Scholars Journal of Applied Medical Sciences

Abbreviated Key Title: Sch J App Med Sci ISSN 2347-954X (Print) | ISSN 2320-6691 (Online) Journal homepage: https://saspublishers.com **3** OPEN ACCESS

Radiology

Sonographic Evaluation of Intra-Abdominal Fat Thickness and Its Relationship with Metabolic Syndrome and Chronic Kidney Disease

Zinat Nasrin^{1*}, Abul Khair Ahmedullah², Md. Jalal Uddin³, Md. Towhidur Rahman⁴, Mahmuda Monowara⁵

DOI: https://doi.org/10.36347/sjams.2025.v13i11.001 | **Received:** 02.09.2025 | **Accepted:** 21.10.2025 | **Published:** 01.11.2025

*Corresponding author: Zinat Nasrin

Associate Professor, Department of Radiology & Imaging National Institute of Burn and Plastic Surgery, Dhaka, Bangladesh

Abstract

Original Research Article

Background: Metabolic syndrome (MetS) and chronic kidney disease (CKD) are major public health concerns globally, with visceral adiposity playing a pivotal role. Sonographic measurement of intra-abdominal fat thickness (IAFT) provides a non-invasive method to assess central obesity, but its relationship with MetS and CKD is not well-studied in South Asian populations. *Objectives:* To investigate the association of sonographically measured IAFT with MetS and CKD among adults in Bangladesh. Methods: A cross-sectional analytical study was conducted at BIRDEM General Hospital and the National Institute of Kidney Diseases & Urology (NIKDU), Dhaka, from July 2021 to June 2023. A total of 148 adults undergoing abdominal ultrasonography were enrolled. IAFT was measured sonographically. MetS was defined using NCEP-ATP III criteria, and CKD was classified according to KDIGO 2012 guidelines. Data were analyzed using descriptive statistics, correlation analysis, and multivariate logistic regression. Results: The mean IAFT was 34.8 ± 7.5 mm, higher in males than females $(36.2 \pm 7.9 \text{ vs. } 32.8 \pm 6.8 \text{ mm}; p = 0.012)$. The prevalence of MetS and CKD was 60.1% and 27.7%, respectively, with most CKD cases in early stages (Stage 1-2: 72.3%). IAFT was significantly higher in participants with MetS (38.6 \pm 6.9 mm) and CKD (39.2 \pm 7.1 mm) compared to those without $(29.1 \pm 5.4 \text{ mm} \text{ and } 32.8 \pm 6.7 \text{ mm}; p < 0.001)$. IAFT positively correlated with waist circumference (r = 0.61), fasting glucose (r = 0.43), triglycerides (r = 0.37), systolic blood pressure (r = 0.31), and serum creatinine (r = 0.28; all p < 0.01). Multivariate analysis showed IAFT independently predicted MetS (AOR: 2.8; 95% CI: 1.7-4.6; p < 0.001) and CKD (AOR: 2.3; 95% CI: 1.3–4.1; p = 0.003) after adjusting for age, sex, and BMI. *Conclusion:* Sonographic IAFT is strongly associated with both MetS and CKD, independent of age, sex, and BMI. IAFT may serve as a simple, easily available, cost effective, non-invasive, radiation free marker to identify individuals at risk for metabolic and renal complications, particularly in resource-limited settings.

Keywords: Intra-abdominal fat thickness, metabolic syndrome, chronic kidney disease, visceral adiposity, sonography, Bangladesh.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

Metabolic syndrome (MetS), characterized by central obesity, insulin resistance, dyslipidemia, and hypertension, has emerged as a major global health concern due to its strong association with cardiovascular and renal complications. Increasing evidence suggests that MetS substantially elevates the risk of chronic kidney disease (CKD), independent of traditional risk factors [1,2]. Large-scale cohort studies, including a 10-year prospective study from Korea, have demonstrated that individuals with MetS are at significantly higher risk of developing CKD compared to those without the

syndrome [3]. Furthermore, visceral adiposity, a core component of MetS, has been shown to play a critical role in renal dysfunction through mechanisms involving inflammation, oxidative stress, and hemodynamic alterations [4].

The global burden of obesity and metabolic syndrome has contributed significantly to the rising prevalence of CKD, with epidemiological evidence indicating that the coexistence of these conditions accelerates renal damage [5]. Studies have shown that both the individual and combined components of metabolic syndrome, particularly hypertension, diabetes,

Citation: Zinat Nasrin, Abul Khair Ahmedullah, Md. Jalal Uddin, Md. Towhidur Rahman, Mahmuda Monowara. Sonographic Evaluation of Intra-Abdominal Fat Thickness and Its Relationship with Metabolic Syndrome and Chronic Kidney Disease. Sch J App Med Sci, 2025 Nov 13(11): 1794-1800.

¹Associate Professor, Department of Radiology & Imaging National Institute of Burn and Plastic Surgery, Dhaka, Bangladesh

²Associate Professor, Department of Rheumatology, Bangladesh Medical University, Dhaka, Bangladesh

³Assistant Professor, Department of Radiology & Imaging, National Institute of Burn & Plastic Surgery, Dhaka, Bangladesh

⁴Associate Professor, Department of Radiology & Imaging, BIRDEM General Hospital, Dhaka, Bangladesh

⁵Associate Professor, Department of Radiology & Imaging, Bangladesh Shishu Hospital and Institute, Dhaka, Bangladesh

and dyslipidemia, exert synergistic effects on kidney function decline [6,7]. Visceral adiposity has emerged as a particularly important factor, with recent evidence suggesting that adipose tissue distribution, rather than overall obesity, is more strongly associated with renal and cardiometabolic outcomes [8]. These findings highlight the importance of evaluating central obesity and visceral fat measures in understanding the complex interplay between metabolic syndrome and CKD.

Despite growing evidence linking obesity, metabolic syndrome, and visceral adiposity with renal dysfunction, most existing studies have focused on specific populations such as peritoneal dialysis patients or individuals with type 2 diabetes and polycystic ovary syndrome, limiting the generalizability of findings to broader populations [9,10,11]. Furthermore, while recent reviews have highlighted the clinical implications and prognostic significance of adiposity in the progression of chronic kidney disease [12], little is known about the direct relationship between sonographically measured intra-abdominal fat thickness, waist circumference, and early markers of CKD in community-based populations. This research gap is particularly relevant in low- and middle-income countries, where the dual burden of obesity and non-communicable diseases is rapidly rising, yet imaging-based adiposity assessments remain underutilized in routine care. Therefore, this study aims to evaluate the association of intra-abdominal fat thickness and waist circumference with chronic kidney disease, building upon prior evidence and addressing an unmet need for population-level data in this field.

METHODOLOGY

Study Design and Setting

This cross-sectional analytical study was conducted in the Department of Radiology and Imaging, National Institute of Kidney Diseases & Urology (NIKDU) and Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka, Bangladesh, during a period of two years, from July 2021 to June 2023.

Study Population

Patients aged 18 years and above, referred to the Department of Radiology for abdominal ultrasonography during the study period, were considered for inclusion.

Inclusion Criteria

- Adults (≥18 years) who provided informed consent.
- Patients undergoing sonographic evaluation for abdominal assessment.
- Availability of relevant biochemical and clinical data for the diagnosis of metabolic syndrome and chronic kidney disease (CKD).

Exclusion Criteria

• Pregnant women.

- Patients with ascites, intra-abdominal mass, or prior abdominal surgery that could alter fat distribution.
- Patients with incomplete clinical, laboratory, or imaging data.

Sample Size and Sampling Technique

A total of 148 patients fulfilling the inclusion criteria were consecutively enrolled using purposive sampling.

Data Collection Procedures

After obtaining informed consent, detailed sociodemographic and clinical information was collected using a structured data collection sheet. Relevant laboratory values and clinical records were reviewed for metabolic and renal parameters.

Sonographic Assessment

All patients underwent ultrasonographic examination using a high-resolution real-time ultrasound machine with a 3.5–5 MHz convex probe. Intraabdominal fat thickness (IAFT) was measured in the supine position during quiet respiration. The measurement was taken as the distance peritoneum and anterior margin of lumbar vertebra at the level of the umbilicus, following standard protocols. Each measurement was repeated thrice, and the mean value was recorded to minimize inter-observer variability.

Clinical and Biochemical Assessment

- Metabolic Syndrome: Defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) criteria, requiring the presence of at least three of the following:
 - Waist circumference: ≥102 cm in men, ≥88 cm in women
 - 2. Triglycerides: ≥150 mg/dl (1.7 mmol/L) or drug treatment for elevated triglycerides
 - 3. HDL cholesterol: <40 mg/dl in men, <50 mg/dl in women, or treatment for low HDL
 - 4. Blood pressure: ≥130/85 mmHg or antihypertensive medication
 - 5. Fasting blood glucose: ≥100 mg/dl or treatment for diabetes mellitus
- Chronic Kidney Disease (CKD): Defined according to KDIGO 2012 guidelines, based on estimated glomerular filtration rate (eGFR) calculated using the CKD-EPI equation and/or presence of albuminuria (urine albumin-to-creatinine ratio ≥30 mg/g) persisting for ≥3 months.

Data Analysis

Data were coded, entered, and analyzed using Statistical Package for the Social Sciences (SPSS) version 26. Continuous variables were expressed as mean ± standard deviation (SD), while categorical variables were presented as frequencies and percentages.

- Comparisons between groups (with vs. without metabolic syndrome or CKD) were performed using Student's t-test or Mann–Whitney U test for continuous variables, and chi-square test or Fisher's exact test for categorical variables.
- Correlation between intra-abdominal fat thickness and biochemical parameters was assessed using Pearson or Spearman correlation coefficients as appropriate.
- Logistic regression analysis was performed to evaluate the independent association of intraabdominal fat thickness with metabolic syndrome and CKD, adjusting for potential confounders (age, sex, BMI, etc.). A p-value <0.05 was considered statistically significant.

Ethical Considerations

Ethical approval was obtained from the Institutional Review Board (IRB) of NIKDU and BIRDEM General Hospital, Dhaka, Bangladesh. Written

informed consent was obtained from all participants prior to enrollment. Patient confidentiality was strictly maintained throughout the study.

RESULTS

Baseline Characteristics of Study Participants

A total of 148 participants were included in the analysis. Table 1 shows the socio-demographic and clinical profile of the study participants (N = 148). The majority of participants were in the 40−59year age group (50.0%), followed by those aged ≥60 years (28.4%), indicating a predominance of middle-aged and older adults. Males comprised 58.1%, slightly higher than females (41.9%). Regarding nutritional status, 45.9% were overweight and 25.7% obese, while only 28.4% had normal BMI, highlighting a high prevalence of excess body weight. Among the clinical conditions, hypertension (62.2%), diabetes mellitus (71.6%), and dyslipidemia (59.5%) were common, reflecting a high burden of metabolic risk factors in the study population.

Table 1: Socio-demographic and Clinical Characteristics of Participants (N = 148)

Variable	Category	Frequency (n)	Percent (%)
Age group (years)	<40	32	21.6
	40–59	74	50.0
	≥60	42	28.4
Sex	Male	86	58.1
	Female	62	41.9
BMI category	Normal (<25)	42	28.4
	Overweight (25–29.9)	68	45.9
	Obese (≥30)	38	25.7
Hypertension	Present	92	62.2
Diabetes mellitus	Present	106	71.6
Dyslipidemia	Present	88	59.5

Sonographic Measurement of Intra-Abdominal Fat Thickness

The mean intra-abdominal fat thickness (IAFT) was 34.8 ± 7.5 mm (range: 20–58 mm). Male participants

had significantly higher IAFT compared to females (36.2 \pm 7.9 mm vs. 32.8 ± 6.8 mm; p = 0.012). (Table 2)

Table 2: Intra-Abdominal Fat Thickness (IAFT) by Sex (N = 148)

Variable	Mean IAFT (mm) ± SD	Range (mm)	p-value
Male (n = 86)	36.2 ± 7.9	22-58	
Female $(n = 62)$	32.8 ± 6.8	20-50	0.012*
Overall $(N = 148)$	34.8 ± 7.5	20–58	

^{*}Statistically significant (p < 0.05)

Prevalence of Metabolic Syndrome and Chronic Kidney Disease

Metabolic syndrome was identified in 89 participants (60.1%) according to NCEP-ATP III criteria. (Figure 1) Figure 1 I shows the prevalence and severity of chronic kidney disease (CKD) among the

study participants. the majority of participants (72.3%) had early renal disease (Stage 1 and 2), indicating a high prevalence of mild kidney impairment. Stage 3 CKD was observed in 19.6% of participants, while Stage 4 CKD and Stage 5 CKD were found in 6.1% and 2.0%, respectively. Only 2.0% of participants had normal kidney function.

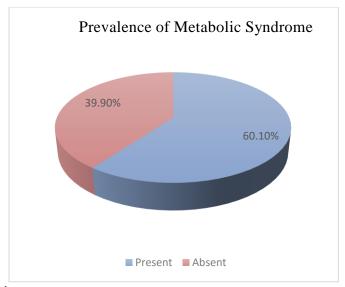


Figure 1: Prevalence of Metabolic Syndrome among Participants (N = 148)

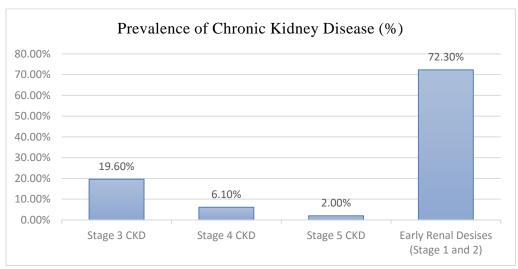


Figure | | : Prevalence of Chronic Kidney Disease

Components of Metabolic Syndrome

Table 3 presents the distribution of individual components of metabolic syndrome among the participants. Impaired fasting glucose or diabetes mellitus was the most prevalent component, affecting

71.6% of participants, followed by hypertension (62.2%) and central obesity (61.5%), indicating a high burden of cardiometabolic risk factors. Hypertriglyceridemia was present in 50.0%, while low HDL cholesterol was observed in 42.6% of participants.

Table 3: Components of Metabolic Syndrome Among Participants (N = 148)

Component	Present n (%)
Central obesity (Measured by USG)	91 (61.5)
Hypertriglyceridemia	74 (50.0)
Low HDL cholesterol	63 (42.6)
Hypertension	92 (62.2)
Impaired fasting glucose/DM	106 (71.6)

Association Between Intra-Abdominal Fat Thickness, Metabolic Syndrome, and CKD

Table 4 demonstrates the association between intra-abdominal fat thickness (IAFT) and the presence of metabolic syndrome and chronic kidney disease (CKD). Participants with metabolic syndrome had significantly

higher IAFT (38.6 \pm 6.9 mm) compared to those without metabolic syndrome (29.1 \pm 5.4 mm; p < 0.001). Similarly, participants with CKD exhibited greater IAFT (39.2 \pm 7.1 mm) than those without CKD (32.8 \pm 6.7 mm; p < 0.001).

Table 4: Association of IAFT with metabolic syndrome and CKD (N = 148)

Condition	IAFT (mm, mean ± SD)	p-value
Metabolic Syndrome	38.6 ± 6.9	< 0.001
No Metabolic Syndrome	29.1 ± 5.4	
CKD Present	39.2 ± 7.1	< 0.001
CKD Absent	32.8 ± 6.7	

Correlation Analysis

Table 5 shows the correlation between intraabdominal fat thickness (IAFT) and selected metabolic and renal parameters. Sonographic IAFT exhibited a strong positive correlation with CKD (r = 0.61, p < 0.001). Moderate positive correlations were observed with fasting blood glucose (r = 0.43, p < 0.001) and triglycerides (r = 0.37, p < 0.001), reflecting the link between increased IAFT and metabolic disturbances. IAFT was also positively correlated with systolic blood pressure (r = 0.31, p = 0.002) and serum creatinine (r = 0.28, p = 0.004).

Table 5: Correlation of Intra-Abdominal Fat Thickness (IAFT) Metabolic and renal parameter (N = 148)

Parameter	Correlation Coefficient (r)	p-value
IAFT measured by USG	0.61	< 0.001
Fasting blood glucose	0.43	< 0.001
Triglycerides	0.37	< 0.001
Systolic blood pressure	0.31	0.002
Serum creatinine	0.28	0.004

Multivariate Analysis

The multivariate logistic regression analysis revealed that increased intra-abdominal fat thickness (IAFT) is an independent predictor of both metabolic syndrome and chronic kidney disease (CKD), even after

adjusting for potential confounders such as age, sex, and BMI. Specifically, participants with higher IAFT had 2.8 times greater odds of having metabolic syndrome and 2.3 times greater odds of having CKD compared to those with lower IAFT.

Table 6: Multivariate Logistic Regression Analysis Showing Independent Association of IAFT with Metabolic Syndrome and CKD (N = 148)

Outcome	Adjusted Odds Ratio (AOR)	95% Confidence Interval (CI)	p-value
Metabolic Syndrome	2.8	1.7–4.6	< 0.001
Chronic Kidney Disease	2.3	1.3-4.1	0.003

DISCUSSION

In this cohort of 148 participants at a tertiary care center in Dhaka, we observed a notably high prevalence of metabolic syndrome (60.1%), with concomitant high rates of obesity, hypertension, dyslipidemia, and impaired fasting glucose. Our sonographic measurement of intra-abdominal fat thickness (IAFT) correlated strongly with metabolic risk markers and was independently associated with both metabolic syndrome and chronic kidney disease (CKD). These findings provide support for the role of visceral adiposity in metabolic-renal interplay and the potential utility of ultrasonographic IAFT as a clinical marker.

Prevalence of Metabolic Syndrome

The 60.1% prevalence of metabolic syndrome in our study is higher than figures reported in many community-based surveys in Bangladesh. In a systematic review and meta-analysis of Bangladeshi populations, the pooled prevalence of metabolic syndrome was estimated around 30–40%, depending on the diagnostic criteria used [13]. Our higher prevalence likely reflects

the hospital-based, high-risk nature of our sample (with high rates of hypertension and diabetes).

Associations of Visceral Fat with Metabolic Risk

Our mean IAFT of 34.8 ± 7.5 mm and its higher value in men compared to women is consonant with prior imaging and sonographic studies showing sexual dimorphism in visceral fat accumulation. The strong correlation (r = 0.61) between IAFT and waist circumference reinforces that sonographic IAFT is a valid surrogate for central adiposity. Similar relationships — between visceral fat measures and metabolic traits such as hyperglycemia, hypertriglyceridemia, and hypertension — have been documented in other populations [14,15,16].

For example, the CARDIAL-MS cohort recently reported that ultrasound-derived abdominal fat layers correlated with multiple metabolic syndrome features, supporting the idea that ultrasonography is a feasible, low-cost approach to assess visceral fat deposition in clinical settings [17]. Also, in obesity research more broadly, visceral (vs subcutaneous) adipose tissue is increasingly regarded as the more

metabolically harmful depot, with evidence that visceral adipocytes contribute more to insulin resistance, proinflammatory cytokine secretion, and lipotoxicity [18].

Visceral Fat and Chronic Kidney Disease

The prevalence of CKD in our cohort (27.7%) is substantial, and the finding of greater IAFT among participants with CKD (39.2 $\pm\,7.1$ mm vs 32.8 $\pm\,6.7$ mm) aligns with growing literature that links visceral adiposity to renal injury.

Recent narrative reviews suggest that visceral fat (and ectopic adipose depots) may exert deleterious renal effects through multiple mechanisms such as increased intra-abdominal pressure, renal compression, activation of the renin-angiotensin system, and lowgrade inflammation inducing glomerular hyperfiltration and sclerosis [19,20]. In diabetic populations, perirenal fat thickness — a visceral fat depot adjacent to the kidney — has been singled out as significantly associated with CKD risk [21]. In a Chinese cross-sectional study using metabolic scores for visceral fat (METS-VF), higher visceral adiposity indices were independently associated with CKD after multivariable adjustment [22]. Visceral and abdominal obesity have been consistently implicated in the pathogenesis of metabolic syndrome and its complications, including renal dysfunction. The interplay between central adiposity, insulin resistance, dyslipidemia, and systemic inflammation contributes to early renal impairment, independent of generalized obesity [23].

Thus, our finding that IAFT retained an independent association with CKD (adjusted OR 2.3, 95% CI 1.3–4.1) after controlling for age, sex, and BMI strengthens the argument that visceral adiposity per se, rather than generalized obesity alone, may contribute to renal dysfunction.

Limitation of the Study:

This study used modest sample sizes and a single focal point, making it likely that the conclusions do not fully reflect the broader circumstances.

CONCLUSION

This study demonstrated that intra-abdominal fat thickness, measured sonographically, is independently associated with both metabolic syndrome and chronic kidney disease in a Bangladeshi hospital-based cohort. The strong correlations between IAFT and metabolic as well as renal parameters highlight the pathogenic role of visceral adiposity beyond generalized obesity. Given the rising prevalence of obesity-related disorders in South Asia, incorporating ultrasonographic IAFT assessment into routine clinical evaluation may provide a cost-effective tool for early risk stratification. Future longitudinal studies with larger, community-based samples are warranted to confirm causality and

explore the utility of IAFT in predicting long-term metabolic and renal outcomes.

REFERENCES

- 1. Scurt FG, Ganz MJ, Herzog C, Bose K, Mertens PR, Chatzikyrkou C. Association of metabolic syndrome and chronic kidney disease. Obesity Reviews. 2024 Jan;25(1):e13649.
- 2. Zhang X, Lerman LO. The metabolic syndrome and chronic kidney disease. Translational Research. 2017 May 1; 183:14-25.
- 3. Huh JH, Yadav D, Kim JS, Son JW, Choi E, Kim SH, Shin C, Sung KC, Kim JY. An association of metabolic syndrome and chronic kidney disease from a 10-year prospective cohort study. Metabolism. 2017 Feb 1; 67:54-61.
- Manabe S, Kataoka H, Mochizuki T, Iwadoh K, Ushio Y, Kawachi K, Watanabe K, Watanabe S, Akihisa T, Makabe S, Sato M. Impact of visceral fat area in patients with chronic kidney disease. Clinical and Experimental Nephrology. 2021 Jun;25(6):608-20
- 5. Tanner RM, Brown TM, Muntner P. Epidemiology of obesity, the metabolic syndrome, and chronic kidney disease. Current hypertension reports. 2012 Apr;14(2):152-9.
- 6. Comini LD, de Oliveira LC, Borges LD, Dias HH, Batistelli CR, da Silva LS, Moreira TR, da Silva RG, Cotta RM. Individual and combined components of metabolic syndrome with chronic kidney disease in individuals with hypertension and/or diabetes mellitus accompanied by primary health care. Diabetes, Metabolic Syndrome and Obesity. 2020 Jan 9:71-80.
- 7. Maleki A, Montazeri M, Rashidi N, Montazeri M, Yousefi-Abdolmaleki E. Metabolic syndrome and its components associated with chronic kidney disease. Journal of Research in Medical Sciences. 2015 May 1;20(5):465-9.
- 8. Jia S, Huo X, Zuo X, Zhao L, Liu L, Sun L, Chen X. Association of metabolic score for visceral fat with all-cause mortality, cardiovascular mortality, and cancer mortality: A prospective cohort study. Diabetes, Obesity and Metabolism. 2024 Dec;26(12):5870-81.
- Huang JW, Yang CY, Wu HY, Liu KL, Su CT, Wu CK, Lee JK, Chiang CK, Cheng HT, Lien YC, Hung KY. Metabolic syndrome and abdominal fat are associated with inflammation, but not with clinical outcomes, in peritoneal dialysis patients. Cardiovascular Diabetology. 2013 Jun 8;12(1):86.
- Lu F, Fan J, Li F, Liu L, Chen Z, Tian Z, Zuo L, Yu D. Abdominal adipose tissue and type 2 diabetic kidney disease: adipose radiology assessment, impact, and mechanisms. Abdominal Radiology. 2024 Feb;49(2):560-74.
- 11. Sahin SB, Durakoglugil T, Ayaz T, Sahin OZ, Durakoglugil E, Sumer F, Aktas E, Alyildiz N. Evaluation of para-and perirenal fat thickness and its association with metabolic disorders in polycystic

- ovary syndrome. Endocrine Practice. 2015 Aug 1;21(8):878-86.
- Ozbek L, Abdel-Rahman SM, Unlu S, Guldan M, Copur S, Burlacu A, Covic A, Kanbay M. Exploring adiposity and chronic kidney disease: clinical implications, management strategies, prognostic considerations. Medicina. 2024 Oct 11;60(10):1668.
- 13. Chowdhury MZ, Anik AM, Farhana Z, Bristi PD, Abu Al Mamun BM, Uddin MJ, Fatema J, Akter T, Tani TA, Rahman M, Turin TC. Prevalence of metabolic syndrome in Bangladesh: a systematic review and meta-analysis of the studies. BMC public health. 2018 Mar 2;18(1):308.
- 14. Choi JW, Lee CM, Kang BK, Kim M. Perirenal fat thickness is an independent predictor for metabolic syndrome in steatotic liver disease. Scientific Reports. 2024 Nov 4;14(1):26548.
- Checa-Ros A, Locascio A, Okojie OJ, Abellán-Galiana P, D'Marco L. Perirenal fat differs in patients with chronic kidney disease receiving different vitamin D-based treatments: a preliminary study. BMC nephrology. 2025 Mar 5;26(1):119.
- 16. Chen X, Qin Y, Hu J, Shen Y, Mao Y, Xie L, Li J, Wang J, Yang S, Li Q, He JC. Perirenal fat and chronic kidney disease in type 2 diabetes: The mediation role of afferent arteriolar resistance. Diabetes & Metabolism. 2024 Nov 1;50(6):101583.
- 17. De la flor MJ, Narváez MC, Puente GA, Pantoja PJ, Cieza tm, Rivera GM. Is it useful to measure periparenal fat thickness by ultrasonography as a marker of cardiovascular risk in obese patients with chronic kidney disease? Nefrologia. 2024;44(6):915-20.

- 18. Kono T, Maimaituxun G, Tanabe H, Higa M, Saito H, Tanaka K, Masuzaki H, Sata M, Kazama JJ, Shimabukuro M. Role of perirenal adiposity in renal dysfunction among CKD individuals with or without diabetes: a Japanese cross-sectional study. BMJ Open Diabetes Research & Care. 2024 Mar 11;12(2).
- Baumann VJ, Banati R, Clarke JL. Ultrasound measurement of perirenal adipose tissue indicates cardiovascular disease, but standardisation is needed: A systematic review. Australasian Journal of Ultrasound in Medicine. 2025 Feb;28(1):e12407.
- Yu P, Meng X, Kan R, Wang Z, Yu X. Association between metabolic scores for visceral fat and chronic kidney disease: A cross-sectional study. Frontiers in Endocrinology. 2022 Dec 5; 13:1052736.
- Chen X, Mao Y, Hu J, Han S, Gong L, Luo T, Yang S, Qing H, Wang Y, Du Z, Mei M. Perirenal fat thickness is significantly associated with the risk for development of chronic kidney disease in patients with diabetes. Diabetes. 2021 Oct 1;70(10):2322-32.
- 22. Feng L, Chen T, Wang X, Xiong C, Chen J, Wu S, Ning J, Zou H. Metabolism score for visceral fat (METS-VF): a new predictive surrogate for CKD risk. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2022 Jan 1:2249-58.
- Islam MS, Wei P, Suzauddula M, Nime I, Feroz F, Acharjee M, Pan F. The interplay of factors in metabolic syndrome: understanding its roots and complexity. Molecular Medicine. 2024 Dec 27;30(1):279.