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Abstract \ Original Research Article

In this paper we discuss a kind of symmetric configuration for planar concave 5-body problem with four of the five
bodies on the vertex of an isosceles trapezoid and the other on the axis of symmetry inside the isosceles trapezoid.
Then we give a special case to prove that there exist a set of positive masses to make this configuration a central
configuration when the inner body not coincident with the center of mass.
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INTRODUCTION this direction is that given any set of posi'give masses

whether or not the classes of central configuration is
finite. Naturally we can consider the inverse problem:
given a configuration, under what conditions is it

From 1687 when Isaac Newton first proposed
the 3-body problem in his great work Philosophis

Nattrj]ralis _P_rinci_piahMﬁthema;ica [bl]' lots of eé(ce"ﬁm possible to choose positive masses that make it a central
”!at e_mat|0|ans In the history ave been attracted to t 1S configuration. More details about N-body problem can
direction. After the groundbreaking work of Henri .
. . be gotin [2,3,4,5,6,7,8,9,10,11,12,13].

Poincaré in the end of the 19th century and the
beginning of the 20th century, the study of n-body
problem has entered a new era, and many important
results have been achieved though it’s far from being
done. Central configuration is of great significance in
the study of this problem, and one of its core problem in

For N-body problems, According to the
Newton’s law of motion and the law of gravitation, the
i-th particle under the attaction of the other N-1
particles satisfies the 2rd differential equation.

" Y, Gm;m,(q; —¢q) ouU
mg, (t)=F = — T A= k=1...,N (0.1)
o ‘ ivt;izl |qj -0 |3 GQk
in which G is the gravitation constant, and
Gm:m
u= > — = 0.2)

1<k<j<N |q] — O |
is the Newtonian potential.

The configuration set of this system collected by N particles is0] ™ ={q =(q,,d,,...,dy) g €0 *,k=12,...,N}
, While the collision setis A={qe0™ |a; =q,. j #k}. Then we call the set [ ™ \ A a configuration space of the system.
To simplify calculation we can choose appropriate dimension to make G =1.

Definition 1.1. [14,15,16]If there exists 2 . * to make the configuration q €[] ™ \ A satifying

~m,(q, -a) =52, 03)
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or
L Gm;m, (9; —a,)
—Am, (g —0,) = Y — Ll (0.4)
j=k,j=1 |qj |
then we call g a central configuration.
N
U (q) zmqu

The constant A is uniquely determined by A = . The center of mass is, ¢, =< , and the moment of inertia is

(g Sm,
k=1
< 2
I(q)zzmquk_qcl :
k=1
Specially, if we put the center of mass g, at the origin, the corresponding configuration space is X \A, where
X ={9=(,0,...,ay) €™ g, =0}.

In this paper, we study a special case of planar symmetric concave central configuration for 5-body problem

with four of the five bodies on the vertex of an isosceles trapezoid and the other on the axis of symmetry inside the
isosceles trapezoid.

qs=(-1,5) q4=(,5)

.
4:=(0,b)

4i=(-1,0) 0 45=(1,0)

Fig-1: Isosceles trapezoid configuration

Now we establish the cartesian coordinate as shown in Figure 1, and the position of the five particles are

=(-10),q,=(0,b),q, =(10),q, =(t,5),0; = (-t,5) Respectively as while as the center of mass ¢, =(c,,c,). By
Definition 1.1, we write
down the equations below.
qz - Q1 q3 — q1 q4 _ql q5 B ql
-A(0,—9,)=m +m +m +m
' Zlqz_q1|3 3|qs_(h|3 4|q4_q1|3 5|qs_ql|3
g,—q qa_qz Q4_q2 Q5_q2
A0, g, =m, 2 m
’ o-af o Cle-af Yl -af Clag-a, P
0. —0; 0, — Y g, —0 0s —0;
-AM0;—q,) = +m (0.5)
: LA e 1 L L A A I [ N
ql_q4 qz _q4 q3_q4 qs_qA
-A(g,—q)=m +m
! 1| 1—q4|3 2|C]2_ |3 3|C13_ |3 5|qs_q4|3
ql_qs qz_qs qs_qs q4_q5
-A(0;—0,)=m +m +m +m
° 1|c]1_qs|3 2|qz_q5|3 3|qa_qs|3 4|c14_q5|3

Let r; = |qi —qj|,i # j, and with the symmetry of isosceles trapezoid we have I, =, 1, =, L, =l [ =1, .
Simplify the equations above we can get
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ﬂ(cx +1,cy) — m2 (1;:)) + m3 (2,30) + m4 (t +:];y S) + m5 (1_:::1 S)
12 r:-l3 r14 r:I.5
l(cx ’ Cy _ b) — m1 (_173_b) + m3 (1, ;b) + m4 (ty S;b) + m5 (_ty 53_ b)
12 r'12 r'24 r24
A(c,=Lc)=m (_23' 9 +m, (_13’ ) +m, L _1-’ ) +mg -t _31, R
13 h fis fia

ﬂ(cx—t,cy—s):m1 , 3 5 3 s

14 r24 r15

(—t—}—s)+m (-tb-s)  (A-t-s) _ (-20)

A(c, +t,c,—s)=m,

2 3 3 3 4 3
15 4 I Is
Divide (0.6) equation reference goes here into two parts we get
1 2 t+1 -t+1
/I(CX +1) = mz —3+m3—3+ m4—3+ m5—3
12 13 14 r15
-1 1 t —t
/ICX =m1—3+m3—3+m4—3+m5—3
12 12 24 24
-2 -1 t-1 -t-1
ﬂ(CX —1) = m1—3+m2 —3+m4—3 m5—3
13 12 15 r].4
-t-1 —t —t+1 -2t
AC, —) =M ——+Mm, 5+ My ——+ M, ——
14 24 15 r45
t-1 t t+1 2t
/’L(CX +t) :m1—3+m2—3+m3—3+m4—3
15 24 14 Is
P S S
C, =M, —+M, —+M;—
12 14 rl5
-b -b s—b s—b
}L(Cy —b) = m1—3+m3—3+m4—3+m5—3
12 r12 r24 r'24
Jo - b s s
Cy —m2—3+m4—3+m5—3
12 15 14
) b-s )
/1(0y =8)=m —+m, ——+m; —
14 24 r15
-S b-s -S
A(C, =8) =M, —+M, ——+M; —
15 24 14

In (0.8), subtracting the first formula from the third formula and the fourth from the fifth we have

O=(m4—m5)[ri3—risj and O:(ml—ms)[%_%]_

14 15 15 l;I.4

For 1, =\/(t+1)2 +¢° ;at\;’(t—l)2 +s? =1,,0<t<1, we have
m =m,,m, =m;.
Substituting (0.9) into the second formula in (0.7) we have
c, =0.
Then from (0.9) and (0.10) we can simplify (0.7) and (0.8) as below

(t—1;—s)+m (tb=s) (t+1-5)  (2t0)

(0.6)

(0.7)

(0.8)

(0.9)

(0.10)
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A=

Ac,
A(c

A(c

At=m, (#+
s

1
23
12

(t+1
+m,| —

r3
t+1

3
ha

(

-2

3

12
_3+

s
y—s)zml(r

-t+1

3
s

2
1—3+m
13

m

)

14
+m, L3+ m, 2—:
Py lis
s
3
2(s—h)
r.3

24

S
3
la

:m2r£3+m4 (0.11)

12

-b)=m, +m,

y

+m b-s
2 3
Y

S

3
Esj

14

RESULTS AND DISCUSSION
Theorem 2.1. If g, is not coincident with the center of massq_ , i.e. g, #q. , and ift =0.5, then there exists regions G

and K (Figure l) inthe b—s plane

Firstly by carefully calculating and si

to make the configuration a central configuration.

mplifying we can get the fomulas below from (0.11)

(1 1}(2(s—b) b(t+1)—s b(—t+1)—sj
33 3 + 3 + 3
r, r, I, r,
ml :l(s—b) 12 24 24 14 15 , (012)
—2(s—-b) 2b s s [2(s—-b) b(t+l)-s b(-t+1)-s
3 T 3T 33 33 T 3.3 + 3,3
P e Ty Bs M3l M2ha M2hs
m,=A4- Q , (0.13)
2(s—b) b(t+1)-s b(-t+1)-s)f -2(s-b) 2b s s
53 T 3,3 + 3,3 3 T3 T 3T s
r:-L3 r24 r.:LZ ri-l4 ri-lZ r:I.5 r24 ri-lZ r14 r51.5
1 131 1
i G )
m4 — . 24 12 13 12 , (O 14)
—2(s—b) 2b s s )[2(s—b) b(t+1l)-s b(-t+1)-s
3 T 3T 3T 3 R 3,3 + 3,3
P o Ty Bs UELPN UT1 f2hs
where
_ 25(35—3b) N 25(35—3b) N —45253— b) N —%bft 23[)53t
VLo M50 TP Mohy  Tols (0.15)
2s(s—b) 2s(s—b) s(b(t+1)—s) -2s(s—b) s(b(-t+1)-5s) '
+ 3.3 + 3,3 + 6 + 3,3 + 6 !
UL M35 M4 Mahs s
and the equation of t,b,s
2bt(b(t+1)—s) 2bt(b(—t+1)—s) 4bt(s—b) 4bt(s—b) (b(t-1)+s)’
3,3 + 3,3 + 3,3 + 3,3 + 6
r-12 r14 r12 rlS r12 r.45 r13 r-24 r15 (0 16)
_4bt(s—b) (b(t+1)—s)® 2(s—b)(b(t+1)—s) 2(s—b)(b(t—1)+s) '
- 3.3 + 6 + 3.3 + 3.3
r-13 r45 r14 r;L4 r24 r15 r24
With (0.16) we can get some new notifications as below
(2Asb) D s s
U IR VI
2(s—=b) b(t+1)—-s b(t-1)+s
azz( (33)+ ( 32 - ( 3)3 ]’ (0.17)
r.:l.3 r24 r;I.2 r14 ri.2 r;I.S
2(s=b) b(t+1)-s b(t-1)+s
a; = P + e - e
24 14 15

As while as
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Q=—28a2+sa3(%+%J+25(5—b)[%—%}[%+%}
ha  Gs h, )\l s

s(s—b 1 1 1 1 1 1 2
= QKT—T]% +2bt(_3__3](_3+_3+_3j:|
bt r:|.4 r;|.5 r;l.Z r;l.3 rl4 r;|.5 r45

_S(s—h)
Dbt 2
Where
1 1 1 1 1 1 2
Ql=[—3——3]as+2bt[—3——3J(—3+—3+—3]- (0.18)
rl4 r15 r-12 r13 r14 r15 r-45
Then we define
¢, =/3-b
¢, =t’ +(s—b)*-b’-1 (0.19)
c,=5-Db

And from simple factorization we easily know that £ —r2 =3—b?,r2 —r3 =t* + (s—h)* —b*—1, so c,and/3—b , ¢, and
t* + (s —b)? —b® —1share the same sign respectively.
Then we get seven new functions a,, a,,a,,Q,,C;,C,,C, with variablesb andss .

Secondly we analysis the necessary and sufficient condition which makes m;, m,,m, all positive
1) aa,>0:

Q>0 Q>0
a,>0 a,<0

(1-1) , or  (1-2) ; (0.20)
c,>0 c, <0
c,>0 c,<0

2) aa,<0:

Q. <0 Q. <0
a, <0 a,>0

(2-1) ,or (2-2) ; (0.21)
c, <0 c,>0
c,>0 c,<0

Thirdly, lett=0.5,b(0,25),s (0,4), and by using computer we can get the regions that make all m, >0(i =1,2,4)
positive (see Figure 2).

Fig-2: The final regions in plane b—s

Finally, we list a table to illustrate the shape of central configuration in region G and region K .
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Table-1: Cases of Central configruations in G, K

m, =m, m,

t=0.5 m, =m; c, Figure

(0315)cG

1.1559 4

18.6558 1

0.8156 1

0.5816

Fig 3

(1.6,2) eK

3.7249 4

0.0554 1

0.0969 4

0.1208

Fig 4

Keep the four decimal places.

qs y 44

q o l‘13

Fig-3: Central configruations in G

qs AV g4

-1 ol 1

Fig-4: Central configruations in K
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