k)
                  (23) 

 

Where   B=   2

1

1 )(! kp XBmMk 


,  =(K!)

2
  

2
(x)(M

1 M
1
) kk , /nf(x), 

 

B= [M 1,0 p , M 1,1 p ,…,M 1, pp ]
T

, M 1p (x)=vech( ̂(k)
 (x)) is the regression result obtained with a higher order (p+1), 

(M
1 M

1
) kk , is the(K,K diagonal element of the constant matrix M

1 M
1
,  (M

1
Bm 1p (x)) k is the K-th  element 

of the vector  M
1
Bm 1p (x), and the(i ,j)th  element of the matrices M and  are M ji , =∫ 

 ji
K(u) du and    ji , = ∫ 

 ji
K

2
(u) du Respectively.  

 

The asymptotic analytical results on bias and variance of MLPK estimator can be found in Zhang and Chan 

[14], Rupert and Ward [12], and Fan and Gijebles[11]. 

 

MSE{ ̂(k)
 (x;h)} =Bias

2
 { ̂(k)

 (x;h)} + var{ ̂(k)
 (x;h)}                 

 =Bh
2(p+1-k)

+V h
–(d+2k)                                        (24)

 (24) 

 

By minimizing (24), an analytical formula for h
 opt

 (x) can be determined as follows: 

h
op t

(x)=. (    ) 

 (     ) 
/

 

      
 

 

The Smoothing Splines 

Traditionally, the term Spline referred to a tool used by draftsmen to draw curves. In this framework, Splines are 

piecewise regression functions that are constrain to joint at points called “knots”.  In simpler form, Splines are regression 

models with a set of explanatory variables. Within the context of splines, one must choose: 

 The degree of a polynomial for the piecewise regression functions 

 The number of knots 

 The location of the knots 

 

Within the framework of Splines, there are too many different types. For example, there are Regression Splines, 

Cubic Splines, B-splines, P-splines, Natural Splines, Thin-plate Splines, and Smoothing Splines,………etc (Keele [10] 

has provided comprehensive reviews and extensive details on the various Smoothing Splines types). 

 

The Definition of the Cubic Smoothing Spline 

The basic idea of the Cubic Smoothing Spline was developed using the following process: a series of unique 

cubic polynomials are fitted between each of the data points, with the stipulation that the curve obtained be continuous 

and appear smooth. These Cubic Smoothing Splines can then be used to determine rates of change and cumulative 

change over the interval [a, b].   

 

Cubic Smoothing Spline Estimator (d=1) 

Recall the general nonparametric regression model, that is  

                                             (25) 
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If f is allowed to be any curve then this distance measure can be reduced to zero by any f that interpolates the 

data. Such a curve would not be satisfactory on the grounds that it is not unique and that it is too wiggly for a structure-

oriented interpretation. The Cubic Smoothing Spline approach stays away from this doubtful interpolation of the data by 

computing the competition between the goal to produce a good fit to the data and the aim to produce a curve without too 

much rapid local variation [2]. 

 

There are severing always to compute local variation. One is to define measures of roughness based, for 

instance, on the first, second, and so forth derivative. In order to explain the main idea, the integrated squared second 

derivative is most convenient, that is, the penalty of roughness.  

 
is used here to compute local variation. Using this measure, the weighted sum defined as follows: 

                                                                                                                                                    (26) 

 

 

Where denotes a smoothing parameter. The smoothing parameter represents the rate of exchange between residual 

error and roughness of the curve . 

 

The parameter    in (26) governs the tradeoff between smoothness and goodness of fit. When  is large a 

premium is being placed on smoothness and potential estimators with large derivatives are penalized. The limiting case 

of  produces an order polynomial regression fit to the data. Conversely, a small value of corresponds to more 

emphasis on goodness of it with λ . 

 

In general, as  increases, we get a smoother fit to the data, but also again perhaps a biased fit. As the 

parameter decreases, we get a very good fit that has increased of variance. 

 

For Cubic Smoothing Splines estimator, knot location is not a big matter anymore. Once the penalty is 

introduced, the number of knots and their location no longer has much influence on the smoothness of the fit. For the 

Cubic Smoothing Splines estimator, knots are placed at all unique values of  ix . 

 

One might think that having that many knots would mean that we have too many parameters, but the penalty 

term ensures that the spline coefficients are shrunk towards linearity thus limiting the approximate degrees of freedom 

[12]. 

 

Selecting the Smoothing Parameter 

Several data-driven methods have been successfully used in practice. The following two methods, namely: the 

Cross Validation (CV), and the Generalized Cross Validation (GCV) are frequently used. First, we rewrite the penalized 

spline model in (26) in matrix form. Given the correspondence between splines models and linear regression models, we 

can write the first term in (26) as linear regression model in matrix form. It can be shown that the penalty term from (26) 

can be written as a quadratic form in  [12]. 

 

It allows writing the penalty term in matrix form as 

 

                                     
 

b

a
Ddxxf 2)(                     (27) 

 

where D  is a matrix of the following form 
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k
D                         (28) 

 k11110 ,...,,,                                        (29) 

 

In the above matrix k denotes the number of knots. The penalized spline regression model in (29) can be 

expressed in matrix notation as follows:    

 



n

i

b

a

ii dxxfxfyfss
1

22 )()}({),( 
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 DXyfss 
2

),(                            (30) 

 

As stated above, there are two procedures to select the optimal value of lambda  , namely: the Cross-Validation 

(CV) and Generalized Cross-Validation (GCV). 

 

In this study, we deal with the cross validation method (CV), as a performance criterion for selecting the 

smoothing parameter. Using such a criterion, we implement a CV-based algorithm, in Rgui (Open Source Statistical 

Package) by using ssanova function in gss package. Then, we apply it on the selected example regression function. In 

order to emphases the quality of the fitting by the CV-smoothing spline functions. Then, we fit some real data with this 

kind of function. Such estimator will minimize (30). First part of this expression represents the goodness-of-fit to the data 

and the second part represents the smoothness of the estimator.  

 

Multivariate regression splines (d >1) 

Let xl,... ,xp, p > 1, be explanatory variables that are related to the response variable y. Consider the joint-points 

{dig : si = 0,1,…, ai}, with ai  1, i = 1,. . . , p, the elements of which are known as knots. These joint-points define a p-

dimensional rectangular grid in the space of variables xl,. . . ,xp consisting of al,. . . , ap multivariate rectangles as the 

region set: 

 

  ,,....,1,:,...,
11 pixxx i

sii

i

sip 


 , Si= 0,1,……aii = 1,..,p                (31) 

 

Here  10 , ia

i   are set such that the region   pixxx i

ai

i

p i
,....,1,:,...,

101 


 is the bounded domain of the 

regression function. The regression function 

Has the following form: 

 
 

k

cc

p

i

c

icc

p

i

p
x

0... 1

...

1

1
                     (32) 

 

Where c1,…..,cp are nonnegative integers and   denotes for product of polynomial functions. In the following, we state 

the setting of the piecewise multivariate polynomial regression model. 

 

Definition 2.1. It is based on the work of Chen (1997), and stated as: 

(a) An order k piecewise multivariate polynomial function is a function defined on the region of (31) such that each 

multivariate rectangle   pixxx i

sii

i

sip ,....,1,:,..., 11    has an order k multivariate polynomial defined on it.  

 

(b) An order k piecewise multivariate polynomial regression model is the following: 

              
   pxxfy ,.....,1                            (33) 

for which  f  is an order  k  piecewise multivariate polynomial function and ԑ  is the error term. 

The class of order k piecewise multivariate polynomial function is a vector space with dimension   




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
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i i

kp

p

a
1

1

.Th e multivariate regression spline is then a model (33) for which the regression function f satisfies some continuity 

condition of partial derivatives. 

 

Definition 2.2. It is based on the work of Chen [19], and stated as: 

(a) An order k piecewise multivariate polynomial function of model (25) is said to be a multivariate regression spline if it 

has some continuous partial derivatives. 

 

(b) A multivariate regression spline is said to have continuity-degree 10,  kjj   if its      thjj p ,...1 partial 

derivative is continuous for jjj p  ...0 1  

 

We now state an equivalent form of the order k piecewise multivariate polynomial function, which generalizes 

the formulation of the piecewise univariate polynomial function to the multivariate case. The order k piecewise 

multivariate polynomial function can be formulated in the form, 
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Where P
..
 are multivariate polynomials with the form of (34). 

 

Denote the additional function “+” by x+ = max{x, 0). The next result provides a basis based on additional 

function for the space of order k piecewise multivariate polynomial functions that guides an easy way to construct multi-

variate regression splines. The following two theorems are based on the work of Chen [19]. 

 

Theorem 2.1. The following set is a basis for the space of order k piecewise multivariate polynomial functions, 
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where nonnegative integers cl , . . . ,cp satisfy that 0 ∑      
 
    and domain of ti is 1,….,ai for i=1,….,p,s,s1 and s2,etc. 

 

We can easily check that the number of basic functions above is exactly the necessary integer   


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Theorem 2.1 emphasizes that any linear combination of the functions in the basis of (34) provides some kind of 

multivariate regression spline. However, the interesting regression spline might be the one with continuity degree j  {0, 

l, k - l}. We now state it in the following theorem. 

 

Theorem 2.2. Let b=min {b
*
, p}, where b

*
=max {bO: bo (j+l)   k, b0 is integer}. 

The set of the following functions is a basis of the space of order k multivariate regression splines with continuity-degree 

j 
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where  cs ,csi  are restricted on the set {j + 1, j + 2,. . . , k} and cl,. . . ,cp satisfy∑     
 
   .also ,domain of ti is 1,….ai. 

 

In the particular case where j = k - 1, the smoothest multivariate regression spline might be of great interest. 

 

The smoothest multivariate regression spline can be formulated as 
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The Simulation Study 

The simulation study is conducted in order to evaluate and compare the estimated regression curves resulting 

from utilizing two different classes of the nonparametric regression curve estimation procedures, namely: the Local 

polynomial kernel estimators and the Splines estimators. Such a study is necessarily to be restrictive, because there are 

many possibilities for the number of explanatory variables d, the choices of regression function )(xf , sample size (n), 

and the choice of . In this study, we conducted two main simulation studies depending upon d=2, and d=3. 
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Description of the Experiment in the case of d = 2 

We have conducted another 18 simulation studies, using the same three different example regression functions 

as shown in Table 1. We utilized three selected methods of estimation (Nadaraya-Watson estimator (NW), Local Linear 

Kernel estimator (LLK) and Cubic Smoothing Spline estimator (CSS), three different sample sizes n, and two different 

values of  's. Each simulation study involves L=500 repetitions. The shape of the used three example regression 

functions graphed in Figure 1. It is worth noting that f 5(x1,x2)  and f 6(x1,x2)  are unimodal shaped, whereas f 7(x1,x2)  is 

bimodal shaped. We have also chosen three sample sizes of n=50, n=100 and n=300, two levels of  's, and the x 's are 

being generated using the uniform distribution on the interval  ba, . 

 

Table-1:  The Example Regression Functions used in the 1
st
 simulation study 
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Numerical Summary for the 1
st
 simulation study 

Having conducted the simulation runs using the L = 500 simulated data sets, we obtained the results that are 

tabulated in Tables (2), (3), and (4). Once more, these tables display the numerical summary of results obtained using 

three curve estimation procedures (Nadaraya-Watson estimator (NW), Local Linear Kernel estimator (LLK) and Cubic 

Smoothing Spline estimator (CSS)). Moreover, two different values of  's, with three different sample sizes of n=50, 

n=100, and n=300. Once more, the numerical summary includes three statistical properties, namely the Average Square 

Bias (ASB), the Average Variance (AVAR) and the Average Mean Square Errors (AMSE), as well as the mean of the 

coefficient of determination  
2R  with its standard deviation. 

 

The formulae that have been used to calculate ASB, AVAR, and AMSE are as following: 
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The main program (in Rgui code) used to calculate these are available upon request from auth 
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Fig-1:  Represents the true surfaces used in the 1st simulation study 
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Table-2: The numerical summary of results obtained using three different estimation methods, (NW), (LLK) and 

(CSS) estimators from the 1
st
 simulation study using f 5(x1,x2). 

 NW estimator LLK estimator CSS estimator 

1.0  05.0  1.0  05.0  1.0  05.0  

ASB 50n  0.0034327 0.0019683 0.0042990 0.0011476 0.0035546 0.0026029 

100n  0.0013505 0.0013356 0.0009715 0.0008091 0.0012545 0.0007123 

300n  0.0008206 0.0004848 0.0005508 0.0002484 0.0006540 0.0002599 

AVAR 50n  0.0016682 0.0007038 0.0028042 0.0017106 0.0018184 0.0006922 

100n  0.0013483 0.0004790 0.0027283 0.0010386 0.0014717 0.0006079 

300n  0.0006398 0.0002559 0.0009874 0.0004314 0.0007157 0.0003354 

AMSE 50n  0.0051009 0.0026721 0.0071033 0.0028582 0.0053730 0.0032951 

100n  0.0026989 0.0018147 0.0036999 0.0018478 0.0027262 0.0013202 

300n  0.0014602 0.0007408 0.0015382 0.0006798 0.0013697 0.0005953 

Mean(
2R ) 

(Sd) 

50n  0.9060908 

(0.03132) 

0.9538316 

(0.0095932) 

0.8735855 

(0.05027) 

0.9478062 

(0.01857) 

0.9036228 

(0.03915) 

0.945385 

(0.01310) 

100n  0.9599429 

(0.01226) 

0.9660516 

(0.0066339) 

0.9446779 

(0.01859) 

0.9644602 

(0.01031) 

0.9596759 

(0.01189) 

0.9766236 

(0.00869) 

300n  0.9748263 

(0.0057079) 

0.9861806 

(0.0024882) 

0.9728196 

(0.00660) 

0.9869721 

(0.00314) 

0.976949 

(0.00783) 

0.9891441 

(0.00428) 

 

Table-3: The numerical summary of results obtained using three different estimation methods, (NW), (LLK) and 

(CSS) estimators from the 1
st
 simulation study using f 6(x1,x2). 

 NW estimator LL estimator CSS estimator 

1.0  05.0  1.0  05.0  1.0  05.0  

ASB 50n  0.0011293 0.0006789 0.0010544 0.0008776 0.0015724 0.0010294 

100n  0.0007791 0.0005187 0.0006924 0.0003783 0.0010779 0.0006509 

300n  0.0004112 0.0001357 0.0003126 0.0001124 0.0004593 0.0001136 

AVAR 50n  0.0011627 0.0004510 0.0023501 0.0006464 0.0010049 0.0004392 

100n  0.0008580 0.0003368 0.0010442 0.0005173 0.0006329 0.0003250 

300n  0.0004041 0.0001502 0.0006082 0.0002077 0.0003707 0.0001478 

AMSE 50n  0.0022919 0.0011299 0.0034047 0.0015239 0.0025773 0.0014687 

100n  0.0016372 0.0008553 0.0017367 0.0008957 0.0017109 0.0009760 

300n  0.0008154 0.0002859 0.0009208 0.0003202 0.0008300 0.0002613 

Mean(
2R ) 

(Sd) 

50n  0.8672289 

(0.06552) 

0.8964127 

(0.03720) 

0.830818 

(0.07776) 

0.8638513 

(0.04469) 

0.8565963 

(0.05303) 

0.8710634 

(0.04541) 

100n  0.8999951 

(0.04289) 

0.9264813 

(0.02710) 

0.8975129 

(0.03892) 

0.9183678 

(0.02671) 

0.8973814 

(0.03817) 

0.914787 

(0.03141) 

300n  0.9571538 

(0.01252) 

0.9747182 

(0.00631) 

0.9511708 

(0.01483) 

0.9708111 

(0.00821) 

0.9566303 

(0.01470) 

0.9773587 

(0.00709) 
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Table-4: The numerical summary of results obtained using three different estimation methods, (NW), (LLK) and 

(CSS) estimators from the 1
st
 simulation study using f 7(x1,x2). 

 NW estimator LL estimator CSS estimator 

1.0  05.0  1.0  05.0  1.0  05.0  

ASB 50n  0.004624761 0.00250646 0.0052698 0.00231440 0.00580817 0.00202148 

100n  0.002333852 0.00130354 0.0020010 0.00099558 0.00246119 0.00098441 

300n  0.000845883 0.00059507 0.0006078 0.00027176 0.00068653 0.00026869 

AVAR 50n  0.0018892 0.0006123 0.0026263 0.0024727 0.0020046 0.0007910 

100n  0.0013124 0.0004498 0.0018887 0.0006766 0.0015039 0.0006679 

300n  0.0007670 0.0002914 0.0012911 0.0004659 0.0009010 0.0004093 

AMSE 50n  0.006514022 0.00311879 0.0078960 0.00478705 0.00781273 0.00281258 

100n  0.003646274 0.00175327 0.0038898 0.00167236 0.00396516 0.00165239 

300n  0.001612944 0.00088649 0.0018989 0.00073758 0.00158756 0.00067799 

Mean(
2R ) 

(Sd) 

50n  0.8742632 

(0.03807) 

0.9201824 

(0.0192951) 

0.868596 

(0.03688) 

0.8864845 

(0.075616) 

0.858796 

(0.041657) 

0.9336696 

(0.0208229) 

100n  0.9342583 

(0.01714565) 

0.964989 

(0.0056040) 

0.9275807 

(0.01952) 

0.9661041 

(0.007302) 

0.9290936 

(0.021679) 

0.9665886 

(0.0108449) 

300n  0.968159 

(0.00762577) 

0.9825549 

(0.0028068) 

0.962918 

(0.00996) 

0.9853254 

(0.002699) 

0.9694617 

(0.009333) 

0.9869623 

(0.0044529) 

 

The Discussion of the 1
st
Simulation Study 

The numerical results of the first experiment have three common points: 

 All the estimated values of the statistical aspects such as ASB, AVAR, AMSE, and R
2
 increase as a choice of σ 

increments from 0.05 to 0.1 regardless of the estimator employed, the NW, LLK, or CSS estimators. 

 By increasing the sample size from 50, 100 to 300, all estimates ASB, AVAR, AMSE, R
2
 are steadily decrease 

regardless of the type of estimation method. 

 The CSS estimator has provided smaller estimated values than the other estimated values obtained through utilizing 

the NW, and LLK estimators regardless of the choice of the value σ or sample size n. 

 

Therefore, the CSS estimator is superior because of the following main reasons: 

 Estimated NW and LLK estimators take into account the two explanatory variables in the local parts. So we gain 

further reduction in the term bias only. 

 Whereas, in the CSS estimator, we consider the two explanatory variables linear in some parts of the regression 

curve and non-linear in other parts of the curve. Thus, we get further reduction in the variance term from the linear 

part and get further reduction in the bias term from the nonlinear part. 

 The Smoothing spline method gives the best results in all example regression functions used when the number of 

explanatory variable p = 2.  

 

Description of the Experiment in the case of d = 3 

Once More, we have conducted another 18 simulation studies, using modified versions from the three different 

example regression functions used earlier as shown in Table 5. We utilized three selected methods of estimation 

(Nadaraya-Watson estimator (NW), Local Linear Kernel estimator (LLK) and Cubic Smoothing Spline estimator (CSS), 

three different sample sizes n, and two different values of  's. Each simulation study involves L=500 repetitions. We 

have also chosen three sample sizes of n=50, n=100 and n=300, two levels of  's, and the x 's are being generated using 

the uniform distribution on the interval  ba, . 
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Table-5:  The Example Regression Functions used in the 2
nd

 simulation study 

Ex )3,2,1( xxxf i
 Sigma Interval 
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6 ) f 10(x1,x2,,x3) =  
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Numerical Summary for the 2
nd

 simulation study 

Again, having conducted the simulation runs using the L = 500 simulated data sets, we obtained the results that 

are tabulated in Tables (5), (6), and (7). Once more, these tables display the numerical summary of results obtained using 

three curve estimation procedures (Nadaraya-Watson estimator (NW), Local Linear Kernel estimator (LLK) and Cubic 

Smoothing Spline estimator (CSS)). Moreover, two different values of  's, with three different sample sizes of n=50, 

n=100, and n=300. Once more, the numerical summary includes three statistical properties, namely the Average Square 

Bias (ASB), the Average Variance (AVAR) and the Average Mean Square Errors (AMSE), as well as the mean of the 

coefficient of determination  
2R  with its standard deviation. 

 

Table-6: The numerical summary of results obtained using three different estimation methods, (NW), (LLK) and 

(CSS) estimators from the 2
nd

 simulation study using f 8(x1,x2,,x3). 

 NW estimator LLK estimator CSS estimator 

1.0  2.0  1.0  2.0  1.0  2.0  

ASB 50n  0.0016288 0.0026226 0.0017298 0.0023301 0.0020659 0.0028168 

100n  0.0008892 0.0016231 0.0014483 0.0020050 0.0017363 0.0025630 

300n  0.0006213 0.0009789 0.0009026 0.0014199 0.0010229 0.0019271 

AVAR 50n  0.0012809 0.0034548 0.0011598 0.0040723 0.0008489 0.0032392 

100n  0.0007977 0.0027076 0.0007781 0.0026064 0.0005127 0.0017163 

300n  0.0004771 0.0013664 0.0006675 0.0014769 0.0003966 0.0007769 

AMSE 50n  0.0029099 0.0060772 0.0028896 0.0064024 0.0029148 0.0060560 

100n  0.0016869 0.0043308 0.0022264 0.0046115 0.0022490 0.0042793 

300n  0.0010986 0.0023452 0.0015702 0.0028969 0.0014194 0.0027040 

Mean(
2R ) 

(Sd) 

50n  0.6886992 

(0.12609) 

0.8229871 

(0.10011) 

0.6954374 

(0.11239) 

0.8160735 

(0.09977) 

0.7177756 

(0.08575) 

0.8401811 

(0.07108) 

100n  0.8172462 

(0.06652) 

0.8780366 

(0.05873) 

0.7821664 

(0.05268) 

0.8743705 

(0.05454) 

0.7920935 

(0.04267) 

0.8908206 

(0.03472) 

300n  0.8815194 

(0.02359) 

0.937047 

(0.02166) 

0.8431666 

(0.03188) 

0.9248905 

(0.02068) 

0.8618307 

(0.02616) 

0.9326753 

(0.01406) 
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Table-7: The numerical summary of results obtained using three different estimation methods, (NW), (LLK) and 

(CSS) estimators from the 2
nd

 simulation study using f 9(x1,x2,,x3). 

 NW estimator LLK estimator CSS estimator 

1.0  2.0  1.0  2.0  1.0  2.0  

ASB 50n  0.0010729 0.0013059 0.0012817 0.0010347 0.0014929 0.0011749 

100n  0.0006250 0.0014087 0.0007746 0.0015939 0.0010692 0.0018170 

300n  0.0003194 0.0006786 0.0004401 0.0009867 0.0007719 0.0012963 

AVAR 50n  0.0011757 0.0025414 0.0010891 0.0038460 0.0008100 0.0030809 

100n  0.0007904 0.0022236 0.0008324 0.0024173 0.0004594 0.0017459 

300n  0.0003690 0.0013154 0.0005458 0.0012443 0.0003142 0.0006534 

AMSE 50n  0.0022487 0.0038473 0.0023709 0.0048808 0.0023029 0.0042557 

100n  0.0014154 0.0036321 0.0016070 0.0040111 0.0015288 0.0035630 

300n  0.0006886 0.0019940 0.0009859 0.0022309 0.0010861 0.0019498 

Mean(
2R ) 

(Sd) 

50n  0.7441337 

(0.12758) 

0.8798543 

(0.09894) 

0.1275828 

(0.10389) 

0.8456454 

(0.15237) 

0.7713977 

(0.07714) 

0.8803781 

(0.06739) 

100n  0.8444937 

(0.06781) 

0.8999332 

(0.04664) 

0.8280891 

(0.06242) 

0.8909915 

(0.05733) 

0.8500793 

(0.03701) 

0.9084415 

(0.03237) 

300n  0.9258467 

(0.02464) 

0.947289 

(0.02096) 

0.8995048 

(0.03879) 

0.9425813 

(0.01753) 

0.8926859 

(0.02176) 

0.9514676 

(0.01069) 

 

Table-8: The numerical summary of results obtained using three different estimation methods, (NW), (LLK) and 

(CSS) estimators from the 2
nd

 simulation study using f 10(x1,x2,,x3). 

 NW estimator LLK estimator CSS estimator 

1.0  2.0  1.0  2.0  1.0  2.0  

ASB 50n  0.0016107 0.0031957 0.0016824 0.0028936 0.0026317 0.0034519 

100n  0.0013037 0.0026870 0.0019808 0.0025529 0.0023889 0.0034500 

300n  0.0006937 0.0012802 0.0010369 0.0018310 0.0013529 0.0022224 

AVAR 50n  0.0011958 0.0030312 0.0014141 0.0042713 0.0009592 0.0033399 

100n  0.0012189 0.0026250 0.0013339 0.0029247 0.0008111 0.0018826 

300n  0.0006589 0.0016277 0.0009829 0.0016224 0.0004807 0.0009021 

AMSE 50n  0.0028064 0.0062269 0.0030967 0.0071649 0.0035909 0.0067918 

100n  0.0025226 0.0053120 0.0033146 0.0054777 0.0031999 0.0053327 

300n  0.0013527 0.0029079 0.0020199 0.0034536 0.0018336 0.0031247 

Mean(
2R ) 

(Sd) 

50n  0.7050192 

(0.13687) 

0.8205342 

(0.10319) 

0.6686886 

(0.13549) 

0.7906079 

(0.13237) 

0.668856 

(0.10529) 

0.8208825 

(0.07154) 

100n  0.7268483 

(0.08416) 

0.8550383 

(0.05535) 

0.6770546 

(0.07729) 

0.852648 

(0.05191) 

0.7041907 

(0.06738) 

0.8660438 

(0.03602) 

300n  0.8473764 

(0.03079) 

0.9223196 

(0.02673) 

0.7979329 

(0.04349) 

0.9116854 

(0.02190) 

0.825884 

(0.02763) 

0.9228253 

(0.01767) 

 

The Discussion of the 2
nd

 Simulation Study 

The numerical results of the second experiment have three common points: 

 The statistical aspects ASB, AVAR, AMSE, and R
2
 estimated values increase as the choice of σ increments from 

0.05 to 0.1 regardless of the estimation method used NW, LLK, or CSS estimators. 

 The statistical aspects ASB, AVAR, AMSE, and R
2
 estimated values decrease as the choice  of sample size n 

increases from 50, 100 to 300, regardless of the estimation method used NW, LLK, or CSS estimators. 

 The NW estimator has provided smaller estimated values than the other estimated values obtained through utilizing 

the CSS, and LLK estimators regardless of the choice of the value σ or sample size n. 

 

However, we have got a further reduction in AMSE values when using the estimated NW for the following 

main reasons: 

 When the number of explanatory variables increases, it becomes difficult to obtain a good estimate due to the 

increased curvature of the basic curve. Therefore, the estimated NW estimates behave well because it is based on the 

local zero estimate (constant). 
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 By increasing the number of explanatory variables to p = 3, the kernel based estimators gave the much better results. 

 Increasing the sample size leads to more accurate estimates indicating that CSS, LLK, and NW provide properties 

with decent appreciation. 

 

Applications on Real Data 

Cross country Goods Domestic Products (GDP) growth panel covering the period 1960-1995 used by Liu and 

Stengos [8] and Maasoumi, Racine, and Stengos [21]. There are 616 observations in total, and it can be found in Rgui in 

np package under the name (oecdpanel data). The data frame with 616 observations on 4 variables. 

 

The Response variable 

 

Growth:  rate of real GDP per capita for each 5-year period 

 

The Explanatory variables 

Initgdp: per capita real GDP at the beginning of each 5-year period 

Popgro: average annual population growth rate for each 5-year period 

Humancap: average secondary school enrolment rate for each 5-year period. 

 

Firstly, from the descriptive statistics for the four selected variables used in the CCGP data, we notice that there 

are big differences in the standard deviations values among the variables. For example, the standard deviation value of 

the Growth is 0.03035 whereas the standard deviation value of the Initgdp is 1.013756. The same remarks can be seen for 

the characteristics of the two variables.   

 

Secondly, we check the normality of the individual variables by plotting the Q-Q plots of the four variables that 

are formed the CCGP data.  

 

Having examined the Q-Q plots of the four variables that are formed the CCGP data, we notice the following 

remarks: First, the variable Growth behaves to some extent close to normal. Second, the variables Intigdp, popgro, and 

humancap seem to have a severe deviation from normal. Overall, we can conclude that the CCGP data is not normally 

distributed data since the variables are clearly not following the normal behavior. This means the set of data a mixture 

data.    

 

Thirdly, we utilize the three different estimators to handle the regression curve estimation (LLK, LQK, and 

CSS) for the CCGP data. Having obtained the four resulted estimation curves, we have obtained the results that have 

been tabulated in following table: 

 

 NW LLK CSS 

MSE 0.0006358 0.0006844 0.000842

2 

 

From the table we notice that the NW estimator work well than other two estimators in the light of the results 

obtained. We can see that it gives the smallest values of the MSE. It can also be noticed that the LLK estimator is 2
nd

 

best estimator. Also, we noticed that the CSS estimator failed to give a good result because the data was not normally 

behaved. This confirms the results obtained in section 3, which means that when the data is distributed as mixture then 

the Kernel based estimator’s works much better than corresponding counterparts of the cubic smoothing Splines 

estimator.  There are two reasons for superiority of the Kernel based smoothers. One is that the NW and LKK estimators 

have provide well balance trading between the bias and variance in the dense and sparse regions of the data comparing 

with the CSS estimator. The second is that the Local Polynomial Kernel estimators generally do not have boundary effect 

problem whereas the CSS estimator does. 
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