Scholars Academic Journal of Pharmacy

Abbreviated Key Title: Sch Acad J Pharm ISSN 2347-9531 (Print) | ISSN 2320-4206 (Online) Journal homepage: http://saspublishers.com **3** OPEN ACCESS

Pharmacy

In-Vitro Equivalence Design for Nasal Spray Product Containing Corticosteroids Active Ingredient

Yağmur Akar Ceylan^{1*}, Hicran Gür Dereli¹, Ünnügülsüm Erdoğan¹, Ceren Okuyucu Genç¹, Banu Özkırım Arslan¹, Enis Işık¹, Gönül Kayar¹

¹Analytical Development Department of R&D Center, Abdi Ibrahim Pharmaceuticals, P.O. Box 34538, Esenyurt, Istanbul, Turkey

DOI: https://doi.org/10.36347/sajp.2025.v14i09.003 | **Received:** 21.07.2025 | **Accepted:** 30.09.2025 | **Published:** 22.11.2025

*Corresponding author: Yağmur Akar Ceylan

Analytical Development Department of R&D Center, Abdi Ibrahim Pharmaceuticals, P.O. Box 34538, Esenyurt, Istanbul, Turkey

Abstract Original Research Article

The in-vitro bioequivalence study of nasal sprays is useful to understand the efficiency of test product in comparison to reference product so that the equivalency in the in -vivo studies can be assessed. Analytical in vitro release tests were performed to statistically evaluate the performance of the nasal spray suspension formulation containing the corticosteroid active ingredient and compare its performance with the reference drug product. When performing in vitro testing, took into account the EMA Guide on Pharmaceutical Quality of Respiratory and Nasal Products (EMEA/CHMP/QWP/49313/2005 Corr) and the Food and Drug Administration (FDA, Draft Guideline). According to the results of all in vitro bioequivalence studies, it was concluded that Nasal Spray Product containing corticosteroids active ingredient, which contains the corticosteroid active ingredient developed and produced by Abdi İbrahim R&D center, is therapeutically equivalent to the reference product.

Keywords: Corticosteroids active ingredient; Nasal spray; In vitro; Performance tests; Statistical tests; Bioequivalence.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Introduction

A dosage form is a pharmaceutical preparation consisting of drug substance(s) and/or excipient(s) to facilitate dosing, administration, and delivery of the content of the drug product or placebo to the patient. The design, materials, manufacturing, and testing of all dosage forms target drug product quality (The United States Pharmacopeial Convention, 2014).

Nasal spray drug products therapeutically active ingredients (drug substances) dissolved or suspended in solutions or mixtures of excipients (e.g., preservatives, viscosity modifiers, emulsifiers, buffering agents) in nonpressurized dispensers that deliver a spray containing a metered dose of the active ingredient. Nasal sprays are applied to the nasal cavity for local and/or systemic effects. Although similar in many features to other drug products, some aspects of nasal sprays may be unique (e.g., formulation, container closure system, manufacturing, stability, controls of critical steps, intermediates, and drug product). These aspects should be considered carefully during the development program because changes can affect the ability of the product to deliver reproducible

doses to patients throughout the products shelf life (U.S. Food and Drug Administration [FDA], 2002). Despite the simple appearance and easy access of the human nose, the development of nasally administered therapies requires excellent and accurate development encompassing drug characterization, formulation development and aerosol evaluation to ensure optimal drug delivery. While such an approach ensures that the drug is effective, it also enables it to reach the desired anatomical region (Dondeti, Zia, & Needham, 1996), (Guo & Doub, 2006).

Intranasal corticosteroids are considered a very safe and appropriate treatment for allergic rhinitis. There are several intranasal corticosteroids available today. All of them are used in the treatment of seasonal allergic rhinitis and long-term allergic rhinitis. (Kaliner, 2011). It treats nasal congestion, itching, runny nose and sneezing, which generally occur as allergic symptoms; Studies show that these symptoms are almost completely prevented. (Naclerio & Solomon, 1997). The reason for using intranasal corticosteroids in the treatment of allergic rhinitis is that sufficient drug concentrations can be achieved at the receptor sites in the nasal mucosa. In this way, symptoms can be controlled and the risk of

systemic adverse effects is reduced (Tripathy & Patterson, 2001), (Spector, 1999) (Spector, 1999). Differences between intranasal corticosteroids are limited to potency, dosing regimens, patient preference, administration, and device (Howarth, 2000).

An in vitro release rate reflects the combined effect of several physical and chemical parameters, including the solubility of the active ingredient, particle size, and rheological properties of the dosage form. The in vitro release rate is a useful test to evaluate product identity between products before and after exchange (U.S. Food and Drug Administration [FDA], 1997). The in-vitro bioequivalence study of nasal sprays is useful to understand the efficiency of test product in comparison to innovator so that the equivalency in the in -vivo studies can be assessed. The in -vitro bio equivalency characterization of nasal sprays helps us to correlate the efficiency of test product with respect to the reference product, so that the efficacy and safety can be achieved in to be equal Reference listed drug (Cheekti, Kumar, Dhage, Gappa, & Sahoo, 2021).

Analytical in vitro tests should be performed to demonstrate similarity between the test product and the reference product. When establishing equivalence based solely on in vitro data, the in vivo correlation of in vitro parameters should be considered. To this end, the set of quality attributes tested should cover all relevant parameters, acceptance criteria and the method of evaluation of results should be justified, and finally the results should be appropriate. For in vitro parameters, MAH has considered the EMA Guidance on Pharmaceutical Quality of Respiratory and Nasal Products (EMEA/CHMP/QWP/49313/2005 Corr.) and the Food and Drug Administration (FDA, Draft Guidance) (Medicines Evaluation Board, n.d.).

Tests performed according to the EMA Guidance on Pharmaceutical Quality of Respiratory and (EMEA/CHMP/QWP/49313/2005 Nasal Products Corr.), which is taken as a reference for the application of in vitro tests: Particle Size Distribution (PSD), Shaking Requirement, Performance After Temperature Cycling is in the form of robustness, viscosity, osmolality, pH, density. The tests performed according to the Food and Drug Administration (FDA, Draft Guidance), another source we refer to, unlike EMA Guidance: Single Actuation Content through Container Life (SCU), Droplet size distribution by laser diffraction (DSD), Spray pattern, Plume geometry, Profiling of Sprays Near Container Exhaustion (Tail Characteristics), Effect of Dosing Orientation (European Medicines Agency [EMA], 2006), (U.S. Food and Drug Administration [FDA], 2019).

In this study, the performance similarity of Test product developed and produced by Abdi İbrahim R&D Center and Reference product was evaluated by considering the in vitro study parameters of the EMA

Guide (EMEA/CHMP/QWP/49313/2005 Corr.) and the Food and Drug Administration (FDA, Draft Guidance).

MATERIALS AND METHODS

The standards, reagents and equipment used within the scope of in vitro analyzes of nasal spray, which contains the corticosteroid active ingredient developed by Abdi İbrahim R&D Center, are as follows.

MATERIALS

- a) Working standard
- b) Anhydrous Potassium dihydrogen phosphate (Merck, catalog number:104873)
- c) Acetonitrile (Merck, catalog number:1.00030.4000)

EQUIPMENTS

- a) Waters High Performance Liquid Chromatography equipped with an ultraviolet/visible detector Waters 2489; a reversed phase column: Waters BEH C18 50 mm x 2.1mm x 1.7 µm; a data recorder and processor system: Empower Software 3
- b) Brookfield DV II+Pro
- c) Malvern Mastersizer (3000E, 2000)
- d) Spraytech-Open Spray
- e) Renishaw inVia Confocal Raman Microscope

Composition of the formulations

Nasal spray product containing corticosteroid active ingredient was developed by Abdi İbrahim İlaç R&D Center. The Reference Listed Drug (RLD) was obtained from Germany. The composition of the formulation contains active ingredient, tonicity agent, suspending agent, surfactant, antimicrobial preservative, chelating agent, solvent.

METHODS

Single Actuation Content through Container Life (SCU):

Validated UPLC uniformity of delivered dose and uniformity of dosage units methods will be used for the assay of the finished product, the content of active ingredient in bottle and assay per dose.

Droplet Size Distribution by Laser Diffraction (DSD)

The droplet size distribution is measured by using the method of Nasal Spray in Spraytech. The studies will be performed within a range of 2 to 7 cm from the actuator orifice, with the two distances separated by 3 cm or more.

Particle Size Distribution

Drug Particle Size Distribution in suspension formulations has the potential to influence the rate and extent of drug availability to nasal sites of action and to systemic circulation. If drug Particle Size Distribution in the Test and Reference products can be accurately measured using an analytical method such as Drug in Small Droplets (using Copley Next Generation Impactor

(NGI)) and morphology directed Raman spectroscopy or any other advanced methodology, may submit comparative particle size distribution data as part of their drug characterization within their application.

Drug in Small Droplets

Drug in Small Droplets studies on the nasal spray product using Copley Next Generation Impactor (NGI) instrument are performed to determine the relative amount of small droplets (< 9 μm , below the top stage) in the test and reference products. Since the amount of drug deposited below the top stage is of primary interest, the drug deposition should be categorized in two groups. Group 1 should include all drug deposited below the top stage which is < 9 μm in size. Group 2 should include the total mass of drug collected on all stages and accessories. A validated UPLC Drug in Small Droplet method will be used for the assay of the finished product, the content of active ingredient in bottle and assay per dose.

PSD by Raman Spectroscopy

Raman spectroscopy is used to distinguish suspended drug particles from other particles and suspended excipients. With the Raman microscope, only the size of the particles is analyzed by the spectrum of the drug substance.

Spray Pattern

Spray pattern studies characterize the spray either during the spray prior to impaction or following impaction on an appropriate target such as a thin-layer chromatography (TLC) plate. Spray patterns for certain nasal spray products may be spoked or otherwise irregular in shape. Spray patterns can be characterized and quantitated by either manual or automated image analysis. Both analyses will allow shape and size to be determined.

Plume Geometry

Plume geometry describes a side view of the aerosol cloud parallel to the axis of the plume, and we recommend it be based on high-speed photography, a laser light sheet and high speed digital camera, or other suitable methods. The image would be snapshot, not time averaged. Quantitation can be by manual analysis or automated image analysis.

Plume geometry would be performed at:

- Beginning lifestage only
- One side view only
- A single delay times

Priming and repriming

This study carried out to determine the number of sprays should be evaluated as waste when using the product stored in different positions such as horizontal and vertical. At the same time, when the bottle is resprayed at the end of its unused period, a re-spraying study is carried out to determine the number of sprays that should be considered as waste.

Profiling of Sprays Near Container Exhaustion (Tail Off Characteristics)

For nasal spray drug products, a study should be conducted to determine the profiles of SCU each individual spray after the point at which the labeled number of sprays have been dispensed until no more sprays are possible.

Shaking Requirement

The possibility of incorrect dosing which may occur with foaming or insufficient shaking, will be tested by conducting the dose uniformity tests and appropriate shaking time will be determined.

Performance After Temperature Cycling

For nasal spray suspension drug products, a stress temperature cyclic study should be performed to evaluate the effects of high and low temperature variations that may be encountered during shipping and handling on the quality and performance of the drug product.

This study is conducted to evaluate the effect of the temperature cycling on Nasal Spray Reference product and the Nasal spray test product delivered dose homogeneity.

Robustness

The product performance should be investigated under conditions to simulate use by patients. This includes activating the delivery device at the frequency indicated in the instructions for use. Device robustness should be studied for nasal spray drug products and the performance characteristics of the device should be studied after different handling situations (e.g., dropping, shaking, vibrating).

Effect of Dosing Orientation

For nasal spray drug products, studies should be undertaken to determine the comparative performance of the devices in terms of SCU and droplet size distribution at various dosing orientations.

Density

The study will be performed with 10 bottles selected from each of 3 batches of the reference product and 10 bottles from each of 3 batches of the test product nasal spray.

Viscosity (S62, 90 rpm, Turque: 50%±10%, Room Temperature)

The study will be performed with 50 bottles (5 bottles are used for each analysis sample and a total of 10 viscosity analysis samples are obtained) selected from each of 3 batches of the reference product nasal spray and 50 bottles (5 bottles are used for each analysis sample and a total of 10 viscosity analysis samples are obtained) selected from each of 3 batches of the test product nasal spray.

Osmolality

The study will be performed with 10 bottles selected from each of 3 batches of the Reference product 10 bottles from each of 3 batches of the test product, Nasal Spray, Suspension.

pН

The study will be performed with 10 bottles selected from each of 3 batches of the Reference product and 10 bottles from each of 3 batches of the test product, Nasal Spray, Suspension.

EXPERIMENTAL

Single Actuation Content through Container Life (SCU):

The pump primes by using 6 actuations (Reference product label recommends "wasting" of the first six actuations for priming). Testing performs at the beginning of life stage, actuation # 7 (referred as #1),

middle of life stage, actuation # 66 (referred as #60), and at the end of bottle life actuation #126 (referred as #120). Each single actuation collects into a 5 mL volumetric flask and assay is performed by UPLC.

Droplet Size Distribution by Laser Diffraction (DSD)

The pump primes by using 6 actuations (Reference product label recommends "wasting" of the first six actuations for priming). Testing performs at the beginning of life stage, actuation #7 (referred as #1) and at the end of bottle life actuation #126 (referred as #120). Samples test in the study is two different distance which are 30 mm and 60 mm and 10 bottles selected from each of 3 batches of the Reference product and 10 bottles from each of 3 batches of the test product, Nasal Spray, Suspension. Spray bottle should be shaken vigorously before measurement. The device is primed at least five spray actuations.

Method for Vertical Distance from Laser is 30 mm

Device	Spraytech-Open Spray			
Hardware	NSS System			
Vertical Distance from Laser	30 mm			
Angle (°)	0°			
Number Of Events	1			
Particle Name	Water			
Particle Refractive Index	1.33			
Particle Density (g/mL)	1.00			
Dispersant Name	Air			
Dispersant Refractive Index	1.00			
Profile Type	Velocity based			
Actuation Velocity (mm/s)	100			
Hold Time (ms)	500			
Return Velocity (mm/s)	100			
Interaction Delay (ms)	1000			

Method for Vertical Distance from Laser is 60 mm

Device	Spraytech-Open Spray			
Hardware	NSS System			
Vertical Distance from Laser	60 mm			
Angle (°)	0°			
Number Of Events	1			
Particle Name	Water			
Particle Refractive Index	1.33			
Particle Density (g/mL)	1.00			
Dispersant Name	Air			
Dispersant Refractive Index	1.00			
Profile Type	Velocity based			
Actuation Velocity (mm/s)	100			
Hold Time (ms)	500			
Return Velocity (mm/s)	100			
Interaction Delay (ms)	1000			

Single spray droplet size distribution and span are report based on volume (mass). Span can be computed as ((D90 - D10)/D50).

Particle Size Distribution

Drug Particle Size Distribution in suspension formulations has the potential to influence the rate and extent of drug availability to nasal sites of action and to systemic circulation. If drug Particle Size Distribution in the Test and Reference products can be accurately measured using an analytical method such as Drug in Small Droplets (using Copley Next Generation Impactor (NGI)) and morphology directed Raman spectroscopy or any other advanced methodology, have been submitted comparative particle size distribution data as part of their drug characterization within their application.

In order to identify and measure the size of drug particles without any interference from excipient particles suspended in the formulation, Particle Size Distribution has been performed by Raman spectroscopy as a comprehensive method to demonstrate the adequacy of the chosen method.

Drug in Small Droplets

The pump primes by using 6 actuations (Reference product label recommends "wasting" of the first six actuations for priming). Testing is performed at the beginning of life stage, and at the end of bottle life actuation. The sample placed in the nosepiece adapter is sprayed once into the Glass Expansion Chamber. The process is repeated 10 times in the same way for 1 sample preparation for each part shown in the table below, the sample collected at the stages is taken by washing with the solvent in the specified volumetric flasks. Each single head and stage sample collect into a 50 mL volumetric flask and assay is performed by UPLC.

Table 1: Sample preparation for Drug in Small Droplets Test

Part	Sample	Volume of Volumetric
		Flask (mL)
Head	Glass Expansion Chamber + Induction port + Nosepiece adapter	50
Stage	Stage 1 + Stage 2 + Stage 3 + Stage 4 + Stage 5 + Stage 6 + Stage 7 + Stage 8	50

PSD by Raman spectroscopy

Renishaw's in ViaTM Qontor Raman microscope, equipped with 532 nm laser excitation and Stream HR Raman mapping, use to analyse samples of nasal spray containing an API of corticosteroid active ingredient. Renishaw's Particle statistics app is then used to analyse the shape and particle size distribution of the APIs.

Analysis is performed on a single dried droplet from each batch. Samples tested in the study will be 10 bottles from each of 3 lots of the Reference product and 10 bottles from each of 3 lots of the test product.

Spray Pattern

Analysis will be carried out using the manual method. Samples are tested in the study from two different distances which are 30 mm and 60 mm and 10 bottles selected from each of 3 batches of the Reference product, and 10 bottles from each of 3 batches of the test product, Nasal Spray, Suspension. The lot numbers are given in Section C.1 and C.2.

The pump primes by using 6 actuations (Reference product label recommends "wasting" of the first six actuations for priming). Testing is performed at the beginning of life stage, actuation #7 (referred as #1).

In order to get accurate and repeatable puffs every time, analyzes will be made using the spray head of the Spraytech-Open Spray device. The distance to be measured is measured from the puff head and vertically sprayed on the filter paper kept at the desired distance with the help of clips.

Spray bottle should be shaken vigorously before measurement. After each actuation, the spray pattern of the regarding actuation is determined. D_{MAX} (mm), D_{MIN} (mm), Average, Spray Pattern (D_{MAX}/D_{MIN}) and Angle values are saved.

Plume Geometry

The pump primes by using 6 actuations (Reference product label recommends "wasting" of the first six actuations for priming). Testing performs at the beginning of life stage, actuation # 7 (referred as #1).

Samples are tested in the study from a distance which is 30 mm and 10 bottles selected from each of 3 batches of the Reference product and 10 bottles from each of 3 batches of the test product, Nasal Spray, Suspension. Spray bottle should be shaken vigorously before measurement. The device is primed at least five spray actuations.

Analysis Method

Alialysis Method				
Device	Spray VIEW® Measurement System			
Vertical Distance from Laser	30 mm			
Actuation	automatically			
Return velocity	100 mm/s			
Return acceleration	5700 mm/s ²			
Initial delay	0 ms			
Hold time	100 ms			
Final delay	0 ms			

Priming and Repriming

20 unused spray bottles are taken. 10 spray bottles are tested in vertical position and 10 spray bottles are tested in horizontal position. Each spray bottle is sprayed 6 times and the assay of active ingredient in the sample obtained by each spray is determined. After the test is completed, the bottles are removed to the cabinets in two positions which are vertical and horizontal at 25 °C 60% RH condition. The first spraying and re-spraying test is repeated on the 15th day and 30th day.

Each single actuation is collected into a 5 mL volumetric flask and are assayed by UPLC. A validated UPLC uniformity of delivered dose and uniformity of dosage units' method will be used for the assay of the finished product, the content of active ingredient in bottle and assay per dose.

Profiling of Sprays Near Container Exhaustion (Tail Off Characteristics)

Samples tested in the study will be 3 bottles selected from each 3 batches of the Reference product 3 bottles from each 3 batches of the test product, Nasal Spray, Suspension.

A validated UPLC uniformity of delivered dose and uniformity of dosage units' method will be used for the assay of the finished product, the content of active ingredient in bottle and assay per dose. Each single actuation is collected into a 5 mL volumetric flask and are assay by UPLC.

In order to save time and consumption and increase analytical efficiency, all puffs after the end of bottle life actuation #126 (referred as #120) puff will be analyzed as Based on the information we obtained from the Number of Actuations per Container test, the Profiling of Sprays Near Container Exhaustion analysis will be applied for the test product and the reference product as described in the Table 2 and Table 3 below.

Table 2: Profiling of Sprays Near Container Exhaustion analysis for test product

Number of puffs	Explanation		
From 120 th puff to 170 th puff	Every 10 th puff will be analyzed.		
From 170 th to 180 th puff	Every 5 th puff will be analyzed.		
From 180 th puff to Exhaustion puff	All puffs will be analyzed.		

Table 3: Profiling of Sprays Near Container Exhaustion analysis for reference product

Number of puff	Explanation		
From 120 th puff to 140 th puff	Every 10 th puff will be analyzed.		
From 140 th to 150 th puff	Every 5 th puff will be analyzed.		
From 150 th puff to Exhaustion puff	All puffs will be analyzed.		

Shaking Requirement

10 different bottles of Nasal Spray, Suspension are shaken slowly (with agitation rate once per second) for 3 seconds, 5 seconds and 10 seconds, respectively. At the end of each shaking period, the dose analysis will be made within the scope of single-dose weight and dose uniformity for the dose sprayed from each bottle.

The study will be performed 10 bottles selected from each of 3 batches of the Reference product and 10 bottles from each of 3 batches of the test product, Nasal Spray, Suspension. Samples will be shaken slowly (with agitation rate once per second) for 3 seconds, 5 seconds and 10 seconds, respectively. Each single actuation is collected into a 5 mL volumetric flask and are assay by UPLC.

A validated UPLC uniformity of delivered dose and uniformity of dosage units' method will be use for the assay of the finished product, the content of active ingredient in bottle and assay per dose.

Performance After Temperature Cycling

The bottles are analyzed to determine initial values which are packaging material observation for any visual defects, mean weight change of bottles (Weight Loss), particle size distribution, droplet size distribution, delivered dose uniformity, density, active ingredient assay and related substances.

Nasal spray bottles will be stored in two position which are vertical and horizontal and cycled between recommended storage conditions Temperature cycling conditions are 25 °C 60% RH and 40 °C 75% RH. The nasal spray bottles are stored with 6 recurrent at each temperature condition. Each temperature cycle time was applied for 24 hours. The temperature cycle procedure is started at 25 °C 60% RH, and this cycle is continued for 12 days by changing every 24 hours between 40 °C 75% RH and 25 °C 60% RH. Intermediate condition analysis will be done on the 6th day and final analyzes are made at the end of the 12th day. Packaging material observation for any visual defects, mean weight change of bottles (Weight Loss), particle size distribution, droplet size distribution, delivered dose

uniformity, density, active ingredient assay and related substances analyzes are performed on the samples stored in two different positions on the 6th and 12th days.

Robustness

The bottles are analyzed to determine initial values which are appearance, particle size distribution, droplet size distribution and Single Actuation Content through Container Life (SCU).

Nasal spray bottles will be transported in two distance which are Istanbul and Izmir (nearly 500 km) several time. Appearance, particle size distribution, droplet size distribution and Single Actuation Content

through Container Life (SCU) analyzes will be made for the test and reference product at the 3rd arrival (approximately 3000 km) and 6th arrival (approximately 6000 km) to the starting point (Istanbul).

Effect of Dosing Orientation

Samples tested in the study will be 10 bottles selected from each of 3 batches of the Reference product and 10 bottles from each of 3 batches of the test product, Nasal Spray, Suspension. For the SCU analysis, the sample will be puffed at a spray angle of 45°.

Droplet size distribution method is worked according to the method below.

Metot for Vertical Angle from Laser is 45°

Device	Spray tech-Open Spray			
Hardware	NSS System			
Vertical Distance from Laser	45 mm			
Angle (°)	0°			
Number Of Events	1			
Particle Name	Water			
Particle Refractive Index	1.33			
Particle Density (g/mL)	1.00			
Dispersant Name	Air			
Dispersant Refractive İndex	1.00			
Profile Type	Velocity based			
Actuation Velocity (mm/s)	100			
Hold Time (ms)	500			
Return Velocity (mm/s)	100			
Interaction Delay (ms)	1000			

DENSITY

Density of sample at 20 $^{\circ}$ C is measured according to Ph.Eur. 2.2.5. Sample bottle should be shaken vigorously before measurement.

Viscosity (S62, 90 rpm, Torque: 50%±10%, Room Temperature)

Device	Brookfield DV II+Pro
Spindle	S62
Rotation Speed	90 rpm
Sample Volume	50 mL
Sample Temperature	Room temperature
Torque	50 % ± 10 %

Final product viscosity measurement should be performed at the earliest 24 hours after production.

50~mL of analysis sample is transferred directly to the viscosity measuring tube without shaking. By adjusting the device parameters, the sample is mixed at 90 rpm, using the S62 spindle until the torque value is $50\% \pm 10\%$. When the target value is reached, the viscosity value is measured according to Ph. Eur.2.2.10 and the result is recorded.

Osmolality

One bottle is shaken well and opened. The osmolality value of the sample is measured according to Ph.Eur.2.2.35.

pН

10 mL sample is taken into a suitable container. The pH value of the sample is measured with a calibrated pH meter according to Ph.Eur.2.2.5.

RESULTS AND DISCUSSIONS

A summary of the design used in the PBE (Population Bioequivalence) and ABE (Average Bioequivalence) statistical calculations performed for all tests is as shown in Table 4.

Table 4: A summary of the design used in the PBE (Population Bioequivalence) and ABE (Average Bioequivalence) statistical calculations.

	REFERENCE	TEST
Number of Batches	3	3
Number of Container per Batches	10	10

Single Actuation Content Through Container Life

The results are as shown in Table 5.

Table 5: Active ingredient % results of the beginning, middle and end spray for the test and reference product.

	Test Prod			Reference Product		
	1st batch	2 nd batch	3 rd batch	1st batch	2 nd batch	3 rd batch
	Active ing	gredient %				
Beginn	ing Spray ((10 bottles)				
AVG	98.7	100.9	99.5	97.4	94.5	94.1
MIN	92.8	94.2	93.9	95.7	90.4	92.3
MAX	104.2	109.6	103.8	100.9	98.3	95.9
Middle	Spray (10	bottles)				
AVG	102.9	99.0	99.2	98.9	95.6	94.0
MIN	96.6	94.2	95.9	96.3	93.8	91.6
MAX	107.4	108.8	105.7	112.6	98.8	96.6
End Spray (10 bottles)						
AVG	102.6	98.5	98.8	98.3	94.4	93.3
MIN	96.2	95.4	95.5	95.3	89.4	89.1
MAX	107.1	104.6	101.4	103.8	99.6	95.1

Evaluation Result

• All results found meet limits of 85 to 115 percent.

 ABE and PBE statistical evaluations were made in the Excel using SAS language. The results of the statistical calculation of ABE and PBE are as shown in Table 6.

Table 6: Summary results of statistical evaluation for ABE and PBE

ABE no LS (Least Squares) means						
Overall mean	97.49325013					
CV (Coefficient of variation) %	2.82242431	CV ref % 2.993343941				
ABE	Ratio=theta	LL (Lower limit) UL (Upper Lim				
	1.046666827	1.036374331	1.05706154			
Limits	Non scaled	0.9	1.1111			
	Scaled ABE	0.9	1.1111			
Conclusion based on non scaled	BIOEQUIVAL	ENT				
PBE Results						
σR	0.029926737	CONSTANT SCALED				
Ratio	1.046666827					
Нη	-0.017116579	As <0: BIOEQUIVALENT				
Fieller on non transformed data						
CV% within	3	CV ref %	4			
	Ratio	LL	UL			
	1.0469	1.0379	1.0559			
Conclusion based on non scaled	BIOEQUIVAL	ENT				
Classical CI based on non transfe	ormed					
ABE	Dif	LL	UL			
	4.466666667	3.625464816	5.307868517			
Limits	Non scaled	-9.533666667	9.533666667			
Conclusion based on non scaled						
Classical CI based on non transformed as percentage of the reference						
ABE	Dif	LL	UL			
Dif (Difference) in % ref	1.0469 1.0380 1.0557					
BIOEQUIVALENT						

According to Guidance for Industry Bioavailability and Bioequivalence Studies for Nasal Aerosols and Nasal Sprays for Local Action, reference product and test product have been proven to be similar for Single Actuation Content through Container Life test.

Droplet Size Distribution by Laser Diffraction (DSD) The results obtained are as shown in Table 7

The results obtained are as shown in Table 7 (During analysis, 10 bottles were used for each batch).

Table 7: Droplet size distribution by laser diffraction (DSD) results at 30 mm and 60 mm distance of the beginning and end spray for the test (batch 1, batch 2 and batch 3) and reference (batch 1, batch 2 and batch 3) product

	Test Results							
	30 mm from the actuator orifice far							
	Beginning Spray			End Spray				
	D10	D50	D90	SPAN	D10	D50	D90	SPAN
	μm	μm	μm		μm	μm	μm	
AVG	23.14	45.19	91.69	1.51	22.94	44.87	89.61	1.49
MIN	20.09	41.82	78.97	1.28	18.19	41.57	78.35	1.27
MAX	24.96	50.37	125.66	2.10	26.05	47.87	107.16	1.98
	60 mm	60 mm from the actuator orifice far						
AVG	24.31	44.02	81.81	1.30	24.29	45.88	90.37	1.44
MIN	20.53	38.47	73.75	1.13	20.72	40.63	74.96	1.12
MAX	26.94	48.96	92.14	1.58	27.69	55.37	114.93	1.89
	Refere	nce Res	ults					
	30 mm	from th	ne actuato	or orifice	far			
AVG	22.89	45.45	95.81	1.61	23.25	46.24	95.28	1.56
MIN	21.57	42.02	85.52	1.43	22.31	43.67	86.92	1.42
MAX	24.26	48.67	113.83	2.04	24.38	49.11	109.91	1.78
	60 mm from the actuator orifice far							
AVG	25.51	46.17	84.71	1.28	25.68	46.30	84.38	1.27
MIN	24.06	42.13	70.64	1.08	23.78	43.10	75.20	1.12
MAX	27.22	49.52	100.29	1.65	27.69	48.85	95.13	1.43

Evaluation Result

• All results obtained were found suitable within the scope of in vitro studies.

 ABE and PBE statistical evaluations were made in the Excel using SAS language. The results of the statistical calculation of ABE and PBE are as shown in Table 8 and Table 9.

Table 8: Summary results of statistical evaluation for ABE and PBE (D50 results of beginning and end spray at 30 mm and 60 mm distance)

D50 Results								
ABE no LS means								
	30 mm			60 mm	60 mm			
Overall mean	45.40208652			45.48689426				
CV %	3.747460608	CV ref %	2.993343941	5.372928202	CV ref %	4.097002078		
ABE	Ratio=theta	LL	UL	Ratio=theta	LL	UL		
	0.982162134	0.9711	0.9934	0.965402353	0.9498	0.9812		
Limits	Non scaled	on scaled 0.9 1.11		Non scaled	0.9	1.11		
	Scaled ABE	0.9	1.11	Scaled ABE	0.9	1.11		
Conclusion based	BIOEQUIVALI	ENT		BIOEQUIVALE	ENT			
on non scaled								
PBE Results								
σR	0.029926737	CONSTANT S	CALED	0.040952844	CONSTANT	SCALED		
Ratio	1.046666827			0.965402353				
Нη	-0.017116579	As <0: BIOEQU	JIVALENT	-0.014288449	As <0: BIOEQ	UIVALENT		
Fieller on non transf	ormed data							
CV% within	3	CV ref %	5	5	CV ref %	6		
	Ratio	LL	UL	Ratio	LL	UL		
	0.9823	0.9712	0.9935	0.9666	0.9512	0.9823		
Conclusion based	BIOEQUIVALI	ENT		BIOEQUIVALE	ENT	•		
on non scaled								
Classical CI based or	n non transforme	ed						
ABE	Dif	LL	UL	Dif	LL	UL		

	-0.812166667	-1.327370313	-	-1.547	-2.280583472	-0.813416528
			0.296963021			
Limits	Non scaled	-4.584133333	4.584133333	Non scaled	-4.633133333	4.633133333
Classical CI based	on non transform	ed as percentage	of the reference			
ABE	Dif	LL	UL	Dif	LL	UL
Dif in % ref	0.9823	0.9710	0.9935	0.9666	0.9508	0.9824
Dil ili 70 rei	0.9823	0.9710	0.9933	0.9000	0.9308	0.9624

Table 9: Summary results of statistical evaluation for ABE and PBE (span results of beginning and end spray at 30 mm and 60 mm distance)

		and oo m	m distance)					
Span Results								
ABE no LS means								
	30 mm			60 mm				
Overall mean	1.532525467			1.313273598				
CV %	10.0635551	CV ref %	7.133102086	9.487161066	CV ref %	7.894485478		
ABE	Ratio=theta	LL	UL	Ratio=theta	LL	UL		
	0.94449967	0.9162	0.9736	1.064193729	1.0341	1.0951		
Limits	Non scaled	0.9	1.11	Non scaled	0.9	1.11		
	Scaled ABE	0.9	1.11	Scaled ABE	0.9	1.11		
Conclusion based on	BIOEQUIVAL	ENT		BIOEQUIVAL	ENT			
non scaled								
PBE Results								
σR	0.029926737	CONSTANT S	SCALED	0.078822266	CONSTAN	CONSTANT SCALED		
Ratio	1.046666827			1.064193729				
Нη	-0.017116579	As <0: BIOEQ	UIVALENT	-0.004547645	As <0: BIOE	QUIVALENT		
Fieller on non transforn	ned data							
CV% within	9	CV ref %	10	8	CV ref %	12		
	Ratio	LL	UL	Ratio	LL	UL		
	0.9494	0.9193	0.9804	1.0671	1.0360	1.0991		
Conclusion based on	BIOEQUIVAL	ENT		BIOEQUIVAL	ENT			
non scaled								
Classical CI based on no	on transformed							
ABE	Dif	LL	UL	Dif	LL	UL		
	-0.08000000	-0.12946277	-0.03053723	0.085666667	0.04674194	0.124591394		
Limits	Non scaled	-0.15810000	0.15810000	Non scaled	-0.1277	0.1277		
Classical CI based on no	on transformed as	percentage of the	ne reference					
ABE	Dif	LL	UL	Dif	LL	UL		
Dif in % ref	0.9494	0.9181	0.9807	1.0671	1.0366	1.0976		
	BIOEQUIVAL	ENT		BIOEQUIVAL	ENT			

As a result, according to Guidance for Industry Bioavailability and Bioequivalence Studies for Nasal Aerosols and Nasal Sprays for Local Action, reference product and test product have been proven to be similar for Droplet Size Distribution.

Drug in Small Droplets

The results obtained are as shown in Table 10. (During analysis, 10 bottles were used for each batch.)

Table 10: Drug in Small Droplets test results of the beginning and end spray for the test (batch 1, batch 2, batch 3) and reference (batch 1, batch 2, batch 3) product

	Drug in Small Droplets		
Batches	% Drug in Small Droplet	% Drug in Small Droplet	Total Mass (%)
	head part	NGI Part (sum of all stages)	
AVG	95.6	< LOQ	95.6
SD	3.56		3.56
RSD %	3.72		3.72

LOQ: Limit of Quantitation

Evaluation Result

 All the total mass of drug collected on all stages and accessories results meet 85% and 115% of the amount labeled on a per actuation basis and the results of the samples taken from all Stage part meet less than 5% (9 μ m \leq 5%) limits.

 ABE and PBE statistical evaluations were made in the Excel using SAS language. The results of the statistical calculation of ABE and PBE have been as shown in Table 11.

Table 11: Summary results of statistical evaluation for ABE and PBE (Total Mass (%) result)

ABE no LS means	cvaruation for A	,	` ,		
Overall mean	95.55761379				
CV %	2.94714878	CV ref %	3.23038008		
ABE	Ratio=theta	LL	UL		
	1.047643601	1.0344	1.0611		
Limits	Non scaled	0.9000	1.1100		
	Scaled ABE	0.9000	1.1100		
Conclusion based on non scaled	BIOEQUIVAL	ENT			
PBE Results					
σR	0.032295378	CONSTANT S	SCALED		
Ratio	1.047643601				
Ηη	-0.017619586	As <0: BIOEQUIVALENT			
Fieller on non transformed data					
CV% within	2	CV ref % 2			
	Ratio	LL	UL		
	1.0475	1.0343	1.0608		
Conclusion based on non scaled	BIOEQUIVAL	ENT			
Classical CI based on non transfe	ormed				
	or micu				
ABE	Dif	LL	UL		
		LL 3.226746915	UL 5.639919752		
	Dif				
ABE	Dif 4.433333333 Non scaled	3.226746915 -9.340666667	5.639919752		
ABE Limits	Dif 4.43333333 Non scaled BIOEQUIVAL	3.226746915 -9.340666667 ENT	5.639919752 9.340666667		
ABE Limits Conclusion based on non scaled	Dif 4.43333333 Non scaled BIOEQUIVAL	3.226746915 -9.340666667 ENT	5.639919752 9.340666667		
ABE Limits Conclusion based on non scaled Classical CI based on non transfe	Dif 4.43333333 Non scaled BIOEQUIVAL ormed as percer	3.226746915 -9.340666667 ENT tage of the refe	5.639919752 9.340666667 rence		

As stated in method validation studies performed for Drug in Small Droplets, Limit of Quantitation (LOQ) value was found to be 0.5%. As seen in Table 10, all the results obtained by adding all the stages of the NGI device were found to be less than or equal to the LOQ limit. The quantitation limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be quantitatively

determined with satisfactory accuracy and precision. For this reason, statistical evaluation was not made for the samples collected from the stage parts of the NGI device.

PSD by Raman Spectroscopy

The results obtained are as shown in Table 12 (During analysis, 10 bottles were used for each batch).

Table 12: Particle Size Distribution by Raman Microscope for actuation and without actuation for the test (batch 1, batch 2 and batch 3) and reference (batch 1, batch 2 and batch 3) product

Test Re	Test Results										
		Act	uation	1	Without Actuation						
	D90	D50	D10	SPAN	D90	D50	D10	SPAN			
AVG	5.48	2.02	1.17	2.14	22.94	44.87	89.61	2.13			
MIN	4.36	1.63	0.78	1.72	18.19	41.57	78.35	1.52			
MAX	6.25	2.39	1.36	2.61	26.05	47.87	107.16	2.49			
Refere	nce Re	sults									
AVG	5.67	2.07	1.29	2.12	5.72	2.07	1.25	2.17			
MIN	4.24	1.81	1.01	1.57	3.15	1.5	0.90	1.43			
MAX	6.28	2.26	1.36	2.41	6.49	2.43	1.36	2.90			

*AVG: For 3 batches

Evaluation Result

• ABE and PBE statistical evaluations were made in the Excel using SAS language. The results of the

statistical calculation of ABE and PBE are as shown in Table 13 and Table 14.

Table 13: Summary results of statistical evaluation for ABE and PBE (actuation and without actuation of D50 results)

D50 Results			, contract				
ABE no LS means							
	Actuation			Without Actuation			
Overall mean	2.041721172			2.08110494			
CV %	7.459088065	CV ref %	4.601458375	8.914333024	CV ref %	10.93542888	
ABE	Ratio=theta	LL	UL	Ratio=theta	LL	UL	
	0.973089969	0.9423	1.0049	1.02367113	0.9851	1.0637	
Limits	Non scaled	0.9	1.11	Non scaled	0.9	1.11	
	Scaled ABE	0.9	1.11	Scaled ABE	0.9	1.11	
Conclusion based on non	BIOEQUIVALEN	T		BIOEQUIVAL	ENT		
scaled							
PBE Results							
σR	0.045990254	CONSTANT SO	CALED	0.109029465	CONSTANT SCALED		
Ratio	0.973089969			1.02367113			
Ηη	-0.006875377	As <0: BIOEQU	IVALENT	-0.01982711	As <0: BIOEQU	JIVALENT	
Fieller on non transformed	data						
CV% within	5	CV ref %	6	8	CV ref %	10	
	Ratio	LL	UL	Ratio	LL	UL	
	0.9763	0.9458	1.0078	1.0200	0.9832	1.0582	
Conclusion based on non	BIOEQUIVALEN	T		BIOEQUIVAL	ENT		
scaled							
Classical CI based on non to	ransformed						
ABE	Dif	LL	UL	Dif	LL	UL	
	-0.049077024	-0.114005069	0.015851022	0.041353809	-0.035383779	0.118091397	
Limits	Non scaled	-0.207186258	0.207186258	Non scaled	-0.206827961	0.206827961	
Conclusion based on non	BIOEQUIVALEN	T T		BIOEQUIVAL	ENT		
scaled							
Classical CI based on non to	ransformed as perc	entage of the refer	ence				
ABE	Dif	LL	UL	Dif	LL	UL	
Dif in % ref	0.9763	0.9450	1.0077	1.0200	0.9829	1.0571	
	BIOEQUIVALEN	T		BIOEQUIVAL	ENT		

Table 14: Summary results of statistical evaluation for ABE and PBE (actuation and without actuation of span results)

Span Results						•	
ABE no LS means							
	Actuation			Without Actuation			
Overall mean	2.119522351			2.133021801			
CV %	10.03287624	CV ref %	9.980164265	11.58001901	CV ref %	13.11469568	
ABE	Ratio=theta	LL	UL	Ratio=theta	LL	UL	
	1.011493511	0.9687	1.0561	0.983784735	0.9360	1.0340	
Limits	Non scaled	0.9	1.11	Non scaled	0.9	1.11	
	Scaled ABE	0.9	1.11	Scaled ABE	0.9	1.11	
Conclusion based on non	BIOEQUIVALE	NT		BIOEQUIVALI	ENT		
scaled							
PBE Results	_	·		_	1		
σR	0.099554459	CONSTANT S	CALED	0.130588234	CONSTANT SCALED		
Ratio	1.011493511			0.983784735			
Ηη		-0.012821863 As <0: BIOEQUIVALENT			As <0: BIOEQU	IVALENT	
Fieller on non transformed d	ata						
CV% within	5	CV ref %	6	11	CV ref %	13	
	Ratio	LL	UL	Ratio	LL	UL	
	1.0118	0.9703	1.0550	0.9803	0.9339	1.0289	
Conclusion based on non scaled	BIOEQUIVALE	NT		BIOEQUIVALENT			
Classical CI based on non tra	ansformed						
ABE	Dif	LL	UL	Dif	LL	UL	
	0.024877242	-0.064097218	0.113851703	-0.042749651	-0.146568638	0.061069335	
Limits	Non scaled	-0.207186258	0.207186258	Non scaled	-0.216792156	0.216792156	
Conclusion based on non	BIOEQUIVALE	NT		BIOEQUIVALI	ENT		
scaled							
Classical CI based on non tra	ansformed as perce	entage of the refer	ence		•		
ABE	Dif	LL	UL	Dif	LL	UL	
Dif in % ref	1.0118	0.9697	1.0538	0.9803	0.9324	1.0282	
	BIOEQUIVALE	NT		BIOEQUIVALI	ENT		

As a result, according to Guidance for Industry Bioavailability and Bioequivalence Studies for Nasal Aerosols

and Nasal Sprays for Local Action, reference product and test product have been proven to be similar for Particle Size Distribution.

Spray Pattern

The results obtained are as shown in Table 15 (During analysis, 10 bottles were used for each batch).

Table 15: Spray Pattern results at 30 mm and 60 mm distance for the test product (batch 1, batch 2 and batch 3) and reference product (batch 1, batch 2 and batch 3)

Test Product					Juicii 1,		Reference Product					
30 mm	l					30 mm						
1st Bat	ch						1st Batch					
	Dmax (mm)	Dmin (mm)	Average (mm)	Spray Pattern	Angle			Dmax (mm)	Dmin (mm)	Average (mm)	Spray Pattern	Angle
AVG	33.20	27.00	30.10	1.24	53.25		AVG	31.70	26.80	29.25	1.19	51.94
2 nd Ba	tch						2 nd Batch					
AVG	32.00	26.90	29.45	1.19	52.23		AVG	30.40	25.80	28.10	1.18	50.16
3rd Bat	tch						3 rd Batch					
AVG	30.10	25.80	27.95	1.17	49.90		AVG	30.20	26.10	28.15	1.17	50.20
60 mm	l						60 mm					
1st Bat	ch						1st Bat	ch				
AVG	46.70	37.70	42.20	1.24	70.22		AVG	45.10	39.10	42.10	1.16	70.07
2 nd Ba	tch						2nd Bat	tch				
AVG	44.40	34.30	39.35	1.30	66.44		AVG	44.70	37.70	41.20	1.19	68.91
3rd Bat	tch	•	•	•			3 rd Batch				•	
AVG	44.20	37.90	41.05	1.17	68.72		AVG	42.10	34.70	38.40	1.22	65.15

Evaluation Result

• ABE and PBE statistical evaluations were made in the Excel using SAS language. The results of

the statistical calculation of ABE and PBE are as shown in Table 16 and Table 17.

Table 16: ABE and PBE Results for test (batch 1, batch 2, batch 3) and reference (batch 1, batch 2, batch 3) product at 30 mm and 60 mm- Spray Pattern (Ovality ratio)

4114 00 1	min Spray rate	ern (Ovanej ra	110)			
30 mm			60 mm			
1.185849361			1.208679544			
6.523326379	CV ref %	6.432711701	6.906320462	CV ref %	6.041671109	
Ratio=theta	LL	UL	Ratio=theta	LL	UL	
1.017405818	0.9892	1.0464	1.03885035	1.0069	1.0718	
Non scaled	0.9	1.11	Non scaled	0.9	1.11	
Scaled ABE	0.9	1.11	Scaled ABE	0.9	1.11	
BIOEQUIVAL	ENT		BIOEQUIVAL	LENT		
0.06426072	CONSTANT S	SCALED	0.060361687 CONSTANT SCALED			
1.017405818			1.03885035			
-0.016813377	As <0: BIOEQ	UIVALENT	-0.01065064	As <0: BIOEQ	UIVALENT	
7	CV ref %	7	7	CV ref %	6	
Ratio	LL	UL	Ratio	LL	UL	
1.0175	0.9892	1.0467	1.0404	1.0078	1.0741	
BIOEQUIVAL	ENT		BIOEQUIVAL	LENT		
rmed						
Dif	LL	UL	Dif	LL	UL	
0.020666667	-0.012852014	0.054185348	0.048	0.009480428	0.086519572	
Non scaled	-0.1178	0.1178	Non scaled	-0.1188	0.1188	
rmed as percen	tage of the refer	ence				
Dif	LL	UL	Dif	LL	UL	
1.0175	0.9891	1.0460	1.0404	1.0080	1.0728	
BIOEQUIVAL	ENT		BIOEQUIVAL	LENT		
	30 mm 1.185849361 6.523326379 Ratio=theta 1.017405818 Non scaled Scaled ABE BIOEQUIVAL 0.06426072 1.017405818 -0.016813377 7 Ratio 1.0175 BIOEQUIVAL ormed Dif 0.020666667 Non scaled ormed as percen Dif 1.0175	30 mm 1.185849361 6.523326379	30 mm 1.185849361 6.523326379	1.185849361	30 mm	

Table 17: ABE & PBE Results for test (batch 1, batch 2, batch 3) and reference (batch 1, batch 2, batch 3) product at 30 mm and 60 mm distance – Dmax

Dmax	
© 2025 Scholars Academic Journal of Pharmacy Published by SAS Publishers, India	220

ABE no LS means									
	30 mm			60 mm					
Overall mean	31.16554614			44.43355926					
CV %	2.94714878	CV ref %	3.23038008	6.749673677	CV ref %	6.663328483			
ABE	Ratio=theta	LL	UL	Ratio=theta	LL	UL			
	1.030842997	0.9977	1.0505	1.025664281	0.9962	1.0559			
Limits	Non scaled	0.9	1.11	Non scaled	0.9	1.11			
	Scaled ABE	0.9	1.11	Scaled ABE	0.9	1.11			
Conclusion based on non	BIOEQUIVAI	LENT		BIOEQUIVAL	ENT				
scaled									
PBE Results									
σR	0.068801849	CONSTANT SO	CALED	0.066559499	CONSTANT SCALED				
Ratio	1.030842997			1.025664281					
Ηη	-	As <0: BIOEQU	IVALENT	-0.015991759 As <0: BIOEQUIVALENT					
-	0.010174209								
Fieller on non transformed	data								
CV% within	8	CV ref %	7	6	CV ref %	6			
	Ratio	LL	UL	Ratio	LL	UL			
	1.0475	1.0343	1.0608	1.0258	0.9970	1.0554			
Conclusion based on non	BIOEQUIVAI	LENT		BIOEQUIVAL	BIOEQUIVALENT				
scaled									
Classical CI based on non t	ransformed								
ABE	Dif	LL	UL	Dif	LL	UL			
	1	-0.026277956	2.026277956	1.133333333	-0.133445075	2.400111742			
Limits	Non scaled	-9.340666667	9.340666667	Non scaled	-4.396666667	4.396666667			
Classical CI based on non t	ransformed as p	percentage of the	reference		•				
ABE	Dif	LL	UL	Dif	LL	UL			
Dif in % ref	1.0325	0.9991	1.0659	1.0258	0.9970	1.0546			
	BIOEQUIVAI	LENT	•	BIOEQUIVAL	ENT	BIOEQUIVALENT			

As a result, according to Guidance for Industry Bioavailability and Bioequivalence Studies for Nasal Aerosols and Nasal Sprays for Local Action, reference product and test product have been proven to be similar for Spray Pattern.

Plume Geometry

The results obtained are as shown in Table 18 (During analysis, 10 bottles were used for each batch).

Table 18: Plume Geometry results at 30 mm distance for the test product (batch 1, batch 2 and batch 3) and reference product (batch 1, batch 2 and batch 3)

	1 elel elle	e product (batch 1, t	battii 2 anu batt	н э)
30 mm				
Test Pro	duct			
1st batch				
Batches	Plum Angle	Plume Angel_Log	Plume Width	Plume Width Log
AVG	43.00	1.63	23.99	1.37
2 nd batch				
AVG	42.19	1.62	23.46	1.37
3 rd batch				
AVG	42.3	1.60	23.6	1.35
Referenc	e Product			
1st batch				
AVG	44.6	1.65	24.6	1.39
2nd batch	•		•	
AVG	43.5	1.64	24.0	1.38
3 rd batch	•		•	
AVG	43.1	1.63	23.8	1.37

Evaluation Result

 Ratio of the geometric mean of the three batches of test to that of the three batches of reference (based on log-transformed data) for both plume angle and width, meet limits. The results are given in Table 19.

Table 19: Results for test (batch 1, batch 2, batch 3) and reference (batch 1, batch 2, batch 3) product regarding Plume Geometry-30 mm

	30 mm	30 mm	
	(Plume Angle Log)	(Plume Width Log)	
Reference product Geo. Average (batch 1, batch 2, batch 3)	1.63831442	1.379340654	
Test product Geo. Average (batch 1, batch 2, batch 3)	1.61379833	1.357497966	
Similarity	98.5	98.4	

As a result, reference product and test product have been proven to be similar for plume geometry.

Priming and Repriming

The results obtained are as shown in Table 20 (During analysis, 10 bottles held in horizontal and vertical positions were used for each batch).

Table 20: Results for test (batch 1, batch 2 batch 3) and reference (batch 1, batch 2 batch 3) product regarding Priming and Repriming Tests

		Initial		ig and Kej		-5-65		15 th day	30 th day
			ngredient,	%)				10 day	50 day
Batches	Stage	1 st Puff	2 nd Puff		4th Puff	5 th Puff	6th Puff	7th Puff	8th Puff
Test Proc		l .							
Batch 1									
AVG	Vertical	N.D	16.3	49.2	80.4	99.3	98.0	103.5	100.9
	Horizontal	N.D	16.3	49.7	81.2	100.2	98.5	105.0	104.5
Batch 2									
AVG	Vertical	N.D	17.3	60.0	80.4	90.7	97.2	101.8	99.9
	Horizontal	N.D	35.0	65.8	84.6	95.6	98.1	102.0	99.9
Batch 3									
AVG	Vertical	N.D	28.5	67.8	85.6	97.7	99.7	103.2	102.2
	Horizontal	N.D	19.9	59.8	80.3	94.6	97.3	100.6	100.1
Referenc	e Product								
Batch 1									
AVG	Vertical	N.D	N.D	41.1	86.1	92.7	95.0	96.8	96.4
	Horizontal	N.D	N.D	33.6	85.9	91.4	93.4	96.2	94.9
Batch 2									
AVG	Vertical	N.D	N.D	36.9	83.5	88.6	92.1	98.9	95.9
	Horizontal	N.D	N.D	29.4	81.3	88.6	92.8	96.8	95.4
Batch 3									
AVG	Vertical	N.D	N.D	35.2	78.4	88.3	89.2	94.1	93.1
	Horizontal	N.D	N.D	45.3	78.4	87.5	89.6	94.8	92.0

N.D: Not Detected

Evaluation Result

- The obtained results for 6th puff on initial, 7th puff on 15th day and 8th puff on 30th day meet the requirements.
- ABE and PBE statistical evaluations were made in the Excel using SAS language. The results of the statistical calculation of ABE and PBE are as shown in Table 21 and Table 22.

Table 21: ABE and PBE results for test (batch 1, batch 2, batch 3) and reference (batch 1, batch 2, batch 3) product regarding 6th puff on initial for priming and 7th puff on 15th day for repriming (in vertical and horizontal position)

ABE no LS means								
	6 th puff on ini	6 th puff on inital			7 th puff on 15 th day			
Overall mean	94.94899632			99.35547169				
CV %	3.970353532	CV ref %	3.193735733	3.484041716	CV ref %	2.300581492		
ABE	Ratio=theta	LL	UL	Ratio=theta	LL	UL		
	1.066079064	1.0533	1.0790	1.06594345	1.0548	1.0772		
Limits	Non scaled	0.9000	1.1100	Non scaled	0.9000	1.1100		
	Scaled ABE	0.9000	1.1100	Scaled ABE	0.9000	1.1100		
Conclusion based on	BIOEQUIVAI	LENT		BIOEQUIVALENT				
non scaled								
PBE Results								
σR	0.031929218	CONSTANT	Γ SCALED	0.023002772	CONSTANT	ΓSCALED		

Ratio	1.066079064			1.049141326		
Ηη	-	As <0: BIOEQ	UIVALENT	-	As <0: BIOEQUIVALENT	
	0.013387139			0.013590539		
Fieller on non transfor	med data					
CV% within	4	CV ref %	4	3	CV ref %	3
	Ratio	LL	UL	Ratio	LL	UL
	1.0667	1.0538	1.0796	1.0667	1.0552	1.0783
Conclusion based on	BIOEQUIVAL	ENT		BIOEQUIVALENT		
non scaled						
Classical CI based on a	non transforme	d				
ABE	Dif	LL	UL	Dif	LL	UL
	6.133333333	4.985725009	7.280941657	6.416666667	5.344168968	7.489164365
Limits	Non scaled	-9.2005	9.2005	Non scaled	-	9.625833333
					9.625833333	
Classical CI based on a	non transforme	d as percentage	of the referen	ce		
ABE	Dif	LL	UL	Dif	LL	UL
Dif in % ref	1.0667	1.0542	1.0791	1.0667	1.0555	1.0778
	BIOEQUIVAL	ENT	·	BIOEQUIVALENT		

Table 22: ABE and PBE results for test (batch 1, batch 2, batch 3) and reference (batch 1, batch 2, batch 3) product regarding 8th puff on 30th day for repriming (in vertical and horizontal position)

ABE no LS means	•		•	
Overall mean	97.81603262			
CV %	3.459420847	CV ref % 2.46319677		
ABE	Ratio=theta	LL	UL	
	1.069524935	1.0584	1.0808	
Limits	Non scaled	0.9000	1.1100	
	Scaled ABE	0.9000	1.1100	
Conclusion based on non scaled	BIOEQUIVAL	ENT		
PBE Results				
σR	0.024628233	CONSTANT S	SCALED	
Ratio	1.069524935			
Ηη	-0.013335056	As <0: BIOEQUIVALENT		
Fieller on non transformed data				
CV% within	3	CV ref %	3	
	Ratio	LL	UL	
	1.0701	1.0587	1.0817	
Conclusion based on non scaled	BIOEQUIVAL	ENT		
Classical CI based on non transfe	ormed			
ABE	Dif	LL	UL	
	6.636666667	5.588644655	7.684688679	
Limits	Non scaled	-9.461166667	9.461166667	
Conclusion based on non scaled	BIOEQUIVAL	ENT		
Classical CI based on non transfe	ormed as percer	tage of the refe	rence	
ABE	Dif	LL	UL	
Dif in % ref	1.0701	1.0591	1.0812	
	BIOEQUIVAL	ENT		

As a result, according to Guidance for Industry Bioavailability and Bioequivalence Studies for Nasal Aerosols and Nasal Sprays for Local Action, reference product and test product have been proven to be similar for priming and repriming test. Reference product and

test product can be used after the 6^{th} puff. It has been proven that it is not affected by the waiting conditions in horizontal and vertical positions for 30 days and can be used directly after the waiting period.

Profiling of Sprays Near Container Exhaustion (Tail Off Characteristics)

The results obtained are as shown in Table 23 (During analysis, 3 containers were used for each batch).

Table 23: Results of test product (batch 1, batch 2 and batch 3) and reference product (batch 1, batch 2 and batch 3) for Profiling of Sprays Near Container Exhaustion (Tail Off Characteristics)

Test Product	, ioi i i oiiiing	or sprays ive		Reference Product				
Tail Off								
	1st batch (3	2 nd batch	3 rd batch		1st batch (3	2 nd batch	3 rd batch	
	container)	(3	(3		container)	(3	(3	
		container)	container)			container)	container)	
AVG-130 th stage	103.0	94.3	99.0	AVG-130 th	94.8	93.8	100.6	
AVG-140 th stage	103.8	92.9	92.4	AVG-140 th	94.6	88.4	97.1	
AVG-150 th stage	97.3	94.6	94.5	AVG-145 th	93.8	90.7	98.2	
AVG-160 th	97.9	96.2	95.0	AVG-150 th	92.2	89.8	95.3	
AVG-170 th	99.4	99.1	99.0	AVG-151 th	91.3	90.0	94.9	
AVG-175 th	96.3	95.8	97.0	AVG-152 th	86.0	91.9	95.8	
AVG-180 th	94.9	98.1	97.8	AVG-153 th	91.5	90.5	95.9	
AVG-181 th	93.8	93.3	91.5	AVG-154th	91.3	90.4	96.7	
AVG-182 th	95.3	85.3	94.7	AVG-155 th	92.9	90.1	95.4	
AVG-183 th	93.9	85.8	84.6	AVG-156th	86.0	91.9	91.7	
AVG-184 th	84.4	74.9	73.8	AVG-157 th	81.0	86.0	62.2	
AVG-185 th	66.4	49.2	52.4	AVG-158th	63.6	39.9	58.1	
AVG-186 th	60.3	48.0	53.5	AVG-159th	60.0	37.9	54.4	
AVG-187 th	N.D	N.D	N.D	AVG-160 th	N.D	N.D	N.D	

N.D: Not Detected

Evaluation Result

The results of samples performed have been calculated by taking 3 bottles selected from each 3

batches of the reference product and 3 bottles from each 3 batches of the test product.

The last puff results that meet the 85 to 115 percent of label claim are as shown in Table 24.

Table 24: Sum of Profiling of Sprays Near Container Exhaustion (Tail Off Characteristics) test results

Batches	Number of doses						
Test Produ	Test Product						
1st batch	182						
2 nd batch	181						
3rd batch	182						
Reference	Product						
1st batch	156						
2 nd batch	156						
3 rd batch	156						

Shaking Requirement

The results obtained are as shown in Table 25 (During analysis, 10 bottles were used for each batch).

Table 25: Results for test (batch 1, batch 2, batch 3) and reference (batch 1, batch 2, batch 3) product regarding shaking requirement

Sharing 1 of an onco								
Batches	Average	Shaking Time (sec)	Shaking Requirement &					
			In Vitro Dose Proportionality (%)					
Test Pro	duct							
Batch 1	AVG	3	94.2					
		5	97.2					
		10	97.6					
Batch 2	AVG	3	97.9					
		5	95.0					
		10	97.6					
Batch 3	AVG	3	95.6					
		5	97.4					
		10	96.0					

Referenc	e Product	;	
Batch 1 AVG		3	94.8
		5	95.7
		10	96.8
Batch 2	AVG	3	93.6
		5	92.7
		10	94.2
Batch 3	AVG	3	95.5
		5	95.9
		10	95.9
AVG			95.8
SD			4.14
RSD %			4.32
MIN			85.9
MAX			109.7

Evaluation Result

In the end of the Shaking Requirement test which 10 different bottles of test product were shaken vigorously (with agitation rate once per second) for 3 seconds, 5 seconds and 10 seconds, respectively, all results meet requirements.

Performance After Temperature Cycling

Results are given between in Table 26- Table 32. (During analysis, 10 bottles held in horizontal and vertical positions were used for each batch.)

Table 26: Results of Performance After Temperature Cycling -Initial

	Initial					
	Appearance (Limit: White colored, homogenous suspension)	Density at 20 °C	PSD	DSD	Assay of Active ingredient (Limit: 95.0% - 105.0%)	Assay of Preservative active ingredient (Limit: 90.0% - 110.0%)
Test Prod	uct					
Batch 1	Conforms	1.03 g/mL	8 µm	5% < 10 μm: 0.9 D50: 46 μ	100.9	103.0
Batch 2	Conforms	1.02 g/mL	8 µm	5% < 10 μm: 0.4 D50: 45 μ	100.8	103.4
Batch 3	Conforms	1.02 g/mL	7 μm	5% < 10 μm: 0.8 D50: 46 μ	99.0	103.8
Reference	Product					
Batch 1	Conforms	1.02 g/mL	6 µт	5% < 10 μm: 0.6 D50: 47 μ	92.3	90.5
Batch 2	Conforms	1.02 g/mL	6 µт	5% < 10 μm: 1.0 D50: 45 μ	94.2	93.2
Batch 3	Conforms	1.02 g/mL	6 µт	5% < 10 μm: 0.2 D50: 45 μ	93.0	91.8

Table 27: Results of Performance After Temperature Cycling -Initial

Table 27. Results of Ferformance After Temperature Cycling -Initial								
	Initial							
	Test Product Reference Product							
	Batch 1 Batch 2 Batch 3 Batch 1 Batch 2 Batch							
Test Product Related Substance	es							
Impurity D	N.D	N.D	N.D	N.D	N.D	N.D		
Maximum Unknown Impurity	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>		
Total Impurity	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>		

N.D: Not Detected LOQ: Limit of Quantitation

Table 28: Results of Performance After Temperature Cycling - 6th Day (H:Horizontal and V:Vertical)

6 th Day						
Appearance (Limit: White colored,	Density at 20 °C	PSD (D50)	DSD (D50)	Weight loss	Assay of active ingredient (Limit: 95.0% - 105.0%)	Assay of preservative active ingredient

	homogenous suspension)						(Limit: 90.0% - 110.0%)
Test Produc			1		1		
Batch 1/H	Conforms	1.03 g/mL	7 μm	5% < 10 μm: 0.7 D50: 44 μ	-0.002	100.7	103.9
Batch 1 / V	Conforms	1.02 g/mL	7 μm	5% < 10 μm: 0.3 D50: 43 μ	-0.004	101.0	104.5
Batch 2/H	Conforms	1.02 g/mL	7 μm	5% < 10 μm: 0.6 D50: 44 μ	-0.002	100.7	103.9
Batch 2 / V	Conforms	1.02 g/mL	7 μm	5% < 10 μm: 0.0 D50: 44 μ	-0.0002	99.8	104.4
Batch 3/H	Conforms	1.02 g/mL	7 μm	5% < 10 μm: 0.2 D50: 43 μ	-0.002	100.8	104.4
Batch 3 / V	Conforms	1.02 g/mL	7 μm	5% < 10 μm: 0.1 D50: 43 μ	-0.0005	100.8	104.4
Reference P	roduct	•					•
Batch 1/H	Conforms	1.02 g/mL	6 µт	5% < 10 μm: 0.5 D50: 45 μ	-0.06	94.2	91.6
Batch 1 / V	Conforms	1.02 g/mL	6 µт	5% < 10 μm: 1.2 D50: 44 μ	-0.03	93.8	91.2
Batch 2/H	Conforms	1.02 g/mL	6 µт	5% < 10 μm: 0.0 D50: 43 μ	-0.06	94.5	91.9
Batch 2 / V	Conforms	1.02 g/mL	6 µт	5% < 10 μm: 0.6 D50: 44 μ	-0.03	93.7	91.9
Batch 3/H	Conforms	1.02 g/mL	6 µт	5% < 10 μm: 0.0 D50: 44 μ	-0.06	94.4	91.9
Batch 3 / V	Conforms	1.02 g/mL	6 µт	5% < 10 μm: 0.4 D50: 43 μ	-0.03	93.5	90.9

Table 29: Results of Performance After Temperature Cycling - 6th Day

	Table 25. Results of Ferror mance After Temperature Cycling - 0 Day											
	6th Day											
	Test Pro	oduct					Reference Product					
	Horizon	ıtal		Vertical		Horizontal			Vertical			
	Batch	Batch	Batch	Batch	Batch	Batch	Batch	Batch	Batch	Batch	Batch	Batch
	1	2	3	1	2	3	1	2	3	1	2	3
Test Prod	luct Rela	ted Subst	ances									
Impurit	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
y D												
Max.	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Unkno												
wn												
impurit												
y												
Total	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Impurit												
y												

N.D: Not Detected LOQ: Limit of Quantitation

Table 30: Results of Performance After Temperature Cycling - 12^{th} Day

	Table 50. Results of Ferformance After Temperature Cycling - 12 Day											
	12 th Day											
	Test Product					Reference Product						
	Horizontal			Vertical			Horizontal		Vertical			
	Batch	Batch	Batch	Batch	Batch	Batch	Batch	Batch	Batch	Batch	Batch	Batch
	1	2	3	1	2	3	1	2	3	1	2	3
Test Produ	ct Related	l Substan	ces									
Impurity	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
D												
Maximu	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
m												
Unknown												
Impurity												

Total <l< th=""><th>.00.</th><th><l00< th=""><th><loo< th=""><th><l00< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><lo0< th=""></lo0<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<></th></l00<></th></loo<></th></l00<></th></l<>	.00.	<l00< th=""><th><loo< th=""><th><l00< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><lo0< th=""></lo0<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<></th></l00<></th></loo<></th></l00<>	<loo< th=""><th><l00< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><lo0< th=""></lo0<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<></th></l00<></th></loo<>	<l00< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><lo0< th=""></lo0<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<></th></l00<>	<loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><lo0< th=""></lo0<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<>	<loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><lo0< th=""></lo0<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<>	<loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><lo0< th=""></lo0<></th></loo<></th></loo<></th></loo<></th></loo<></th></loo<>	<loo< th=""><th><loo< th=""><th><loo< th=""><th><loo< th=""><th><lo0< th=""></lo0<></th></loo<></th></loo<></th></loo<></th></loo<>	<loo< th=""><th><loo< th=""><th><loo< th=""><th><lo0< th=""></lo0<></th></loo<></th></loo<></th></loo<>	<loo< th=""><th><loo< th=""><th><lo0< th=""></lo0<></th></loo<></th></loo<>	<loo< th=""><th><lo0< th=""></lo0<></th></loo<>	<lo0< th=""></lo0<>
Impurity	JOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ	LOQ

N.D: Not Detected LOQ: Limit of Quantitation

Table 31: Results of Performance After Temperature Cycling - 12th Day

	12 th Day			•	<u> </u>	mg - 12 Duy	
	Appearance (Limit: White colored, homogenous suspension)	Density at 20 °C	PSD (D50)	DSD (D50)	Weight loss	Assay of active ingredient (Limit: 95.0% - 105.0%)	Assay of preservative active ingredient (Limit: 90.0% - 110.0%)
Test Pro	duct						
Batch 1 / H	Conforms	1.02 g/mL	8 μm	5%< 10μ : 0.5 D50: 44 μ	-0.006	102.4	104.0
Batch 1 / V	Conforms	1.03 g/mL	8 µm	5%< 10μ: 0.8 D50: 44 μ	-0.005	102.1	104.2
Batch 2 / H	Conforms	1.02 g/mL	8 µm	5%< 10μ: 0.0 D50: 44 μ	-0.004	101.6	104.2
Batch 2 / V	Conforms	1.02 g/mL	8 µm	5%< 10μ: 0.8 D50: 45 μ	-0.004	100.8	104.2
Batch 3 / H	Conforms	1.03 g/mL	8 µm	5%< 10μ: 0.6 D50: 45 μ	-0.003	100.9	103.8
Batch 3 / V	Conforms	1.02 g/mL	7 μm	5%< 10μ: 0.0 D50: 45 μ	-0.005	101.9	103.8
	e Product	•	l .	•	•	•	
Batch 1 / H	Conforms	1.02 g/mL	7 μm	5%< 10μ: 1.1 D50: 44 μ	-0.05	94.4	91.3
Batch 1 / V	Conforms	1.02 g/mL	6 µт	5%< 10μ: 1.2 D50: 44 μ	-0.03	94.4	91.1
Batch 2 / H	Conforms	1.02 g/mL	6 µт	5%< 10μ: 0.9 D50: 44 μ	-0.04	94.6	91.2
Batch 2 / V	Conforms	1.02 g/mL	6 µm	5%< 10μ: 0.9 D50: 44 μ	-0.03	94.1	91.7
Batch 3 / H	Conforms	1.03 g/mL	6 µm	5%< 10μ: 0.9 D50: 44 μ	-0.04	94.4	91.1
Batch 3 / V	Conforms	1.02 g/mL	6 µт	5%< 10μ: 0.7 D50: 44 μ	-0.03	94.2	91.3

Table 32: Results of Performance After Temperature Cycling Mean Delivered Dose & Uniformity of Delivered Dose - Initial, 6th Day, 12th Day

					•			
	Mean I	Delivered 1	Dose	Uniformity of Delivered Dose				
	(Active	ingredien	ıt, %)	(Active ingredient, %)				
	Initial	6 th Day	12 th Day	Initial	6 th Day	12 th Day		
AVG	99.9	97.5	96.6	99.0	97.5	96.6		
SD	5.3	4.3	4.3	4.9	4.3	5.2		
RSD %	5.3	4.4	4.5	5.0	4.4	5.3		
MIN	92.1	88.6	88.3	91.9	88.8	88.1		
MAX	112.0	109.5	109.8	111.2	109.5	109.9		

Evaluation Result

Initial results are expected to comply with release specifications and 6th and 12th day results with shelf-life specifications. All results have been compared with initial values and the results have been seen to be appropriate for both release and shelf-life specifications.

Robustness

Results are given in Table 33 and Table 34 (During the analysis, 10 bottles were used for the initial stage and 10 bottles for the final stage).

Table 33: Results of Robustness

	Tuble 55. Results of Robustiless							
SCU								
(Active ingredient %)								
Batches	Average	Stage	3000 km	6000 km				
Test Product								

Batch 1	AVG	Beginning	99.1	100.9			
		End	96.8	100.8			
Batch 2	AVG	Beginning	99.8	102.6			
		End	99.4	98.6			
Batch 3	AVG	Beginning	100.7	101.5			
		End	98.7	100.4			
Reference	Reference Product						
Batch 1	AVG	Beginning	95.1	99.0			
		End	94.0	99.3			
Batch 2	AVG	Beginning	95.4	96.9			
		End	95.2	97.3			
Batch 3	AVG	Beginning	90.0	92.7			
		End	92.5	94.1			
AVG			95.7	97.8			
SD		4.6	4.0				
RSD %		4.9	4.1				
MIN		87.3	90.9				
MAX	•		108.0	112.0			

Table 34: Results of Robustness (3000 km and 6000 km)

3000 km			
	Appearance (Limit: White colored, homogenous suspension)	PSD (Limit: D50: 3 μm - 10 μm)	DSD (Maximum 5%<10 μm D50: 30 μm - 70 μm)
Test Pro	luct		
Batch 1	Conforms	8μ	5%<10 μ: 0.3 D50: 43 μ
Batch 2	Conforms	8μ	5%<10 μ: 0.0 D50: 42 μ
Batch 3	Conforms	8μ	5%<10 μ: 0.2 D50: 43 μ
Referenc	e Product		15 μ
Batch 1	Conforms	бμ	5%<10 μ: 0.4 D50: 44 μ
Batch 2	Conforms	бμ	5%<10 μ: 0.8 D50: 43 μ
Batch 3	Conforms	бμ	5%<10 μ: 1.3 D50: 44 μ
6000 km			
	Appearance (Limit: White colored, homogenous suspension)	PSD (Limit: D50: 3 μm - 10 μm)	DSD (Maximum 5%<10 μm D50: 30 μm - 70 μm)
Test Pro	luct		
Batch 1	Conforms	8μ	5%<10 μ: 0.3 D50: 42 μ
Batch 2	Conforms	8μ	5%<10 μ: 0.1 D50: 43 μ
Batch 3	Conforms	8μ	5%<10 μ: 0.9 D50: 42 μ
Referenc	e Product		.
Batch 1	Conforms	бμ	5%<10 μ: 0.9 D50: 43 μ
Batch 2	Conforms	бμ	5%<10 μ: 1.1 D50: 43 μ
Batch 3	Conforms	бμ	5%<10 μ: 1.3 D50: 43 μ

Evaluation Result

All results are compared with initial values. Initial results are expected to comply with release specifications and 3000 km and 6000 km results with

shelf-life specifications. All results were found to be appropriate in line with expectations.

Effect of Dosing Orientation

Results are given in Table 35 and Table 36 (During the analysis, 10 bottles were used for the initial stage and 10 bottles for the final stage).

Table 35: Results of Effect of Dosing Orientation

45°			
Batches	Average	Stage	SCU (%)
Test Prod	duct		
Batch1	AVG	Beginning	98.7
		End	101.9
Batch 2	AVG	Beginning	100.2
		End	99.6
Batch 3	AVG	Beginning	97.3
		End	100.4
Referenc	e Product		
Batch1	AVG	Beginning	93.6
		End	94.2
Batch 2	AVG	Beginning	93.8
		End	92.6
Batch 3	AVG	Beginning	93.2
		End	93.4
AVG			96.6
SD		<u> </u>	5.3
RSD %			5.5
MIN			87.6
MAX		•	110.5

Table 36: Results of Effect of Dosing Orientation

45°				
DSD (Maxin	num 5%<10 μm			
D50: (30 µm - 70 µm)				
Test Product				
Batch 1	D50: 44 µm			
	5%< 10μ: 1.1			
Batch 2	D50: 43 µm			
	5 %< 10μ: 0.02			
Batch 3	D50: 44 µm			
	5%< 10μ: 0.0			
Reference Pi	roduct			
Batch 1	D50: 43 µm			
	5%< 10μ: 0.2			
Batch 2	D50: 43 µm			
	$5\% < 10\mu$: 0.7			
Batch 3	D50: 44 µm			
	5%< 10μ: 0.2			

Evaluation Result

All results were compared with the initial values and found to be appropriate.

Density

Results are as shown in Table 37 (During analysis, 10 bottles were used for each batch).

Table 37: Results for test (batch 1, batch 2, batch 3) and reference (batch 1, batch 2, batch 3) product regarding Density

	Density,	g/mL				
	Test Product Reference Product					
Batches	Batch 1	Batch 2	Batch 3	Batch 1	Batch 2	Batch 3
AVG	1.0241	1.02361	1.02320	1.02370	1.02137	1.02370

Evaluation Result

• All results found to be appropriate.

 ABE and PBE statistical evaluations were made in the Excel using SAS language. The results of the statistical calculation of ABE and PBE are as shown in Table 38.

Table 38: ABE and PBE results for test (batch 1, batch 2, batch 3) and reference (batch 1, batch 2, batch 3) product regarding density

produc	t regarding den	Bity			
ABE no LS means					
Overall mean	1.023272876				
CV %	0	CV ref %	0		
ABE	Ratio=theta	LL	UL		
	1.00068469	1.000297418	1.001072112		
Limits	Non scaled	0.9000	1.1100		
	Scaled ABE	0.9000 1.1100			
Conclusion based on non scaled	BIOEQUIVALENT				
PBE Results					
σR	0.001092848	CONSTANT SCALED			
Ratio	1.00068469				
Ηη	-0.020890502	As <0: BIOEQUIVALENT			
Fieller on non transformed data					
CV% within	3	CV ref % 3			
	Ratio	LL	UL		
	1.0000	0.9995 1.0005			
Conclusion based on non scaled	BIOEQUIVAL	ENT			
Classical CI based on non transfe	ormed				
ABE	Dif	LL	UL		
	-0.366666667	-4.822938356	4.822938356		
Limits	Non scaled	-1022.923333	1022.923333		
Conclusion based on non scaled	BIOEQUIVAL	ENT			
Classical CI based on non transfe	ormed as percer	ntage of the refe	rence		
ABE	Dif	LL	UL		
Dif in % ref	1.0000	0.9995	1.0005		
	BIOEQUIVAL	ENT			

As a result, according to Guidance for Industry Bioavailability and Bioequivalence Studies for Nasal Aerosols and Nasal Sprays for Local Action, reference product and test product have been proven to be similar for density.

Viscosity (S62, 90 rpm, Torque: 50%±10%, at Room Temperature)

Results are given in Table 39 (During analysis, 10 bottles were used for each batch)

Table 39: Results for test (batch 1, batch 2, batch 3) and reference (batch 1, batch 2, batch 3) product regarding viscosity

	Viscosity, o	Viscosity, cP (S62, 90 rpm, Torque: 50%±10%, at Room Temperature)						
	Test Product			Reference Product				
Batches	Batch 1	Batch 2	Batch 3	Batch 1	Batch 2	Batch 3		
AVG	166	166	167	167	167	167		

Evaluation Result

- All results found to be appropriate.
- ABE and PBE statistical evaluations were made in the Excel using SAS language. The results of

the statistical calculation of ABE and PBE are as shown in Table 40.

Table 40: ABE and PBE results for test (batch 1, batch 2, batch 3) and reference (batch 1, batch 2, batch 3) product regarding viscosity

ABE no LS means			
Overall mean	166.6772751		
CV %	0.860272734	CV ref %	0.829660388
ABE	Ratio=theta	LL	UL
	0.997797656	0.9941	.1.0015
Limits	Non scaled	0.9000	1.1100

	Scaled ABE	0.9000	1.1100			
Conclusion based on non scaled		BIOEQUIVALENT				
PBE Results						
σR	0.008296461	CONSTANT S	SCALED			
Ratio	0.997797656	0.997797656				
Нη	-0.020813043	As <0: BIOEQUIVALENT				
Fieller on non transformed data						
CV% within	1	CV ref %	1			
	Ratio	LL	UL			
	0.9978	0.9941	1.0015			
Conclusion based on non scaled	BIOEQUIVAL	ENT				
Classical CI based on non transfe	ormed					
ABE	Dif	LL UL				
			C E			
	-0.366666667	-0.984787114	0.25145378			
Limits	-0.366666667 Non scaled	-0.984787114 -9.625833333				
Limits Conclusion based on non scaled		-9.625833333	0.25145378			
	Non scaled BIOEQUIVAL	-9.625833333 ENT	0.25145378 9.625833333			
Conclusion based on non scaled	Non scaled BIOEQUIVAL	-9.625833333 ENT	0.25145378 9.625833333			
Conclusion based on non scaled Classical CI based on non transfe	Non scaled BIOEQUIVAL ormed as percer	-9.625833333 ENT tage of the refer	0.25145378 9.625833333 rence			

As a result, according to Guidance for Industry Bioavailability and Bioequivalence Studies for Nasal Aerosols and Nasal Sprays for Local Action, reference product and test product have been proven to be similar for viscosity.

Osmolality

Results are given in Table 41 (During analysis, 10 bottles were used for each batch).

Table 41: Results for test (batch 1, batch 2, batch 3) and reference (batch 1, batch 2, batch 3) product regarding Osmolality

	Osmolality, mOsm/kg					
	Test Product Reference Product					
Batches	Batch 1	Batch 2	Batch 3	Batch 1	Batch 2	Batch 3
AVG	343	342	345	321	318	318

Evaluation Result

- All results found to be appropriate.
- ABE and PBE statistical evaluations were made in the Excel using SAS language. The results of

the statistical calculation of ABE and PBE are as shown in Table 42.

Table 42: ABE and PBE results for test (batch 1, batch 2, batch 3) and reference (batch 1, batch 2, batch 3) product regarding Osmolality

producti	egarung Osmo	Jianty			
ABE no LS means					
Overall mean	330.7368486				
CV %	1.17757007	CV ref %	1.334531768		
ABE	Ratio=theta	LL	UL		
	1.076473629	1.0710	1.0820		
Limits	Non scaled	0.9000 1.1100			
	Scaled ABE	0.9000	1.1100		
Conclusion based on non scaled	BIOEQUIVAL	LENT			
PBE Results					
σR	0.013344724	CONSTANT S	SCALED		
Ratio	1.076473629				
Ηη	-0.01476008	As <0: BIOEQ	UIVALENT		
Fieller on non transformed data					
CV% within	1	CV ref %	1		
	Ratio	LL	UL		
	1.0764	1.0710	1.0819		
Conclusion based on non scaled	BIOEQUIVALENT				

Classical CI based on non transformed							
ABE	Dif	Dif LL UL					
	24.36666667	26.03337708					
Limits	Non scaled -9.625833333 9.6258333						
Conclusion based on non scaled	BIOEQUIVALENT						
Classical CI based on non transfe	ormed as perce	ntage of the refe	erence				
ABE	Dif LL UL						
Dif in % ref	1.0764	1.0712	1.0817				
	BIOEQUIVALENT						

As a result, according to Guidance for Industry Bioavailability and Bioequivalence Studies for Nasal Aerosols and Nasal Sprays for Local Action Reference product and test product have been proven to be similar for Osmolality.

pН

Results are given in Table 43 (During analysis, 10 bottles were used for each batch).

Table 43: Results for test (batch 1, batch 2, batch 3) and reference (batch 1, batch 2, batch 3) product regarding

			pm			
	pН					
	Test Product			Reference Product		
Batches	Batch 1	Batch 2	Batch 3	Batch 1	Batch 2	Batch 3
AVG	6.23	6.19	6.21	6.23	6.33	6.28

Evaluation Result

- All results found to be appropriate.
- ABE and PBE statistical evaluations were made in the Excel using SAS language. The results of

the statistical calculation of ABE and PBE are as shown in Table 44.

Table 44: ABE and PBE results for test (batch 1, batch 2, batch 3) and reference (batch 1, batch 2, batch 3) product regarding pH

0 01				
6.245654987				
0.530208245	CV ref %	0.705482806		
Ratio=theta	LL	UL		
0.989139616	0.9869	0.9914		
Non scaled	0.9000	1.1100		
Scaled ABE	0.9000	1.1100		
BIOEQUIVALENT				
0.00705474	CONSTANT SCALED			
0.989139616				
-0.020757495	As <0: BIOEQUIVALENT			
0	CV ref %	0		
Ratio	LL	UL		
0.9891	0.9868	0.9914		
BIOEQUIVAL	ENT			
ormed				
Dif	LL	UL		
-0.068333333	-0.082694322	-0.053972345		
Non scaled	-0.628	0.628		
Non scaled BIOEQUIVAL		0.628		
	ENT			
BIOEQUIVAL	ENT			
BIOEQUIVAL ormed as percer	ENT tage of the refe	rence		
	0.530208245 Ratio=theta 0.989139616 Non scaled Scaled ABE BIOEQUIVAL 0.00705474 0.989139616 -0.020757495 0 Ratio 0.9891 BIOEQUIVAL ormed Dif	6.245654987 0.530208245 CV ref % Ratio=theta LL 0.989139616 0.9869 Non scaled 0.9000 Scaled ABE 0.9000 BIOEQUIVALENT 0.00705474 CONSTANT S 0.989139616 -0.020757495 As <0: BIOEQ 0 CV ref % Ratio LL 0.9891 0.9868 BIOEQUIVALENT O.9891 0.9868 BIOEQUIVALENT Ormed Dif LL LL Dif LL CV ref % CV		

CONCLUSIONS

The in-vitro bioequivalence study of nasal sprays is useful to understand the efficiency of test

product in comparison to innovator so that the equivalency in the in-vivo studies can be assessed.

Bioequivalence testing is an essential step during the development of generic drugs. Regulatory agencies have drafted recommendations and guidelines to frame this step but without finding any consensus. Different methodologies are applied depending on the geographical region. For instance, in the EU, EMA recommends using average bioequivalence test (ABE), while in the USA, FDA recommends using population bioequivalence (PBE) test.

The methodology of PBE is based on the calculation described in the FDA Budesonide Individual Bioequivalence Guideline (U.S. Food and Drug Administration [FDA], 2015). Basically, the calculation takes into account the variability of the reference formulation to scale acceptance limits. A Hn value limit below 0 indicates similarity.

The methodology of the ABE calculation is based on the EMA guideline, it is based on an ANOVA with product type (test or reference) as factor and a 90% CI is calculated based on residual variance. Limits are fixed 0.9000-1.1111.

Tests are performed according to the EMA Guidance on Pharmaceutical Quality of Respiratory and Nasal Products (EMEA/CHMP/QWP/49313/2005 Corr), which is taken as a reference for the application of in vitro tests: Particle Size Distribution (PSD), Shaking Requirement, Performance After Temperature Cycling is in the form of robustness, viscosity, osmolality, pH, density. The tests performed according to the Food and Drug Administration (FDA, Draft Guidance), another source we refer to, unlike EMA Guidance: Single Actuation Content through Container Life (SCU), Droplet size distribution by laser diffraction (DSD), Spray pattern, Plume geometry, Profiling of Sprays Near Container Exhaustion (Tail Off Characteristics), Effect of Dosing Orientation.

In line with all in vitro bioequivalence studies carried out and presented in this article, taking into account EMA Guidance and FDA Guidance, and the statistical approaches carried out to support these studies; It was concluded that the Nasal Spray Product, which contains the corticosteroid active ingredient developed by Abdi İbrahim R&D Pharmaceuticals Center, is therapeutically equivalent to the Reference Product.

REFERENCES

- The United States Pharmacopeial Convention. (2014). Pharmaceutical dosage forms in the United States Pharmacopeia and National Formulary USP 37–NF 32 (pp. 1273–1284). Rockville, MD: The United States Pharmacopeial Convention, Inc.
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research. (2002, July).

- Guidance for industry: Nasal spray and inhalation solution, suspension, and spray drug products chemistry, manufacturing, and controls documentation. U.S. Department of Health and Human Services.
- Dondeti, P., Zia, H., & Needham, T. E. (1996).
 Bioadhesive and formulation parameters affecting nasal absorption. International Journal of Pharmaceutics, 127(2), 115–133.
 https://doi.org/10.1016/0378-5173(95)04278-9
- Guo, C., & Doub, W. H. (2006). The influence of actuation parameters on in vitro testing of nasal spray products. Journal of Pharmaceutical Sciences, 95(9), 2029–2040. https://doi.org/10.1002/jps.20684
- Kaliner, M. A. (2011). Rhinitis, an issue of immunology and allergy clinics (Vol. 31, No. 2). Elsevier Health Sciences.
- Naclerio, R. M., & Solomon, W. (1997). Rhinitis and inhalant allergens. JAMA, 278(22), 1842–1848. https://doi.org/10.1001/jama.1997.0355022006803
- Tripathy, A., & Patterson, R. (2001). Impact of allergic rhinitis treatment on quality of life. Pharmacoeconomics, 19(9), 891–899. https://doi.org/10.2165/00019053-200119090-00004
- Spector, S. (1999). Ideal pharmacotherapy for allergic rhinitis. Journal of Allergy and Clinical Immunology, 103(3), S386–S387. https://doi.org/10.1016/S0091-6749(99)70229-5
- Howarth, P. H. (2000). A comparison of the antiinflammatory properties of intranasal corticosteroids and antihistamines in allergic rhinitis. Allergy, 55(62 Suppl), 6–11. https://doi.org/10.1034/j.1398-9995.2000.00508.x
- Medicines Evaluation Board. (n.d.). Public assessment report: Scientific discussion— Fluticasone furoate Basic Pharma, 27.5 microgram/actuation, nasal spray, suspension (fluticasone furoate).
- European Medicines Agency. (2006, June 21). Guideline on the pharmaceutical quality of inhalation and nasal products (Doc. Ref. EMEA/CHMP/QWP/49313/2005 Corr).
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research. (2019, May). Draft guidance on fluticasone furoate metered nasal spray; 0.0275 mg/spray.
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research. (1997). SUPAC-SS: Nonsterile semisolid oral dosage forms, scale-up and post approval changes: Chemistry, manufacturing, and controls; In vitro dissolution testing and in vivo bioequivalence documentation; Guidance for industry. Washington, DC: U.S. Government Printing Office.
- Cheekti, D. K., Kumar, P. T., Dhage, R., Gappa, S.,
 & Sahoo, B. (2021). In vitro characterization of

nasal spray to assess bioequivalence. Asian Journal of Pharmaceutical Research and Development, 9(6), 84–89. https://doi.org/10.22270/ajprd.v9i6.1063

• U.S. Food and Drug Administration. (2015). Draft guidance on budesonide; formoterol fumarate dehydrates.