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Abstract  Original Research Article 
 

In this paper we discuss a kind of symmetric configuration for planar concave 5-body problem with four of the five 

bodies on the vertex of an isosceles trapezoid and the other on the axis of symmetry inside the isosceles trapezoid. 

Then we give a special case to prove that there exist a set of positive masses to make this configuration a central 

configuration when the inner body not coincident with the center of mass. 
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INTRODUCTION 
From 1687 when Isaac Newton first proposed 

the 3-body problem in his great work Philosophiæ 

Naturalis Principia Mathematica [1], lots of excellent 

mathematicians in the history have been attracted to this 

direction. After the groundbreaking work of Henri 

Poincaré in the end of the 19th century and the 

beginning of the 20th century, the study of n-body 

problem has entered a new era, and many important 

results have been achieved though it’s far from being 

done. Central configuration is of great significance in 

the study of this problem, and one of its core problem in 

this direction is that given any set of positive masses 

whether or not the classes of central configuration is 

finite. Naturally we can consider the inverse problem: 

given a configuration, under what conditions is it 

possible to choose positive masses that make it a central 

configuration. More details about N-body problem can 

be got in [2,3,4,5,6,7,8,9,10,11,12,13]. 

 

For N-body problems, According to the 

Newton’s law of motion and the law of gravitation, the 

i-th particle under the attaction of the other N-1 

particles satisfies the 2rd differential equation. 

 

 
3

, 1

( )
( ) , 1, ,

| |

N
j k j k

k k k

j k j j k k

Gm m q q U
m q t F k N

q q q 

 
    

 
   (0.1) 

  

in which G is the gravitation constant, and 
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is the Newtonian potential. 
 

The configuration set of this system collected by N particles is 1 2{ ( , , , ) | , 1,2, , }dN d

N kq q q q q k N     

, while the collision set is { | , }dN

j kq q q j k     . Then we call the set \dN   a configuration space of the system. 

To simplify calculation we can choose appropriate dimension to make 1G  . 

 

Definition 1.1. [14,15,16]If there exists   to make the configuration \dNq  satifying  
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then we call q  a central configuration.  

The constant   is uniquely determined by 
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Specially, if we put the center of mass 
cq  at the origin, the corresponding configuration space is \X  , where 

1 2{ ( , , , ) | 0}dN

N cX q q q q q     . 

 

In this paper, we study a special case of planar symmetric concave central configuration for 5-body problem 

with four of the five bodies on the vertex of an isosceles trapezoid and the other on the axis of symmetry inside the 

isosceles trapezoid. 

 

 
Fig-1: Isosceles trapezoid configuration 

 

Now we establish the cartesian coordinate as shown in Figure 1, and the position of the five particles are  

1 2 3 4 5( 1,0), (0, ), (1,0), ( , ), ( , )q q b q q t s q t s        Respectively as while as the center of mass ( , )c x yq c c . By 

Definition 1.1, we write  

down the equations below. 
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Let ,ij i jr q q i j   , and with the symmetry of isosceles trapezoid we have 12 23 24 25 14 35 15 34, , ,r r r r r r r r    . 

Simplify the equations above we can get 
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Divide (0.6) equation reference goes here into two parts we get 
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In (0.8), subtracting the first formula from the third formula and the fourth from the fifth we have 

4 5 3 3

14 15

0 ( )
s s

m m
r r

 
   

 
 and 

1 3 3 3

15 14

0 ( )
s s

m m
r r

 
   

 
. 

For 
2 2 2 2

14 15( 1) ( 1) ,0 1r t s t s r t         , we have 

 1 3 4 5, .m m m m    (0.9) 

Substituting (0.9) into the second formula in (0.7) we have 

 0.xc   (0.10) 

Then from (0.9) and (0.10) we can simplify (0.7) and (0.8) as below 
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RESULTS AND DISCUSSION 
Theorem 2.1. If 

2q  is not coincident with the center of mass
cq , i.e.

2 cq q , and if 0.5t  , then there exists regions G  

and K  (Figure 1) in the b s  plane to make the configuration a central configuration. 

 

Firstly by carefully calculating and simplifying we can get the fomulas below from (0.11) 
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where 
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and the equation of , ,t b s  
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With (0.16) we can get some new notifications as below 
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As while as 
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Then we define 
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And from simple factorization we easily know that
2 2 2 2 2 2 2 2
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2c and

2 2 2( ) 1t s b b    share the same sign respectively. 

Then we get seven new functions
1 2 3 1 1 2 3, , , , , ,a a a Q c c c with variables b and s . 

 

Secondly we analysis the necessary and sufficient condition which makes
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Thirdly, let    0.5, 0,2.5 , 0,4t b s   , and by using computer we can get the regions that make all  0( 1,2,4)im i   

positive (see Figure 2). 
 

 
Fig-2: The final regions in plane b s  

 

Finally, we list a table to illustrate the shape of central configuration in region G and region K . 
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Table-1: Cases of Central configruations in ,G K  

 

Keep the four decimal places. 

 

 
Fig-3: Central configruations in G  

 

 
 Fig-4: Central configruations in K  
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