
 

© 2020 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          99 

 

 

Scholars Journal of Physics, Mathematics and Statistics             

Abbreviated Key Title: Sch J Phys Math Stat 

ISSN 2393-8056 (Print) | ISSN 2393-8064 (Online)  

Journal homepage: https://saspublishers.com/sjpms/         
 

 

Bounded Traveling Wave Solutions of the (3+1)-Dimensional Zakharov- 

Kuznetsov Equation with Power Law Nonlinearity 
Li Wei

*
, Minrong Ren 

 

College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610025, Sichuan, P. R. China 

 

DOI: 10.36347/sjpms.2020.v07i07.004                                    | Received: 15.07.2020 | Accepted: 23.07.2020 | Published: 26.07.2020 
 

*Corresponding author: Li Wei 
 

Abstract  Review Article 
 

In this paper, the bifurcation theory of dynamical system is applied to study the traveling waves of the (3+1)-

dimensional Zakharov-Kuznetsov Equation with Power Law Nonlinearity. By transforming the traveling wave system 

of the Zakharov-Kuznetsov equation into a dynamical system in   , we derive various parameter conditions which 

guarantee the existence of its bounded and unbounded orbits. Furthermore, by calculating complicated elliptic 

integrals along these orbits, we obtain exact expressions of bounded traveling wave solutions of the (3+1)-dimensional 

Zakharov-Kuznetsov equation for n=1. 
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INTRODUCTION 
The ZK equation is a very attractive model 

equation for the study of vortices in geophysical flows. 

The ZK equation appears in many areas of physics, 

applied mathematics and engineering. In particular, as 

an important model to describe nonlinear ion acoustic 

waves in a strongly magnetized lossless plasma 

composed of cold ions and hot isothermal electrons, 

traveling waves of the (3+1)-dimensional Zakharov-

Kuznetsov equation have been concerned widely. 

 

In 2010, by means of the classical and the 

associated vector fields method, Dong et al. derived the 

reductions and some new solutions of the (3+1)-

dimensional Zakharov-Kuznetsov equation [1]. In 2012, 

Zhang and Zhou [2] obtained the bounded solitary 

wave, periodic, kink and antikink solutions to the ZK 

equation in general form by employing the bifurcation 

theory. In 2013, Wronskian form expansion method 

was applied in [3] to obtain new interaction solutions of 

(3+1)-dimensional Zakharov-Kuznetsov equation. 

Later, by using improved fractional sub equation 

method, S. Sahoo and S. Saha Ray constructed the 

analytical exact solutions of (3+1)-dimensional 

generalized fractional KdV-Zakharov-Kuznetsov 

equations [4]. In 2016, Moleleki et al., proposed Kudry-

ashov and Jacobi elliptic function method to construct 

exact solutions of the (3+1)-dimensional Zakharov-

Kuznetsov equation [5]. In 2017, Lu et al., used 

modified extended direct algebraic method to obtain 

new exact solitary wave, soliton and elliptic function 

solutions of (3+1)-dimensional nonlinear extended 

Zakharov-Kuznetsov and modified KdV-Zakharov-

Kuznetsov equations [6]. In the same year, by using the 

modified form of the Kudryashov method, exact 

solutions to conformable time fractional (3+1)-

dimensional equations were derived [7]. In 2018, Wang 

et al. used modified extended mapping method to get 

exact traveling wave solutions of different forms such 

as bright and dark solitary wave, periodic solitary wave, 

dark and bright soliton, etc [8]. 

 

In this paper, we consider the (3+1)-

dimensional Zakharov-Kuznetsov equation with Power 

Law Nonlinearity 

𝑈𝑡 + 𝑎𝑈
𝑛𝑈𝑥 + 𝑏(𝑈𝑥𝑥 + 𝑈𝑦𝑦 + 𝑈𝑧𝑧)𝑥 = 0, (1. 1) 

 

Where 𝑎, 𝑏 are constants our aim is to 

completely investigate all traveling waves of Eq (1.1) 

by the bifurcation method of dynamical system [9-12] 

and give explicit expressions of bounded wave 

solutions. 

 

Traveling wave system and bifurcation analysis 

With the following traveling wave transformation 

𝑈 = 𝑈( ,  ,  ,  ) =  ( ) =  ( +  +   𝑐 )， 

 

https://saspublishers.com/sjpms/


 

    
Li Wei & Minrong Ren., Sch J Phys Math Stat, July, 2020; 7(7): 99-103 

© 2020 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          100 

 

 

Equation (1) can be transformed into its raveling wave system 

 𝑐 ′ + 𝑎 𝑛 ′ + 3𝑏 ′′′ = 0 ……………………………….…….. (2.1) 
 

Where ＇stands for 𝑑/𝑑  and 𝑐 ≠ 0 is the wave speed. Integrating (2.1) once and retaining an integral constant, we 

have 

 𝑐 +
𝑎

𝑛+1
 𝑛+1 + 3𝑏 ′′ = 𝑒 …………………………….……… (2.2) 

 

Where parameter 𝑒 is the integral constant, equation (2.2) has the following equivalent form  

 ,

 ′ =  ,
 

 ′ =
1

  
( 

𝑎

𝑛+1
 𝑛+1 + 𝑐 + 𝑒),

 …………………..……….. (2.3) 

 

Which is a dynamical system in   . which is exactly a Hamiltonian system with the energy function 

  ( ,  ) =
1

 
  +

1

  
(

𝑎

(𝑛+1)(𝑛+ )
 𝑛+  

 

 
   𝑒 ) ……………… (2.4) 

 

When  = 1, system convert (2.3) the following form 

 ,

 ′ =  ,
 

 ′ =
1

  
( 

𝑎

 
  + 𝑐 + 𝑒),

 …………………………..……. (2.5) 

 

Firstly, we start with equilibria of system (2.5). 

 

Theorem2.1. When 𝑐 + 2𝑎𝑒  0, system (2.5) has 

two equilibrium, a saddle  1 (
  √  + 𝑎 

𝑎
, 0), and a 

center   (
 +√  + 𝑎 

𝑎
, 0). When𝑐 + 2𝑎𝑒 = 0, system 

(2.5) has a unique cusp   (
 

𝑎
, 0). When 𝑐 + 2𝑎𝑒  0, 

system (2.5) has no equilibrium. 

 

Proof. When 𝑐 + 2𝑎𝑒  0, a direct calculation shows 

that system (2.5) has two equilibrium 

 1 (
  √  + 𝑎 

𝑎
, 0),   (

 +√  + 𝑎 

𝑎
, 0). Letting 

 (  )( = 1,2,3) 
denote the Jacabian matrix of system 

(2.5) at an equilibrium   , we have 

 ( 1) = *

0 1

√𝑐 + 2𝑎𝑒

3𝑏
0
+, 

 (  ) = *

0 1

 
√𝑐 + 2𝑎𝑒

3𝑏
0
+. 

 

It is not difficult for one to check that their determinants 

are 

𝑑𝑒  ( 1) =  
√𝑐 + 2𝑎𝑒

3𝑏
 0， 

𝑑𝑒  (  ) =
√𝑐 + 2𝑎𝑒

3𝑏
 0.  

 

By the theory of plane dynamic system [13-15] and the 

properties of Hamiltonian system (32), it is not difficult 

to check that  1 is a saddle and    is a center in this 

case.  

 

When 𝑐 + 2𝑎𝑒 = 0, the system (2.4) has an unique 

equilibrium   (
 

𝑎
, 0) with a nilpotent matrix 

 (  ) = (
0
0

1
0
), 

 

It means that    is a degenerated equilibrium. In order 

to be able to further determine the type of   , we do the 

following homeomorphic transformation 

 =   
𝑐

𝑎
,  =  , 

 

Which transforms system (2.5) into its normal form 

{
  =  ,

 ′ =  
𝑎

6𝑏
  .

 

 

By the qualitative theory of differential equation [33 

Theorem 7.3, Chapter 2], we have  = 2 and 𝑏𝑛 = 0, 

which indicates that    is a cusp.  

 

When 𝑐 + 2𝑎𝑒  0, it is easy to see that there is no 

equilibrium of system (2.5).  

 

Next we need to illustrate the parameter bifurcation sets 

with*(𝑎, 𝑐, 𝑒)|𝑐 + 2𝑎𝑒  0+, *(𝑎, 𝑐, 𝑒)|𝑐 + 2𝑎𝑒 = 0+ 
and *(𝑎, 𝑐, 𝑒)|𝑐 + 2𝑎𝑒  0+. 
 

Based on the analysis of the equilibrium and the 

properties of the Hamiltonian system [19], we have the 

following results. 

 

Case 1 

Consider 𝑐 + 2𝑎𝑒  0, there is a homoclinic 

orbit  connected to the saddle  1. The center    is 

surrounded by the family of periodic orbits 

 ( ) = * ( ,  ) =  ,   ( (  , ),  ( 1, ))}, 
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Where 

 ( 1) =
 𝑐 + (𝑐 + 2𝑎𝑒)√𝑐 + 2𝑎𝑒  3𝑎𝑒𝑐

 𝑎 𝑏
, 

 (  ) =
 𝑐  (𝑐 + 2𝑎𝑒)√𝑐 + 2𝑎𝑒  3𝑎𝑒𝑐

 𝑎 𝑏
. 

 

Moreover,  ( ) tends to    as    (  ) and 

tends to   as    ( 1), besides the homoclinic orbit 

and periodic orbits, other orbits of system (2.5) are 

unbounded, as shown in figure-1(a).  

Case 2 

Consider 𝑐 + 2𝑎𝑒 = 0, the system (2.5) has 

two types of orbits, of which orbit   was different from 

other orbits, but all the orbits here were unbounded, as 

show in Figure-1(b). 

 

Case 3 

Consider 𝑐 + 2𝑎𝑒  0, system (2.5) has only 

one type of orbits, and each orbit is unbounded, as show 

in Figure-1(c). 

 
Fig-1: The phase portraits of (2.5) 

 

 
Fig-2: Simulations of periodic wave and solitary wave 

 

Finally, we apply numerical simulation method 

to verify the correction of the bifurcation results and to 

demonstrate wave shapes of various bounded and 

unbounded traveling waves of system (2.5). By fixing 

parameters in different parameter bifurcation sets and 

taking proper initial values, we simulate two types of 

bounded traveling waves Figure2. 

 

Explicit traveling wave solutions of Eq. (1.1)  
In this section, we will give the explicit 

expression of all bounded traveling wave solutions for 

Eq. (1.1),  
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Consider the periodic orbits, from the energy function (2.4), any one of the periodic orbits  ( ) can be expressed by 

 =  √
𝑎

 𝑏
√(   1)(    )(    ), 

 

Where  1,    and    are reals and   1           . Assume that the period of these closed orbits is 2T, and choose 

 (0) =   , we have 

∫
𝑑 

√
𝑎
 𝑏√

(   1)(    )(    )

 

  

= ∫ 𝑑 
 

 

, 0     . 

 ∫
𝑑 

√
𝑎
 𝑏√

(   1)(    )(    )

  

 

= ∫ 𝑑 
 

 

,      0. 

 

which can be rewritten as 

∫
𝑑 

√
𝑎
 𝑏√

(   1)(    )(    )

 

  

= | |,       . 

 

By calculating the elliptic integral 

∫
𝑑 

√(   1)(    )(    )

 

  

=      1 (√
(    1)(    )

(     )(   1)
,  ), 

 

Where  =
 

√     
 and   =

     

     
, we get the expression of periodic wave solution of the system (2.4) 

   1( ) =  1 +
(    1)(    1)

(    1)  (     )    
 (√

𝑎(    1)
36𝑏

 )

,       . (3.1) 

 

Consider the homologous orbit, by (2.5), the homologous orbit  
 
can be expressed by 

 =  √
𝑎

 𝑏
√(    )

 (    ) =  √
𝑎

 𝑏
(    )√    , 

 

Where   =
  √  + 𝑎 

𝑎
 and   =

 + √  + 𝑎 

𝑎
 satisfy the condition that          . Choosing initial value  (0) =   , 

we have 

∫
𝑑 

√
𝑎
 𝑏
(    )√    ,

  

 

= ∫ 𝑑 
 

 

,   0, 

 ∫
𝑑 

√
𝑎
 𝑏
(    )√    ,

 

  

= ∫ 𝑑 
 

 

,   0, 

 

Which can be rewritten as 

∫
𝑑 

√
𝑎
 𝑏
(    )√    ,

 

  

=  | |,      + . 

 

Noting that 

∫
𝑑 

(    )√    ,

 

  

=
1

√     
ln
√      √    

√     + √    
 , 

 

 

 

 

 

 



 

    
Li Wei & Minrong Ren., Sch J Phys Math Stat, July, 2020; 7(7): 99-103 

© 2020 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          103 

 

 

We get the expression of solitary wave solution of the system (2.4) 

  ( ) =    

(     ) (1  exp (√
𝑎
 𝑏
(     )| |))

 

(1 + exp (√
𝑎
 𝑏
(     )| |))

 ,      + . 

 

It’s easy to check that   ( ) =   (  ), It means that   ( ) can be simplified to the following form 

  ( ) =    

(     ) (1  exp (√
𝑎
 𝑏
(     ) ))

 

(1 + exp (√
𝑎
 𝑏
(     ) ))

 ,      + . 

 

CONCLUSIONS 
In this paper, we apply the bifurcation method 

of dynamical system to study all types of traveling 

waves of the (3+1)-dimensional Zakharov-Kuznetsov 

equation thoroughly. Our results show that bounded 

traveling wave solutions of the (3+1)-dimensional 

Zakharov-Kuznetsov equation ( = 1) can be divided 

into two types, including the periodic wave solution and 

the solitary wave solution. Moreover, when   is odd, 

bounded traveling wave solutions of the (3+1)-

dimensional Zakharov-Kuznetsov equation is similar to 

the expression of ( = 1). 
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