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Abstract  Review Article 
 

The convergence of machine intelligence, quantum-accurate simulation, and laboratory automation is reshaping how 

functional nanomaterials are conceived, validated, and deployed across chemistry, medicine, and environmental 

engineering. This review synthesizes an end-to-end “data-to-device” framework for the AI-driven and quantum-

informed design of nanomaterials that bridges three application pillars: (i) green catalysis for clean energy and circular 

chemistry, (ii) drug discovery and nano-enabled therapeutics, and (iii) sustainable environmental remediation. We 

survey inverse-design workflows that combine generative models, uncertainty-aware predictors, Bayesian optimization, 

and active learning with electronic-structure engines (DFT, GW/BSE), free-energy methods (FEP/TI), and machine-

learned interatomic potentials to span accuracy–throughput trade-offs via multi-fidelity strategies. On the materials side, 

we map tunable design spaces single-atom catalysts, 2D/defect-engineered surfaces, porous frameworks (MOFs/COFs), 

quantum dots, membranes, and bio-hybrids linking structure, defects, and interfacial physics to catalytic turnover, 

molecular recognition, transport, and durability. For catalysis, we outline pipelines that couple adsorption-energy maps 

and microkinetics to target CO₂ reduction, OER/ORR, and selective oxidations; for therapeutics, we integrate target 

modeling, generative ideation, physics-based ΔG estimation, and ADMET triage with synthesis-aware constraints; for 

remediation, we align pollutant fingerprints with adsorption, photocatalysis, electrocatalysis, and membrane routes 

while tracking leaching and secondary byproducts. Throughout, we emphasize rigorous reporting reproducible data 

splits, calibrated uncertainty, and minimum information for models and experiments together with life-cycle assessment, 

techno-economic analysis, and green-chemistry metrics (e.g., PMI, E-factor) to ensure net-positive impact. We close 

with a roadmap for closed-loop, self-driving laboratories; interoperable data/metadata standards; and prize-style 

community benchmarks aimed at delivering trustworthy, scalable, and sustainable nanomaterials from computational 

blueprints to field and clinical realities. 

Keywords: AI-driven materials design, Quantum-informed simulation, Functional nanomaterials, Green catalysis 

Drug discovery, Environmental remediation. 
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1. INTRODUCTION 
The discovery of functional nanomaterials is 

undergoing a phase shift powered by three converging 

forces: scalable artificial intelligence (AI), increasingly 

practical quantum simulation, and laboratory automation 

that closes the loop between hypothesis, synthesis, and 

measurement. In combination, these forces promise not 

only faster discovery but discovery that is explicitly 

aligned with sustainability optimizing for energy use, 

waste, and eco-toxicity from the very first design 

iterations rather than auditing impacts at the end. “Self-

driving” laboratories now integrate autonomous 

experiment planning with robotic synthesis and in-situ 

characterization, compressing iteration cycles from 

months to days and demonstrating order-of-magnitude 

gains in throughput and optimization efficiency (Tom et 

al., 2024). At the same time, foundation models trained 

on chemistry and materials corpora are generalizing 

across tasks—from property prediction and reaction 

planning to multi-step synthesis suggestions—bringing 

zero/low-shot capabilities into lab workflows (Pyzer-

Knapp et al., 2025). In parallel, quantum algorithms are 

maturing to address strongly correlated electrons and 

excited-state chemistry, two long-standing bottlenecks 

for catalytic and therapeutic design (Paudel et al., 2022; 

Weidman et al., 2024). Our central thesis is that the 

intersection of these developments enables a closed-

loop, sustainability-aware pipeline for discovering 

nanomaterials in catalysis, therapeutics, and 

environmental remediation—evaluated in hard units of 

energy, speed, and minimized hazard rather than in 

isolated accuracy metrics (Nizam et al., 2021). 

 

A unified view across chemistry, physics, and 

the environment is timely for two reasons. First, AI at 

scale is delivering qualitatively new capabilities. Recent 

perspectives document rapid gains in transferability and 

task coverage for foundation models, including in-

context learning and agentic planning for materials tasks 

that previously required bespoke training (Pyzer-Knapp 

et al., 2025). These models can constrain candidate 

spaces with domain-aware priors, propose informative 

experiments, and calibrate uncertainty so that each 

robotic run maximizes expected information gain. 

Second, automation has moved beyond concept demos to 

robust, reconfigurable platforms. End-to-end loops—

where algorithms propose experiments, robots execute 

them, and measured outcomes update the models—are 

accelerating the scientific method itself and improving 

reproducibility by standardizing procedures and 

metadata capture (Tom et al., 2024). 

 

These breakthroughs coincide with intensifying 

imperatives for greener development. Life-cycle-

assessment (LCA) appraisals of nanomaterials have 

highlighted inconsistent functional units, incomplete 

background datasets, and heterogeneous toxicity 

characterization, creating comparability gaps across 

studies (Nizam et al., 2021). Nevertheless, consensus is 

forming around adopting standardized characterization 

models such as USEtox®, declaring system boundaries 

early, and reporting uncertainty so that design decisions 

can be optimized, not merely audited after the fact. 

Embedding such sustainability metrics directly into AI 

and automation utilities—e.g., penalizing solvent and 

precursor hazards, minimizing process energy per 

informative measurement—aligns optimization with 

environmental objectives from the outset (Nizam et al., 

2021). 

 

The scope of this review spans four 

communities that increasingly share one discovery 

pipeline. For materials scientists and chemists, we 

synthesize how AI and quantum tools can be made 

practically useful when coupled to automation and 

standardized environmental metrics. For 

pharmacologists, we emphasize how generative and 

predictive models for nanoscale delivery systems (e.g., 

carriers, adjuvants, stimuli-responsive constructs) can be 

bounded by toxicological priors and exposure scenarios, 

reducing late-stage attrition. For environmental 

engineers, we connect catalyst and sorbent design to 

remediation performance with tech-to-impact 

traceability via technology readiness levels (TRLs) and 

LCAs (EU Publications Office, 2017). Finally, for 

data/AI researchers, we outline benchmark desiderata—

cross-domain datasets, active-learning loops, uncertainty 

calibration, and interpretability—that matter for safe 

deployment in wet labs and pilot plants (Tom et al., 

2024). 

 

Concretely, we argue that converging AI + 

quantum + automation enables closed-loop, 

sustainability-aware discovery with measurable gains. 

AI—including foundation models and agentic 

planners—generates diverse, constrained candidates and 

proposes informative experiments; automation executes 

compact measurement campaigns and returns real-time 

signals to update the models; quantum and high-fidelity 

physics provide corrections where classical surrogates 

struggle, such as correlated surfaces, spin-dependent 

steps, and non-adiabatic processes (Paudel et al., 2022; 

Weidman et al., 2024). Sustainability metrics (e.g., LCA 

midpoints and USEtox-based toxicity factors) then 

become first-class objectives rather than downstream 

audits, reframing discovery from “can we make it and 

will it work?” to “should we make it, and how do we 

make it safest and cleanest?”—a necessary shift for 

catalysis (high selectivity with low embodied energy), 

therapeutics (efficacy with minimized off-target 

toxicity), and remediation (capture or destruction with 

low secondary burden) (Nizam et al., 2021). 

 

Evidence that this convergence is real is 

accumulating at the AI↔automation interface. Large-

scale model-driven candidate generation—followed by 

robotic validation—has shown that thousands to millions 

of plausible materials can be prioritized and that a 

meaningful fraction can be synthesized within days to 

weeks, demonstrating a scalable feedback loop of 
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algorithmic proposals → robotic synthesis/ 

characterization → model updating (Tom et al., 2024). 

Such self-driving laboratory architectures bring two 

additional advantages: safety (by isolating operators 

from hazardous steps) and provenance (by enforcing 

structured data capture), both critical when moving 

toward regulated domains like therapeutics and 

environmental remediation (Tom et al., 2024). 

 

What is new in this review relative to prior work 

is cross-domain integration plus a focus on deployment-

oriented metrics that enable apples-to-apples 

comparisons across discovery pipelines. We emphasize 

three classes of “hard” metrics. First, energy and time: 

report sample throughput (e.g., new materials per day), 

the number of optimization steps saved by active 

learning, and wall-time or kWh per closed-loop cycle. 

Second, eco-toxicity and safety: incorporate USEtox-

compatible toxicity characterization factors, 

solvent/precursor hazard scores, and uncertainty ranges 

alongside performance metrics. Third, deployment 

readiness: map progress using TRLs from concept (TRL 

1–2) to lab validation (TRL 3–4), prototype (TRL 5–6), 

and pilot/field contexts (TRL 7–8), culminating in 

proven systems (TRL 9) (EU Publications Office, 2017). 

Systematically reporting these metrics clarifies where 

quantum corrections add value, when foundation models 

eliminate unnecessary experiments, and how automation 

improves safety and reproducibility, while revealing 

bottlenecks that matter for translation beyond the lab 

(Paudel et al., 2022; Weidman et al., 2024; Pyzer-Knapp 

et al., 2025). 

 

This integration also reframes discovery as a 

multi-objective control problem under real-world 

constraints. From the AI perspective, active-learning 

policies must balance exploitation of promising regions 

with exploration under uncertainty while respecting 

sustainability penalties. From the automation 

perspective, experimental design must prioritize robust, 

information-dense measurements that are compatible 

with hazard-reduced chemistries and energy-lean 

processing. From the quantum perspective, hybrid 

quantum-classical stacks should be targeted to the 

highest-leverage physics gaps, supplying corrections 

only where they materially change down-stream 

decisions (Paudel et al., 2022; Weidman et al., 2024). 

The shared language across these perspectives is 

decision-theoretic: expected improvement tempered by 

environmental cost and operational risk. 

 

Finally, we set expectations for the remainder 

of the article. We will detail agentic AI and foundation-

model tooling for hypothesis generation and experiment 

planning; identify where quantum algorithms most 

usefully augment classical and ML models; describe a 

“minimum viable loop” for automation (design → 

synthesize → characterize → update) with uncertainty-

aware decision rules; and operationalize sustainability 

with LCA/USEtox-compatible utilities and TRL-based 

reporting. The aim is not to celebrate isolated advances 

but to specify practices and benchmarks that move 

candidates from computational screening to self-driving 

laboratories and into pilot-scale reactors, delivery 

systems, and remediation units—measured by accuracy 

and yield, yes, but equally by energy, speed, and 

minimized environmental burden (Tom et al., 2024; 

Pyzer-Knapp et al., 2025; EU Publications Office, 2017; 

Nizam et al., 2021). 

 

2. Foundations: Data, Representations, and 

Benchmarks 

Modern discovery stacks sit on data. What 

makes today different is not just volume but 

heterogeneity: molecules and reactions from synthesis 

logs; crystals, surfaces, and defects from electronic-

structure workflows; and biological and environmental 

measurements that connect a material to efficacy, safety, 

and fate. A useful way to organize this landscape is by 

modality. Molecular sources include linear notations 

such as SMILES and SELFIES (robust to invalid 

strings), graph formalisms that treat atoms as nodes and 

bonds as edges, fragment vocabularies for generative 

models, and reaction corpora with atom mapping, yields, 

and conditions (Krenn et al., 2020; Coley et al., 2019; 

Lowe, 2017). Materials sources capture periodicity and 

locality: crystal graphs with lattice/periodic images, slab 

models for surfaces and adsorption, and explicit 

defect/supercell enumerations; these are now standard in 

resources such as Matbench, JARVIS-DFT, OQMD, and 

the Open Catalyst Project where adsorption structures 

and relaxation trajectories define learning targets (Dunn 

et al., 2020; Choudhary & Tavazza, 2020; Saal et al., 

2013; Chanussot et al., 2021). Bio/environmental 

sources add the application layer: protein targets and 

binding pockets (e.g., PDBbind families), omics-derived 

features for mechanism-aware models, pollutant classes 

(PFAS, pesticides, pharmaceuticals), and 

kinetic/partitioning parameters relevant to fate and 

transport (Liu et al., 2017; Huang et al., 2021; 

NORMAN Network, 2021). The unifying theme is that 

discovery increasingly requires joined-up datasets: a 

catalyst is not just a bulk crystal; a therapeutic is not just 

a SMILES string; and a remediation agent is not just an 

adsorption energy—each must connect upstream 

structure to downstream performance and risk. 

 

A FAIR (Findable, Accessible, Interoperable, 

Reusable) pipeline is essential to make these modalities 

usable across labs and over time. In practice, FAIR 

begins with curation (removing duplicates, harmonizing 

units and conditions), standardization (canonicalization 

of structures, charge states, isotopes; reaction templates; 

adsorption-site labeling), and licensing/provenance so 

downstream users know what they can share and 

reproduce (Wilkinson et al., 2016; Boeckhout et al., 

2018). In chemistry and reactions, community efforts 

such as the Open Reaction Database (ORD) define 

schemas for reactants, reagents, solvents, catalysts, and 

outcomes, plus instrument metadata; analogous moves in 
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materials include Matbench task cards and JARVIS task 

definitions that specify input assumptions and 

calculation protocols (Coley et al., 2021; Dunn et al., 

2020; Choudhary & Tavazza, 2020). For bio/env data, 

Therapeutics Data Commons (TDC) and 

EPA/ECOTOX-style repositories emphasize dataset 

cards, intended-use statements, and split 

recommendations to reduce leakage and enable apples-

to-apples comparisons (Huang et al., 2021). Provenance 

is not a formality: recording software versions, 

pseudopotentials/force fields, and experimental IDs is 

crucial for traceability and for de-duplicating near-

identical entries that would otherwise inflate 

performance. 

 

Representations translate raw data into 

machine-usable form. Graphs dominate for molecules 

and crystals: message-passing neural networks 

(MPNNs), CGCNN, SchNet, DimeNet(+), and 

equivariant models encode local chemical environments 

and, for materials, periodic boundary conditions (Gilmer 

et al., 2017; Xie & Grossman, 2018; Schütt et al., 2018; 

Klicpera et al., 2020; Batzner et al., 2022). 3D fields 

(voxel or continuous) capture electron density, 

electrostatic potential, or pocket geometry for docking 

and binding-affinity tasks, with SE(3)-equivariant 

networks bridging graphs and fields. Descriptors such as 

SOAP and MBTR remain powerful baselines when data 

are scarce, enabling kernel and linear models with strong 

inductive bias (Bartók et al., 2013; Huo & Rupp, 2017). 

Finally, learned embeddings—from language-like 

tokenizers (SMILES/SELFIES) to contrastive or 

masked-prediction pretraining on crystals and surfaces—

provide transferable features that can be fine-tuned for 

property, synthesis, or control tasks (Krenn et al., 2020; 

Park et al., 2023). Across choices, two principles help: 

(i) align representation with task physics (e.g., include 

periodic images for adsorption; encode chirality and 3D 

geometry for docking), and (ii) prefer equivariance when 

target properties transform predictably under 

rotations/translations. 

 

Benchmarks are the community’s contract: 

what do we claim to measure? For catalysis, open 

benchmarks focus on adsorption energies, surface 

relaxation, and reaction barriers as surrogates for 

turnover (Chanussot et al., 2021). OC20/OC22 provide 

tens of millions of DFT single-point and relaxation labels 

across adsorbates and surfaces, with tasks ranging from 

initial-to-relaxed energy prediction (IS2RE) to force 

inference; gaps remain in explicitly measuring 

TOF/TON, stability under cycling, sintering/poisoning 

resistance, and support effects, which are critical for 

deployment but scarce in standardized, ML-ready form 

(Tran et al., 2023). For drug discovery, public suites 

cover docking, binding affinity (ΔG via FEP/TI as 

higher-fidelity targets), and ADMET endpoints; 

common resources include PDBbind/CASF for 

structure-based tasks and TDC/MoleculeNet for ligand-

based ADMET and safety (Liu et al., 2017; Su et al., 

2020; Huang et al., 2021; Wu et al., 2018). Persistent 

gaps include off-target risk quantification at scale and 

clinical translatability proxies; scaffold splits help but do 

not fully address temporal drift and chemical novelty. 

For environmental technologies, datasets emphasize 

degradation kinetics, selectivity against co-

contaminants, reusability under cycling, and 

leaching/secondary pollution; however, labels are 

heterogeneous (conditions, matrices, detection limits), 

and cross-study harmonization is a bottleneck 

(NORMAN Network, 2021; Nizam et al., 2021). Across 

domains, deployment metrics—energy per synthesis 

step, yield per hazard score, TRL progression—are 

underrepresented but essential. 

 

Reproducibility and uncertainty are the load-

bearing beams of credible benchmarking. Uncertainty 

has two main flavors: aleatoric (data noise/irreducible) 

and epistemic (model uncertainty due to limited data). 

Practical toolkits include MC dropout, deep ensembles, 

and evidential regression for continuous properties; 

calibration metrics such as expected calibration error 

(ECE) and conformal prediction to produce valid 

prediction sets at a chosen error rate (Lakshminarayanan 

et al., 2017; Guo et al., 2017; Angelopoulos & Bates, 

2023). In discovery loops, uncertainty must drive 

decisions: active learning should sample where epistemic 

uncertainty is high and penalize candidates with high 

eco-toxicity or safety risk. Reproducibility also hinges on 

splits. Time- or scaffold-based splits better reflect 

prospective performance than random splits in molecular 

tasks; in materials, composition- or structure- holdouts 

better emulate discovering new chemistries or prototypes 

than i.i.d. splits (Yang et al., 2019; Dunn et al., 2020). 

Leakage pitfalls include near-duplicates (e.g., 

salts/tautomers counted twice), train–test overlap via 

pretraining, and shared synthetic routes or DFT 

parameters sneaking across splits. Strong baselines must 

therefore publish deduplication rules, split hashes, and 

data cards describing what is—and is not—being 

measured. 

 

A recurring practical challenge is license and 

use-rights. Public–private boundaries matter: industrial 

reaction notebooks, HTS screens, and pilot-plant logs 

often outclass public sets in scale and realism but come 

with restrictive licenses. Where possible, hybrid 

strategies—federated learning, secure enclaves, and 

synthetic data generated under privacy constraints—help 

bridge the gap without leaking proprietary content 

(Vepakomma et al., 2018). Even in fully public settings, 

explicit SPDX-style license tags and provenance chains 

(what changed, when, by whom, with which tool) are 

necessary to make models reusable beyond their original 

authors. 

 

Putting these pieces together, a discovery-ready 

dataset typically requires: (1) canonical structures (e.g., 

inchikeys for molecules; standardized CIFs and slab 

builders for surfaces), (2) task-ready targets (energies, 



 
 

Sadiq Khan et al, Sch J Phys Math Stat, Nov, 2025; 12(9): 389-418 

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          393 

 

 

barriers, ΔG, ADMET, kinetic constants) with units and 

conditions, (3) negative and “boring” examples (failed 

syntheses, inactive compounds, poisoned catalysts) to 

prevent success bias, (4) uncertainty estimates (replicates 

or model-derived) and recommended splits, and (5) a 

data card stating scope, intended use, caveats, and 

ethical/environmental constraints. 

 

Table 1: Dataset and benchmark landscape 

Domain Representative 

datasets/ 

benchmarks 

Size (approx.) License/ 

Access 

Primary tasks Known caveats 

Catalysis 

(surfaces) 

Open Catalyst 

OC20/OC22 

10⁷–10⁸ labels 

(DFT single-

points/relaxations) 

Open Adsorption/relaxation 

energies; forces; 

initial→relaxed 

prediction 

TOF/TON not 

explicit; limited 

sintering/poisoning 

labels 

Materials (bulk) Matbench; 

JARVIS-DFT; 

OQMD 

10⁵–10⁶ entries Open Property prediction 

(bandgap, formation 

energy, elasticity) 

Varying DFT settings; 

composition/structure 

leakage risks 

Drug (structure-

based) 

PDBbind; 

CASF 

10³–10⁴ 
complexes 

Mixed 

academic 

Docking/ranking; 

binding ΔG 

Crystal packing bias; 

limited kinetics 

Drug 

(ligand/ADMET) 

TDC; 

MoleculeNet 

10⁴–10⁶ molecules Open ADMET 

classification/regression 

Scaffold/time splits 

essential; assay 

heterogeneity 

Environmental ECOTOX-like; 

NORMAN 

SusDat 

10³–10⁵ 
chemicals/records 

Open Toxicity, degradation, 

partitioning 

Condition 

heterogeneity; matrix 

effects; sparse 

negatives 

Reactions Open Reaction 

Database 

(ORD) 

10⁵–10⁶ reactions 

(growing) 

Open Yield prediction; 

retrosynthesis; condition 

optimization 

Incomplete atom 

mapping; 

yield/reporting bias 

 

This table maps the core dataset/benchmark 

landscape across catalysis, materials, drug discovery, 

environmental science, and reactions, summarizing 

typical sizes, licenses, and primary tasks. Use it to pick 

fit-for-purpose data (e.g., adsorption vs. ΔG vs. 

ADMET) and to anticipate evaluation style 

(scaffold/time splits; composition/structure holdouts). 

 

3. AI Methods for Inverse Design 

Inverse design frames discovery as “specify the 

properties, then search the space of structures and 

processes that realize them.” Practically, that means 

three moving parts: (i) predictive models that map 

structure/process → properties with calibrated 

uncertainty; (ii) generative models that propose valid, 

synthesizable candidates while respecting safety and 

cost; and (iii) optimization loops that decide what to try 

next under multiple objectives and constraints. Around 

this engine sit physics-based priors, interpretability tools, 

and synthesis planners that turn virtual designs into 

routes in the real world. 

 

Predictive models. Graph neural networks 

(GNNs) and message-passing networks remain the 

workhorses for molecules and materials because they 

encode local chemical environments and (for crystals) 

periodicity (Gilmer et al., 2017; Xie & Grossman, 2018). 

Equivariant architectures further respect the symmetries 

of 3D space, improving data efficiency and force/energy 

consistency for atoms-in-materials and adsorbates-on-

surfaces (Klicpera et al., 2020; Batzner et al., 2022). 

Transformer variants extend beyond sequences to graphs 

and 3D point clouds, offering global receptive fields, 

strong transfer, and multi-task head sharing (Ying et al., 

2021; Park et al., 2023). In low-data regimes common to 

catalysis or niche ADMET tasks, multi-task learning, 

transfer pretraining, and few-shot/adaptation strategies 

(e.g., metric-based or gradient-based meta-learning) can 

stabilize training and recover performance (Caruana, 

1997; Altae-Tran et al., 2017; Dunn et al., 2020). Across 

these models, uncertainty estimation (ensembles, 

evidential heads) and calibration (ECE) are not 

luxuries—they are control knobs for safe decision-

making in closed loops (Lakshminarayanan et al., 2017; 

Guo et al., 2017). 

 

Generative design. Variational autoencoders 

learn smooth latent spaces that support gradient 

navigation toward property-optimized structures; 

junction-tree and fragment-aware VAEs help enforce 

chemical validity and scaffold realism (Gómez-

Bombarelli et al., 2018; Jin et al., 2018). Normalizing 

flows provide exact likelihoods and invertible maps, 

making them attractive for conditioning on desired 

properties and for density-based active learning 

(Papamakarios et al., 2017). Diffusion models, now 

state-of-the-art in molecular and 3D generative tasks, 

excel at capturing multi-modal structure distributions 

(Ho et al., 2020; Hoogeboom et al., 2022). For materials, 

diffusion/flow models over graphs and fractional 

coordinates increasingly handle periodicity, defects, and 

adsorption geometries. Evolutionary strategies and 

reinforcement learning (RL) remain competitive where 

objectives are discontinuous or the action space includes 
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edits to routes/process conditions rather than only 

structures (Brown et al., 2019; Zhou et al., 2019). 

Crucially, constraints must ride inside the generator: 

synthesizability proxies (e.g., SA-score, SCScore), 

cost/availability of precursors, and toxicity/hazard 

screens prevent “pretty but impossible” designs from 

saturating the loop (Ertl & Schuffenhauer, 2009; Coley 

et al., 2018; Huang et al., 2021). 

 

Optimization loops. Inverse design becomes 

powerful when prediction and generation are coupled by 

Bayesian optimization (BO) and active learning (AL). 

BO balances exploitation and exploration using 

acquisition functions (e.g., expected improvement) that 

can be generalized to vector-valued, noisy objectives 

(Snoek et al., 2012; Frazier, 2018). AL schedules the 

next experiment or computation to maximally reduce 

epistemic uncertainty, often with batch selection and 

diversity penalties to avoid redundancy (Settles, 2009). 

Because real discovery is never single-objective, multi-

objective optimization tracks Pareto fronts over 

activity/efficacy, stability, cost, and toxicity (Deb et al., 

2002). A practical tactic is to scalarize with time-varying 

weights early (fast screening), then switch to Pareto-

efficient selection once the knees of the curve emerge; 

another is to include risk terms (e.g., penalties for 

hazardous reagents or high energy/CO₂ per cycle) so the 

loop remains sustainability-aware. 

 

Physics-informed AI. Data alone rarely 

constrain the search, so physics acts as a scaffold. “Hard” 

constraints (stoichiometry, charge/spin, symmetry, 

boundary conditions) can be baked into architectures—

e.g., SE(3)-equivariance, periodic padding, or 

conservation layers—while “soft” constraints enter loss 

functions as regularizers (Schütt et al., 2018; Klicpera et 

al., 2020). Differentiable physics and operator-learning 

surrogates let models backpropagate through PDE 

solvers or tight-binding/DFT-like approximations, 

providing gradients that reflect real invariants and 

reducing spurious optima (Raissi et al., 2019; Pfaff et al., 

2021). In catalysis, surrogate models pre-screen 

adsorption and barrier energies before expensive 

relaxations, and in therapeutics, differentiable docking or 

learned scoring functions provide physics-aware signals 

that stabilize generative training (Chanussot et al., 2021; 

Su et al., 2020). The art is choosing fidelity wisely: 

hybrids that call high-fidelity physics only where it will 

likely change rank order tend to dominate end-to-end 

throughput. 

 

Interpretability. Inverse design must explain 

what it is doing, especially when choices have safety 

implications. Attention maps in graph transformers, 

substructure saliency for message-passing, and post-hoc 

attributors such as SHAP values can highlight which 

atoms, fragments, sites, or process features drive 

predictions (Ying et al., 2019; McCloskey et al., 2019; 

Lundberg & Lee, 2017). Yet interpretability is not 

causality. To avoid “Clever Hans” shortcuts (e.g., 

spurious correlations from assay conditions), teams 

increasingly combine attribution with counterfactuals 

(minimal edits that flip predictions) and with causal-

inference ideas such as invariance testing across 

environments or interventions (Schölkopf et al., 2021). 

For regulators and scale-up partners, interpretable 

decision records—what was proposed, why it was 

chosen, and what evidence supported it—are as 

important as raw scores. 

 

Synthesis-aware design. A candidate is only as 

good as the route that makes it. In small-molecule drug 

design, retrosynthesis planners (template-based, 

template-free, and mixed) produce tree- or graph-

structured routes subject to constraints on reagents, 

number of steps, yield priors, and cost (Segler et al., 

2018; Coley et al., 2019; Schwaller et al., 2020). For 

materials and nanomaterials, route planning means 

selecting precursors, solvents, temperatures/pressures, 

and time/atmosphere windows consistent with phase 

diagrams, safety, and scale (Dunn et al., 2020). 

Embedding route constraints inside the design loop helps 

avoid dead-ends and leverages procurement reality 

(availability, pricing, hazard classes). A practical 

heuristic is two-stage generation: first, generate route-

feasible candidates (filters: SA/SCScore, precursor lists, 

solvent classes), then fine-tune structure and process 

jointly using BO/AL while tracking embodied energy 

and hazard metrics. For remediation media and catalysts, 

include aging, sintering/poisoning resistance, and 

regeneration steps as part of the objective so the loop 

“sees” lifecycle costs, not only fresh performance. 

 

Putting it all together (a typical closed loop). 

Start from a seed pool (legacy compounds, known 

materials, scaffold libraries, or enumerated adsorption 

geometries). Train a calibrated predictor with multi-task 

heads (property + uncertainty). Use a generator 

(diffusion/flow/VAE/RL) conditioned on target vectors 

and route constraints to propose a diverse batch. Run 

multi-objective BO to pick experiments that maximize 

acquisition while spreading along the Pareto front, with 

explicit diversity and safety terms. Execute the batch—

via computation (DFT/FEP/TI) or SDLs—log metadata 

and failures, and update models (including uncertainty). 

Repeat, occasionally inserting high-fidelity physics 

where the model is uncertain but decisions are sensitive. 

Terminate when Pareto improvements saturate or when 

a candidate clears predefined gates (e.g., TRL-aligned 

criteria). 

 

Common failure modes and mitigations. (i) 

Mode collapse in generators → enforce diversity with 

determinantal point processes, nucleus sampling, or 

diversity-aware acquisitions. (ii) Data leakage → use 

scaffold/time/composition-aware splits; hash and 

publish splits; quarantine pretraining overlaps. (iii) 

Reward hacking in RL/generative settings → add realism 

constraints (SA/SCScore, route cost), human-in-the-loop 

vetoes, and physics-based validators. (iv) Overconfident 
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predictors → ensembles + temperature scaling + 

conformal prediction to produce valid coverage. (v) Non-

stationary objectives (e.g., updated toxicity assays) → 

adopt time-aware evaluation and reweighting; re-

validate surrogates when protocols change. 

 

 
Figure 1. Closed-loop AL/BO inverse-design workflow 

 

A calibrated predictor and a conditional 

generator propose route-feasible candidates under 

synthesizability and toxicity constraints. A multi-

objective Bayesian optimizer selects batches that balance 

efficacy/activity, stability, cost, and hazard, routing high-

uncertainty items to higher-fidelity physics or 

experiments. Results feedback to update both predictor 

and generator, advancing the Pareto front each cycle. 

 

4. Quantum & Atomistic Engines 

Design loops rise or fall with the physics 

underneath them. The practical rule is simple: use the 

cheapest model that is trustworthy for the decision at 

hand, and escalate fidelity only where it could flip the 

rank order among candidates. In this section, we 

assemble a working stack—from Kohn–Sham density 

functional theory (DFT) and its many-body corrections, 

to phonons and reaction barriers, solvation and 

interfacial realism, free-energy methods, machine-

learning interatomic potentials (MLIPs), near-term 

quantum computing, and finally multi-fidelity 

workflows that couple these tools to maximize 

throughput without losing accuracy (Mardirossian & 

Head-Gordon, 2017). 

 

Electronic-structure stack. Ground-state 

structures and energetics are typically obtained with 

Kohn–Sham DFT along Perdew’s “Jacob’s ladder”: 

LDA → GGA (e.g., PBE) → meta-GGA (e.g., SCAN) 

→ hybrids (e.g., HSE, PBE0) → double hybrids, with 

DFT+U for localized d/f shells and dispersion 

corrections as needed. Climbing rungs trades cost for 

accuracy; method choice should be justified per target 

(bonding type, correlation, charge transfer). For excited 

states, GW corrects quasiparticle levels and Bethe–

Salpeter (BSE) captures excitons—essential for 

photocatalysis and optoelectronic screening. Reaction 

pathways rely on the nudged elastic band (NEB) 

family—especially the climbing-image variant—to 

locate minimum-energy paths and saddle points 

(Henkelman et al., 2000). Lattice dynamics via phonons 

(harmonic or anharmonic) probe dynamical stability, 

finite-temperature free energies, and thermal transport 

(Togo, 2023). A robust recipe for catalysis or solid-state 

screening is: (i) relax structures with a meta-GGA or 

screened hybrid on a subset, (ii) map key barriers with 

NEB, (iii) compute phonons on shortlisted candidates, 

and (iv) apply GW/BSE only when spectra or level 

alignment could change decisions (Mardirossian & 

Head-Gordon, 2017; Henkelman et al., 2000; Togo, 

2023). 

 

Beyond-DFT and ML interatomic potentials. 

Where DFT is marginal—strong correlation, dispersion-

dominated binding, multi-reference pockets—one can 

stitch in CCSD(T) or other high-level references on 

fragments to Δ-correct DFT energies. For long times and 

large systems, MLIPs deliver near-DFT forces at orders-

of-magnitude lower cost. Equivariant models such as 

NequIP encode rotational and permutational symmetries, 

improving data efficiency and stability for nanosecond-

scale molecular dynamics (MD), rare-event sampling, 
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and thermal transport. In practice: curate a diverse 

active-learning set (including strained/defected/TS-like 

geometries), train an equivariant MLIP with uncertainty 

monitoring, validate on barriers/elastic constants/ 

phonons, then run long MD or kinetic Monte Carlo to 

connect mechanisms to rates (Batzner et al., 2022). 

 

Solvation and interfaces. Real chemistry 

happens in solvents and at interfaces. Three modeling 

tiers are common. (1) Implicit solvation adds a 

continuum dielectric—fast and often sufficient for 

trends. (2) Explicit solvent (shells or slabs) captures 

hydrogen bonding, structuring, and entropic effects; 

combine with umbrella sampling when barriers matter. 

(3) Electrochemistry demands constant-potential (grand-

canonical) DFT, where the electron chemical potential is 

controlled and the double layer is represented; constant-

charge results can mislead when compared to 

experiments at fixed potential. Protein–ligand or 

protein–surface problems require protonation/ionic-

strength realism and careful ensemble choice (Melander 

et al., 2024). 

 

Free-energy methods. Decisions hinge on free 

energies (ΔG), not just electronic energies: solvation, 

binding, selectivity, phase stability, and reaction 

equilibria. In molecular settings, free-energy 

perturbation (FEP) and thermodynamic integration (TI) 

yield absolute or relative ΔG; umbrella sampling + 

WHAM reconstructs potentials of mean force along 

collective variables. In condensed phases and at surfaces, 

constrained MD (blue-moon ensembles) and anharmonic 

corrections are used; MLIPs make the needed sampling 

affordable. Modern variance-reduction schemes—e.g., 

mapped reference potentials—accelerate convergence 

by shaping sampling toward high-variance regions. 

Budget these expensive calculations where rank order is 

tight (e.g., ΔΔG selectivity within tens of meV or ~1 

kcal·mol⁻¹) and rely on calibrated surrogates elsewhere 

(Rizzi, Rehbein, Zeller, & Hummer, 2021). 

 

Quantum computing (forward look). Near-term 

devices remain noisy and small, but variational quantum 

eigensolvers (VQE) and related hybrid methods have 

matured on strongly correlated fragments and model 

Hamiltonians. The credible near-term role in design 

loops is specialist oracle: invoke a mitigated VQE 

calculation only where classical surrogates disagree and 

decisions are sensitive (e.g., spin-crossover centers, 

multi-reference adsorbates). Progress in error mitigation 

(symmetry checks, zero-noise extrapolation, learned 

noise models) defines feasibility windows for such calls 

(Jiang, Sun, Shaydulin, Lubasch, & Liu, 2024). 

 

Multi-fidelity workflows. The throughput 

multiplier is layering: couple fast but approximate 

models (descriptors, MLIPs, GGA-DFT) with high-

accuracy corrections (hybrids, GW/BSE, CCSD(T), 

explicit free energies) only where they are likely to 

change rank order. Two patterns dominate. Δ-learning 

uses sparse paired labels to learn the difference between 

cheap and expensive levels and applies it broadly. 

Adaptive routing with multi-fidelity Bayesian 

optimization/active learning sends a candidate to a 

higher rung when its value of information is high (i.e., 

uncertainty is large and the decision is sensitive); 

otherwise it stays on the cheap track. This approach 

yields higher Pareto throughput (activity/efficacy, 

stability, cost, toxicity) at fixed budget, and it integrates 

naturally with laboratory automation and safety filters. 

The Jacob’s-ladder intuition helps communicate the idea: 

ascend only when necessary (Mardirossian & Head-

Gordon, 2017). 

 

Heterogeneous catalysis. Screen adsorption on 

key facets with GGA/meta-GGA; fit an equivariant 

MLIP for long-time coverage and site-disorder effects; 

escalate a handful of candidates to NEB for rate-limiting 

steps and to hybrids where charge transfer is delicate; if 

photophysics matters, compute GW/BSE on finalists; 

close with microkinetics to estimate TOF under 

operating conditions (Henkelman et al., 2000; Togo, 

2023). 

 

Drug discovery. Use docking and learned 

scorers to prune; reserve FEP/TI for near-ties in ΔΔG; 

include explicit solvent/ions for charged series and water 

networks; push flexible systems with MLIP-accelerated 

sampling; gate candidates by ADMET surrogates before 

costly physics (Rizzi et al., 2021). 

 

Environmental remediation. Prioritize 

binding/selectivity versus co-contaminants; simulate 

regeneration/aging (fouling, poisoning) and leaching in 

explicit solvent; verify framework stability by phonons 

and thermodynamics; route constant-potential 

electrochemical steps to grand-canonical DFT (Melander 

et al., 2024). 

 

Checks and common pitfalls. (i) Functional 

sensitivity: re-compute a subset (e.g., SCAN → HSE) to 

detect cancellations. (ii) Finite-size artifacts: ensure slab 

thickness, k-points, plane-wave cutoffs, and 

counterpoise checks are converged—and record them for 

provenance. (iii) Double counting in Δ-corrections: 

match geometries and dispersion schemes across levels. 

(iv) Electrochemical realism: avoid comparing constant-

charge simulations to constant-potential experiments. (v) 

Free-energy convergence: monitor overlap and statistical 

inefficiency; use replica exchange or enhanced sampling 

if barriers are rough. (vi) MLIP brittleness: maintain an 

active-learning loop with disagreement triggers and 

validate on forces and curvatures (phonons), not only 

energies (Henkelman et al., 2000; Togo, 2023; Melander 

et al., 2024; Batzner et al., 2022). 
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Figure 2. Multi-fidelity ladder for quantum & atomistic design loops 

 

A low-fidelity branch (descriptors/ 

MLIPs/GGA-DFT) screens quickly; a high-fidelity 

branch (hybrids, GW/BSE, CCSD(T), explicit free 

energy) validates only decision-sensitive points 

(Mardirossian & Head-Gordon, 2017). Information 

flows bidirectionally: sparse high-fidelity labels Δ-

correct the cheap model; the cheap model supplies 

diverse proposals and uncertainty cues. 

 

Adaptive routing via multi-fidelity Bayesian 

optimization/active learning escalates samples when 

value of information is high—balancing accuracy, cost, 

and throughput. Use this schematic to communicate 

fidelity-escalation policies and to justify compute 

allocation across rungs. 

 

5. Materials Platforms & Design Spaces 

Modern inverse design is only as powerful as 

the design space it explores. Here we organize practical 

platforms—nanostructures, frameworks and membranes, 

2D materials and defect chemistries, and bio-hybrids—

and outline knobs that move performance, the 

stability/scalability traps to watch, and how to couple 

these spaces to closed-loop optimization. 

 

 Discrete nanoparticles offer high surface-to-

volume ratios and tunable coordination environments; 

quantum dots add size-quantized electronic states; core–

shells and heterostructures decouple functions (e.g., light 

absorption vs. charge separation) while single-atom 

catalysts (SACs) maximize metal atom efficiency and 

uniformity of active sites (Wu & Yang, 2020; Chen et 

al., 2021). Key knobs include composition (alloying, 

dopants), size/shape (facets, edges), support/ligand 

identity, and defect density. For photocatalysis or optical 

delivery, quantum-confined dots (e.g., chalcogenides, 

perovskites) permit bandgap tuning across ~1–3 eV by 

radius control, while surface passivation governs non-

radiative losses and colloidal stability (Li & Zeng, 2019). 

For thermal and electro-catalysis, sub-10 nm particles 

balance activity with sinter-resistance; SACs on 

nitrogen-doped carbons or oxide supports offer high 

turnover with reduced noble-metal loading, provided the 

anchoring coordination is robust under operating 

temperatures and redox swings (Chen et al., 2021). In 

drug delivery, inorganic cores (Au, SiO₂, Fe₃O₄) can be 

shaped and coated for photothermal, imaging, or 

magnetic targeting functions, but surface corona 

formation and RES (reticuloendothelial system) uptake 

must be managed through ligand chemistry (Anselmo & 

Mitragotri, 2019). 

 

Metal–organic frameworks (MOFs), covalent 

organic frameworks (COFs), and zeolites provide 

crystalline, modular scaffolds whose pore size, topology, 

and chemistry can be systematically varied (Diercks & 

Yaghi, 2017; Waller et al., 2019). In catalysis and 

separations, hierarchical porosity (micro–meso) 

alleviates diffusion limits, while post-synthetic 

modification introduces catalytic motifs or 

hydrophobic/hydrophilic balance for complex feeds 

(Waller et al., 2019). For mixed-matrix membranes 

(MMMs), dispersing MOF/COF/zeolite fillers in 

polymers can beat the permeability–selectivity trade-off 

by creating preferential pathways; success depends on 

interfacial compatibility and filler percolation (Pérez-

Reyes et al., 2021). Stability is platform-dependent: 

carboxylate-linked MOFs may hydrolyze; Zr-based 

nodes and imine-to-β-ketoenamine COFs improve 

water/thermal resistance; zeolites excel at hydrothermal 
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stability but are compositionally less flexible (Diercks & 

Yaghi, 2017; Waller et al., 2019). For remediation, 

MOFs/COFs bearing chelating groups capture 

PFAS/heavy metals, but regeneration, fouling, and 

leaching define viability; embedding in robust MMMs 

mitigates particle loss and eases module integration 

(Pérez-Reyes et al., 2021). 

  

Transition-metal dichalcogenides (TMDs) such 

as MoS₂/WS₂, hexagonal BN, and doped graphene 

expose edge and basal-plane sites whose defect/strain 

chemistry can be engineered for catalysis, sensing, or 

separation (Voiry et al., 2018; Zhao et al., 2020). In 

hydrogen evolution, for instance, basal planes are inert 

while edge sulfur vacancies and 1T’ phases activate sites; 

heteroatom doping (N, B, P) in graphene tunes 

adsorption energies and electron density, creating 

ORR/OER/CO₂RR-relevant ensembles (Voiry et al., 

2018; Zhao et al., 2020). For membranes, stacked 

graphene oxide or MXene laminates produce angstrom-

scale channels for ion sieving; swelling control and 

oxidation state stability are the limiting factors (Ding et 

al., 2020). In optics, 2D excitons yield strong light–

matter coupling but suffer photobleaching under high 

flux; encapsulation and defect passivation extend 

lifetimes (Zhao et al., 2020). Defect engineering must 

balance activity with structural fragility: vacancy-rich 

lattices can reconstruct, and dopants may segregate under 

potential/temperature cycling (Voiry et al., 2018). 

 

Bio-hybrids. Enzyme–nanoparticle conjugates 

and nanozymes marry catalytic specificity with 

nanomaterial robustness. Enzymes immobilized on 

porous oxides, carbons, or MOFs gain thermal and 

solvent tolerance; mass transfer through mesopores and 

retention of active-site orientation are the design levers 

(Li et al., 2018). Nanozymes—nanostructured oxides, 

metals, or carbon allotropes with enzyme-like kinetics—

offer low-cost, scalable alternatives for 

peroxidase/oxidase-mimicking reactions in sensing and 

therapeutics, though substrate specificity and in vivo 

compatibility remain challenges (Wang et al., 2020). For 

drug delivery, lipid nanoparticles (LNPs) and polymeric 

carriers (PLGA, PEGylated blocks) control 

biodistribution via size (~60–150 nm), surface charge, 

and ligand targeting; endosomal escape and payload 

stability are the gating mechanisms, and batch-to-batch 

reproducibility under GMP constraints is critical for 

translation (Kulkarni et al., 2021; Anselmo & Mitragotri, 

2019). Hybrid constructs—e.g., enzyme-loaded MOF 

shells or stimuli-responsive polymer–inorganic 

composites—enable cascade catalysis or on-demand 

release but add interfacial failure modes (Li et al., 2018). 

  

Across platforms, stability loss mechanisms 

usually dominate lifetime and cost. In nanoparticle 

catalysts, sintering and Ostwald ripening coarsen size 

distributions; supports that anchor single atoms/clusters 

through strong metal–support interactions and defect-

rich carbons delay coalescence (Chen et al., 2021). In 

MOFs/COFs/MMMs, hydrolysis, linker oxidation, and 

polymer plasticization degrade performance; 

crosslinkers and robust nodes (e.g., Zr, Ti) raise tolerance 

(Waller et al., 2019; Pérez-Reyes et al., 2021). For 2D 

materials and quantum dots, photobleaching, photo-

oxidation, and ligand desorption under illumination and 

heat degrade optoelectronic response; inorganic shells 

and short-chain, multidentate ligands help (Li & Zeng, 

2019). In bio-hybrids, corona formation, enzyme 

denaturation, and carrier aggregation alter targeting and 

kinetics; protein-repellent coatings and mild 

immobilization chemistries mitigate these (Anselmo & 

Mitragotri, 2019; Li et al., 2018). 

 

Scale strategy strongly influences costs and 

footprints. Batch wet-chemistry remains dominant for 

colloids and COFs/MOFs but struggles with heat/mass 

transfer uniformity; continuous-flow microreactors and 

millifluidic systems improve control and reproducibility 

for nanoparticles and QDs, reduce solvent use, and 

integrate inline analytics for closed-loop control (Khan 

et al., 2021). Mechanochemical synthesis (ball milling) 

avoids bulk solvents and can access otherwise difficult 

linkages in MOFs/COFs; solvent-lean microwave, 

photochemical, and supercritical CO₂ routes likewise 

support green chemistry goals when evaluated over full 

life-cycles (Friščić et al., 2020). For membranes and 

MMM modules, roll-to-roll casting and phase-inversion 

lines dominate CAPEX decisions; filler alignment and 

dispersion uniformity are the hidden bottlenecks (Pérez-

Reyes et al., 2021). Across all spaces, integrating LCA 

metrics (energy per kg, solvent hazard scores, 

regeneration cycles) into optimization closes the loop 

between performance and sustainability. 

 

First, define the minimum viable manifold of 

knobs that control the property of interest—e.g., particle 

size and ligand field for plasmonic heating; linker 

identity and node valency for MOF adsorption; defect 

type and areal density for TMD catalysis; or N/P ratio 

and lipid identity for LNP transfection. Second, choose 

representations that tie directly to those knobs (e.g., 

graph features for coordination, SOAP/MBTR for local 

environments, slit-pore descriptors for membranes, or 

learned embeddings for carrier composition), and bind 

them to constraints that reflect synthesis reality 

(temperature/solvent windows, precursor availability, 

GMP/biocompatibility). Third, encode failure modes as 

penalties or objectives—sintering propensity, hydrolytic 

stability, photobleaching rates, protein corona scores—

so the optimizer “sees” lifetime and safety as early as 

activity. Finally, route stability testing into the loop: 

aging protocols, cycling under realistic feeds, and 

regeneration tests are as important as headline selectivity 

or turnover. 
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Table 2: Design-space catalog 

Platform Tunable knobs Typical property 

ranges/examples 

Synthesis/scale constraints 

Nanoparticles / 

QDs / core–

shells / SACs 

Size (1–50 nm), shape/facet, 

alloying/dopants, 

ligand/support, single-atom 

coordination 

Bandgap ~1–3 eV (QDs); 

TOF↑ with facet control; 

SAC M–N₄ sites for 

ORR/CO₂RR 

Sintering/Ostwald; ligand 

desorption; continuous-flow for 

narrow dispersity; support 

anchoring for SACs 

MO / COFs / 

zeolites 

Linker/node chemistry, 

topology, pore 

size/functionalization, 

hierarchical porosity 

BET 500–6000 m² g⁻¹; 
selective 

adsorption/separation; 

catalytic site installation 

Hydrolysis/oxidation; particle 

shedding in MMMs; interfacial 

compatibility with polymers 

2D (TMDs, h-

BN, doped 

graphene) 

Phase (2H↔1T’), vacancy 

density, heteroatom doping, 

strain, stacking 

Edge/vacancy sites for 

HER/ORR; angstrom-

channels for ion sieving 

Swelling/oxidation; defect 

reconstruction; scalable 

exfoliation/CVD; laminate 

stability 

Bio-hybrids 

(enzymes, 

nanozymes, 

carriers) 

Enzyme loading/orientation, 

pore size, nanozyme 

composition, carrier 

size/charge/ligand 

kcat/KM tuning; peroxidase-

like activity; targeted delivery 

& controlled release 

Corona formation; 

denaturation; GMP 

reproducibility; 

immunogenicity; solvent and 

pH windows 

 

6. Application Domain I — Catalysis 

Catalysis underpins low-carbon fuels, green 

chemicals, and polymer circularity. We focus on thermo-

, electro-/photo-electro-, and photocatalysis across CO₂ 
reduction (CO₂RR), oxygen reduction/evolution 

(ORR/OER), nitrogen reduction (NRR), selective 

oxidations, and plasticupcycling—domains where AI-

guided screening, quantum/atomistic validation, and 

microkinetics now run as one loop from idea to reactor 

(Motagamwala & Dumesic, 2020; Leonzio, 2024). 

 

 In heterogeneous catalysis, high-throughput 

DFT and learned surrogates map adsorption/barrier 

landscapes, while Brønsted–Evans–Polanyi (BEP) 

relations tie thermodynamics to kinetics. Microkinetic 

models then convert elementary energetics into rates and 

selectivities under realistic feeds, enabling volcano 

analyses and coverage effects. Practically: (i) pretrain 

surrogates on open and in-house slabs; (ii) run active 

learning/Bayesian optimization (AL/BO) to sample sites 

(facets, steps, defects, ensembles); (iii) escalate high-

value points to higher fidelity (hybrids, explicit 

solvation, constant-potential DFT for electrocatalysis); 

and (iv) select batch experiments that maximize expected 

improvement in turnover frequency or selectivity subject 

to stability and cost (Chanussot et al., 2021; Baz, Comas-

Vives, & López, 2021; Göltl et al., 2022).  

 

• Thermo-catalysis. Rates reflect barriers governed by 

scaling and BEP; microkinetics plus microreactor data 

guide reactor choice (fixed/packed beds, fluidized or 

slurry systems). Dehydrogenation/oxidation selectivity 

often emerges from tuned bifunctional ensembles and 

acid–base balance. Plastic upcycling combines 

hydrogenolysis and selective C–C scission with coke 

management (Motagamwala & Dumesic, 2020). 

• Electrocatalysis. Device-relevant metrics require gas-

diffusion or MEA flow cells that manage mass transport, 

carbonate chemistry, and ohmic losses. Constant-

potential modeling clarifies Tafel slopes and rate orders; 

catalyst–ionomer–membrane architectures co-determine 

local fields and water management (Baz et al., 2021; Lin 

et al., 2022). 

• Photocatalysis/photo-electrochemistry. Light 

absorption, charge separation, and interfacial transfer 

dominate; photo-corrosion and photobleaching drive 

lifetime. PV-coupled CO₂RR or redox-mediated 

architectures can decouple intermittency from reaction 

conditions while preserving selectivity (Motagamwala & 

Dumesic, 2020). 

  

Report, at minimum: turnover frequency (TOF) 

and turnover number (TON); selectivity (molar/carbon 

basis); overpotential (η) for electro/photo steps; Faradaic 

efficiency (FE) and partial current density at specified 

cell voltages; stability with hour counts and drift criteria; 

and catalyst cost and earth-abundance proxies. For 

CO₂RR, add single-pass carbon efficiency, energy 

efficiency, and flow/MEA performance at ≥200 

mA·cm⁻² if claiming device readiness; recent reports of 

sustained C₂⁺ at ampere-scale current densities define 

today’s benchmark bar (Leonzio, 2024; Lin et al., 2022; 

Chen, Wang, Li, & Chen, 2024). 

 

 Dominant routes include coking, poisoning 

(S/Cl/P/halides), sintering/Ostwald ripening, dissolution/ 

leaching (electrochemical), phase reconstruction, and 

support corrosion. Materials levers are strong metal–

support interactions, defect-anchored single-atom sites, 

corrosion-resistant supports, and alloying to resist 

halides; process levers are periodic regeneration 

(oxidative burn-off/reduction), potential pulsing, 

electrolyte impurity control, and operation inside phase-

stable windows. Durability claims should pair 

accelerated stress tests with long-hold runs (≥100 h) and 

post-mortems (TEM/XRD/XPS/ICP) that separate 

sintering from poisoning or leaching (Forzatti, 1999; 

Anekwe, Li, Salako, & Zhang, 2025; Pham et al., 2025). 
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” BEP relations transform reaction energies into 

activation energies, enabling fast kinetic surrogates; 

generalized forms handle multi-step networks and site 

specificity. Microkinetics converts those into coverage-

dependent rates/selectivities, revealing Sabatier volcano 

structure and identifying which adsorption-energy tweak 

would move a surface toward the peak without 

sacrificing stability (Göltl et al., 2022; Yang et al., 2024; 

Motagamwala & Dumesic, 2020). 

 

Case study flow (CO₂RR): AL → DFT → cell 

benchmarking. 

➢ Seed & learn. Begin with Cu-rich, Ag-

decorated, and defect-rich carbon motifs; train 

a surrogate on adsorption energies and key 

barriers from open OC datasets and in-house 

slabs. Use active learning to explore steps, grain 

boundaries, and heteroatom ensembles; treat the 

interface with constant-potential DFT where 

fields matter (Chanussot et al., 2021; Cheng, 

Luo, & Cheng, 2022). 

➢ Down-select via microkinetics. Convert 

energetics into predicted partial currents and 

selectivities across CO₂/H₂O/CO activities; 

penalize dissolution or reconstruction windows 

at target potentials/pH (Baz et al., 2021). 

➢ Validate physics. Escalate finalists to hybrid 

DFT for charge-transfer-sensitive steps; include 

explicit water/ionomer when trends hinge on 

local fields. 

➢ Device-level test. Fabricate MEA/flow-cell 

electrodes; benchmark FE(C₂⁺), partial current 

density at ≥200 mA·cm⁻², energy efficiency, 

and drift over 24–100 h; compare to state-of-

the-art cells reporting A·cm⁻² C₂⁺ production 

(Lin et al., 2022; Chen et al., 2024). 

➢ Close the loop. Feed positives and negatives 

back to the surrogate; update BO to advance the 

Pareto front (selectivity–stability–cost). When 

ranks are ambiguous, request new high-fidelity 

labels (e.g., explicit-solvation free energies) 

(Göltl et al., 2022). 

  

After clearing device bars, reactor models size 

mass/heat transfer and balance-of-plant. For 

thermocatalysis, packed-/fluidized-bed or slurry models 

constrain particle size, gradients, and pressure drop; for 

electrolyzers, gas-diffusion electrodes, CO₂ delivery, 

carbonate management, and membrane/ionomer 

durability dominate. Techno-economic analysis (TEA) 

ties productivity and lifetime to levelized cost, with 

sensitivity to electricity price, current density, FE, and 

stability. Report earth-abundance metrics to avoid 

breakthroughs that cannot scale (Leonzio, 2024; Lin et 

al., 2022). 

 

Encode durability proxies—sintering 

propensity, halide/sulfur binding, leaching windows—

directly into the objective so AL/BO avoids fragile 

optima. Track regeneration efficacy and post-mortem 

signatures to drive causal fixes rather than parametric 

overfitting (Forzatti, 1999; Pham et al., 2025). 

 

 
Figure 3: CO₂ electroreduction cells used for device-level benchmarking (real schematic). 
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Diagram comparing H-cell, microchannel/ 

flow-cell, and MEA architectures commonly used to 

evaluate CO₂RR catalysts at increasing mass-transport 

and current-density demands. Highlights where device-

relevant metrics (partial current density, FE, energy 

efficiency) are obtained and why flow/MEA cells are 

essential for ≥200 mA·cm⁻² operation. Place this figure 

adjacent to your CO₂RR case study to anchor “AL → 

DFT → cell” transitions in real hardware 

 

7. Application Domain II — Drug Discovery 

Drug discovery now spans a wide target 

space—enzymes, GPCRs, ion channels, protein–protein 

interfaces (PPIs), and nucleic-acid targets—and multiple 

modalities, from small molecules and peptides/ 

peptidomimetics to oligonucleotides and nano-enabled 

delivery systems. Since 2017, the biggest shift has been 

toward integrated funnels that couple structure/dynamics 

of targets with generative chemistry, calibrated scoring, 

physics-based free energies, and early ADMET triage, 

all guided by uncertainty and synthesis constraints 

(Ekins et al., 2019; York et al., 2023). 

 

Target space & modality choice. Enzymes 

remain tractable because pocket geometry constrains 

design, but PPIs and RNA/DNA motifs are increasingly 

addressable via hot-spot mapping, fragment merging, 

macrocycles, and peptide/peptidomimetic scaffolds. 

Structure sources blend crystallography/cryogenic EM 

with AlphaFold-class models and molecular dynamics to 

reveal cryptic or induced-fit pockets that reshape SAR. 

Modality should be chosen for biophysics + distribution: 

small molecules for intracellular enzymology; 

macrocycles/peptides for shallow PPIs; siRNA/ASO 

payloads when gene-level control is needed; and 

nanocarriers when permeability, stability, or tissue 

access limit efficacy (Mehta et al., 2023; Kim et al., 

2023). 

 

Screening funnels. A robust end-to-end loop is staged 

and data-calibrated: 

➢ Generative ideation. Constrained generation 

(scaffolds, pharmacophores, synthesizability) 

proposes diverse chemotypes; synthesis scores 

and building-block availability gate feasibility. 

➢ Docking + rescoring. Docking is treated as a 

pose proposer; ML rescoring (graph/ 

transformer models) provides calibrated ΔG 

estimates with uncertainties. 

➢ Physics refinement. Alchemical FEP/TI or 

enhanced-sampling PMFs resolve near-ties (~1 

kcal·mol⁻¹) and water-network edge cases; 

these steps are reserved for shortlists to control 

cost. 

➢ ADMET triage. Permeability/solubility, 

metabolic stability and CYP liabilities, hERG 

risk, and reactive substructure flags reduce late 

attrition. 

➢ Make–test–analyze. Prospective assay data 

(biophysics, enzymology/cell, early PK) are fed 

back to re-train scorers and generators under 

uncertainty, closing the loop (York et al., 2023; 

Ekins et al., 2019). 

 

Nanocarriers as part of the design problem. 

Lipid nanoparticles (LNPs), liposomes, polymeric 

nanoparticles/micelles, dendrimers, and inorganic cores 

(gold, silica, magnetic) extend the accessible 

pharmacology by controlling biodistribution, release, 

and stability. Design knobs include size (≈60–150 nm for 

systemic use), surface charge, PEG density, ligand 

display, core/shell chemistry, and endosomal-escape 

motifs. Failure modes—protein corona, aggregation, 

complement activation, and immunogenicity—must be 

screened early, and carrier choice must be co-optimized 

with payload potency and PK; a vehicle cannot rescue 

weak pharmacology (Alshawwa et al., 2022; Mehta et 

al., 2023; Kim et al., 2023). 

 

Safety & translation. Early off-target prediction 

reduces rework: hERG (K_v11.1) risk models combine 

ligand-based and structure-informed features; CYP 

inhibition/induction predictors anticipate DDIs; broader 

in-silico panels (kinases, GPCRs, ion channels) and 

transcriptomic/phenotypic profiling flag liabilities. 

Lessons since 2019: (i) hERG models improve with 

assay-consistent labels and protein context; (ii) CYP 

models benefit from multimodal inputs and domain 

adaptation to novel chemistry; and (iii) nanocarrier 

safety hinges on orthogonal tests (hemolysis, 

complement, macrophage uptake) and PBPK that 

accounts for corona-driven sequestration (Garrido et al., 

2020; Weiser et al., 2023; Kim et al., 2023). 

 

CMC and scalability. Translation stalls when 

chemistry, manufacturing, and controls (CMC) lag 

behind discovery. For small molecules this means 

convergent routes, impurity fate maps, and solid-form 

control; for nanotherapeutics it requires scalable mixing 

(e.g., microfluidic LNP production), in-process 

analytics, lot-to-lot reproducibility, and GMP-ready 

CQAs (size/PDI/encapsulation, stability). Lock a DoE 

early to avoid “one-off” lab formulations that fail at scale 

(Liu et al., 2021; Agha et al., 2023). 

 

Clinical & regulatory notes; digital twins 

(forward look). A credible preclinical package 

documents target engagement, exposure–response, GLP 

tox (including ion-channel safety), and a control strategy 

linking process to product quality (ALCOA+ data 

integrity). Digital twins/virtual patients are emerging to 

pressure-test dose, inclusion criteria, and responder 

enrichment before Phase trials—but demand external 

validation and bias checks (An, 2022; Alsalloum et al., 

2024). 
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Putting it together: End-to-end molecule + nanocarrier 

loop. 

➢ Choose the modality per target biology and 

delivery constraints (enzyme vs PPI vs RNA; 

free-drug vs carrier). 

➢ Constrained generation → docking/ML-ΔG → 

FEP/TI for shortlists to resolve rank ties and 

waters. 

➢ ADMET triage (permeability, metabolic 

stability, hERG/CYP/off-targets, reactivity 

flags) with calibrated uncertainty. 

➢ Carrier co-design only when PK/access 

demands it; screen corona/immune interactions 

and manufacturability. 

➢ Prospective calibration via make–test–analyze 

cycles; lock scalable routes (for LNPs, 

microfluidic mixing and lyophilization). 

➢ Preclinical to IND with GLP tox, stability-

indicating methods, and a CMC control strategy 

linking CQAs to clinical material. Across all 

steps, treat uncertainty as a first-class signal to 

route expensive physics and experiments where 

they change decisions (York et al., 2023; Mehta 

et al., 2023; Liu et al., 2021). 

 

 
Figure 4: Representative nanocarrier classes for therapeutic delivery. 

 

Panel illustrating liposomes, polymeric 

nanoparticles, metallic-core nanoparticles, and 

dendrimers—highlighting how carrier architecture 

affects loading and release. Use this to anchor the 

“molecule + nanocarrier” decision: when potency is 

adequate but PK, stability, or targeting limit efficacy, the 

design space expands from ligand chemistry to carrier 

CQAs. Place near the nanocarrier paragraph and CMC 

notes to signal the translation pathway from formulation 

choice to GMP-ready attributes. 

 

8. Application Domain III — Environmental 

Remediation 

Industrial effluents and diffuse pollution now 

present mixed contaminant streams—dyes with high 

chromophoric stability, heavy metals (As, Pb, Cd, Hg) 

lacking degradation pathways, PFAS with extreme 

fluorinated persistence, pharmaceuticals with bioactivity 

at ng·L⁻¹, microplastics as colloidal carriers of sorbed 

toxics, VOCs impacting air and water, and NOₓ/SOₓ in 

flue gas–water couplings. Effective remediation 

therefore matches pollutant class → mechanism → 
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material under realistic matrices (ionic strength, NOM, 

co-ions) and tracks not only removal but byproducts, 

durability, and cost/energy (Crini & Lichtfouse, 2019; 

Wang, DeWitt, Higgins, & Cousins, 2017). Mechanisms 

and where they win. 

• Adsorption/ion exchange excels for 

hydrophobic dyes, many APIs, and metals 

(outer-/inner-sphere complexation), offering 

modular columns and straightforward 

regeneration. Selectivity hinges on surface 

functionality (e.g., –COOH/–NH₂), 
microporosity, and competing anions; for 

arsenic, iron (oxy)hydroxide and Zr-based 

sorbents form inner-sphere complexes that 

resist desorption (Crini & Lichtfouse, 2019). 

• Photocatalysis & advanced oxidation (AOPs) 

mineralize organics via •OH or SO₄•⁻, with 

TiO₂ and g-C₃N₄ as workhorses; 

heterojunctions and dopants shift band 

positions and suppress recombination, while 

persulfate activation broadens pH windows and 

matrix tolerance (Huang, He, & Zhong, 2019; 

Wang & Wang, 2020). 

• Electrocatalytic degradation (EAOPs) 

leverages reactive oxygen on BDD or 

dimensionally stable anodes; paired with 

electrosorption or Fe/Cu mediators, EAOPs 

handle persistent pharmaceuticals and PFAS 

precursors, and integrate readily into modular 

reactors (Garcia-Segura, Ocon, & Chong, 2018; 

Qiao, Guo, & Sun, 2023). 

• Membranes deliver phase barriers 

(MF/UF/NF/RO) and reactive separations 

(photocatalytic or adsorptive layers). They 

excel for microplastics and metals but face 

fouling, concentration polarization, and 

retentate handling—hence hybrid trains 

(adsorption → NF/RO → AOP) are common 

(Qiu, Zhang, & Zhao, 2019). 

• Materials palette and tuning. 

• MOFs/COFs/zeolites. MOFs/COFs offer 

designer pore chemistry and high surface areas; 

sulfonated/aminated nodes capture dyes and 

metals, while Zr-based nodes tolerate 

water/oxidants. Zeolites bring hydrothermal 

stability and ion exchange capacity for 

NH₄⁺/heavy metals (Dong, Tu, & Zheng, 

2020). 

• Carbons (biochar/AC/graphene derivatives). 

Surface oxygen/nitrogen groups and π–π 

domains bind dyes and APIs; doped carbons 

introduce Lewis basicity and redox mediation. 

Biochars deliver low-cost capacity with 

ash/alkali side effects; activation and acid 

washing tailor selectivity (Tran, Ok, & Sik, 

2017). 

• Semiconductors. TiO₂ (UV) and g-C₃N₄ 
(visible) form Z-schemes or S-schemes with 

oxides/sulfides to widen spectral response and 

suppress recombination; perovskites and 

bimetallics (e.g., Ag–Cu, Fe–Ni) tune 

adsorption and radical generation at interfaces 

(Wang & Wang, 2020; Huang et al., 2019). 

• Bio-sorbents and hybrids. Chitosan, alginate, 

and protein-functional materials chelate metals 

and bind dyes; immobilizing enzymes in MOFs 

or on oxides adds biocatalytic steps. Stability 

and microbial growth control are the design 

constraints (Crini & Lichtfouse, 2019). 

• Durability, leaching, and secondary pollution. 

Capacity alone is not sufficiency. Assess: (i) 

leaching of metals/ligands from MOFs or 

nanoparticle supports; (ii) byproduct toxicity—

AOP intermediates, short-chain PFAS from 

precursor oxidation; (iii) photobleaching of 

sensitizers and corrosion under EAOPs; and (iv) 

regeneration routes (thermal/solvent/pH swing, 

electro-regeneration) with minimal capacity 

fade. Report cycle life (≥5–10 cycles), mass 

balance (parent + intermediates + 

mineralization), and post-mortem analytics 

(XPS/ICP/TEM) to deconvolute mechanisms 

(Dong et al., 2020; Garcia-Segura et al., 2018; 

Wang & Wang, 2020). 

• PFAS, microplastics, and metals: three stress 

tests. 

• PFAS. C–F persistence defeats conventional 

AOPs; the field favors separate-and-destroy: 

high-affinity capture (ion-exchange resins, 

fluorophilic sorbents) followed by destructive 

steps (electrochemical oxidation/reduction, 

UV-sulfite, plasma). Avoid partial 

defluorination that yields equally persistent/ 

toxic fragments; fluoride balance and targeted 

HRMS for precursors are required (Wang et al., 

2017; Qiao et al., 2023). 

• Microplastics. Size-fractioned removal by 

coagulation–flocculation, DAF, and 

membranes is effective; aging increases 

polarity and adsorption of co-pollutants, calling 

for upstream carbon or hybrid AOPs to avoid 

contaminant-rich concentrates (Qiu et al., 

2019). 

• Metals (As, Pb, Cd, Hg). Favor inner-sphere 

complexation and redox stabilization (e.g., 

As(V) precipitation, Hg(II) complexation) on 

iron/zinc oxides, thiolated carbons, or MOF 

linkers; design around competing anions 

(PO₄³⁻, SO₄²⁻) and pH windows (Crini & 

Lichtfouse, 2019; Dong et al., 2020). 

 

From bench to field. Laboratory wins must 

survive matrix effects (hardness, NOM, alkalinity) and 

fouling (biofouling, scaling). Fieldable trains often adopt 

adsorption → membrane → AOP sequences to separate, 

concentrate, and finally destroy, or EAOP polishing 

post-RO to treat retentate. Pilot → municipal scaling 

requires skid-mounted modules, backwash/clean-in-

place SOPs, and energy/cost accounting (kWh·m⁻³; 
$·m⁻³) including regenerant disposal. TEA/LCA should 
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report media $·kg⁻¹, bed volumes to breakthrough, 

specific energy per log removal, and sludge/retentate 

handling to avoid burden shifting (Garcia-Segura et al., 

2018; Qiu et al., 2019). 

 

Putting the decision tree to work. Start with 

contaminant identity + matrix: (1) Hydrophobic dye in 

high-NOM water? → hydrophobic carbon or COF + low-

dose UV/PS AOP; KPI = capacity (mg·g⁻¹), pseudo-

second-order rate, color removal, energy per m³. (2) 

As(V)/Pb(II) in groundwater? → Fe/Zr oxide or thiolated 

carbon with pH-swing regeneration; KPI = breakthrough 

bed volumes at regulatory limit, selectivity over 

HCO₃⁻/SO₄²⁻. (3) PFAS (C4–C8) in municipal influent? 

→ ion-exchange or fluorophilic adsorbent + 

electrochemical destruction of regenerant; KPI = ΣPFAS 

and fluoride balance, energy per mmol F⁻ released. (4) 

Mixed pharmaceuticals (μg·L⁻¹) → NF/RO + UV/H₂O₂ 
or EAOP polishing; KPI = parent/intermediate toxicity 

and specific energy. (Crini & Lichtfouse, 2019; Wang et 

al., 2017; Garcia-Segura et al., 2018; Qiu et al., 2019). 

 

Table 3: Remediation KPIs with standardized units 

KPI Definition Typical unit Notes for reporting 

Capacity Sorbate uptake at equilibrium 

(per mass of sorbent) 

mg·g⁻¹ Report isotherm (Langmuir/Freundlich), 

temperature, pH, ionic strength 

Rate constant Apparent kinetic constant 

(pseudo-first/second order) 

min⁻¹ or 

g·mg⁻¹·min⁻¹ 
Provide reactor type (batch/column), 

film/mass-transfer limits 

Selectivity Preference vs. competing species dimensionless 

(ratio) or % 

Specify competitors and concentrations 

(e.g., SO₄²⁻, Cl⁻, NOM) 

Removal Fraction of parent removed % or log₁₀ 
reduction 

Pair with mineralization (% TOC/fluoride 

balance) to avoid byproduct masking 

Energy Specific electrical/UV energy kWh·m⁻³ or kJ·g⁻¹ 
pollutant 

Include duty cycle, electrode/UV 

efficiency, and matrix absorbance 

Stability Performance over reuse cycles to 20% 

capacity loss 

Include regeneration protocol, leachate 

analysis (ICP, LC-MS) 

Pressure 

drop/Flux 

Hydraulic performance 

(membranes/columns) 

kPa; L·m⁻²·h⁻¹ Report fouling control (CIP/backwash), 

temperature, crossflow 

Cost Media/reactor cost normalized $·m⁻³ treated Include media lifetime, regenerant/disposal 

costs (avoids burden shifting) 

 

This table standardizes what to report so results 

are comparable across materials and pilots. Pair removal 

with mineralization/toxicity to prevent green-washing 

via persistent intermediates. Express energy and cost on 

a per-volume basis, with media lifetime and waste 

handling. Always include matrix descriptors (NOM, 

hardness, pH, co-ions) and uncertainty to support scale-

up decisions. 

 

9. Closed-Loop Experimentation & Automation 

Modern discovery programs increasingly hinge 

on closed-loop experimentation—hardware and software 

that plan, execute, analyze, and then decide the next 

experiments with minimal human intervention. The core 

ingredients are (i) high-throughput experimentation 

(HTE) and robotics to generate dense, high-quality data; 

(ii) active-learning planners that balance exploration and 

exploitation; and (iii) standards that let instruments and 

informatics talk reliably, with rich metadata and robust 

error handling. When these pieces click, self-driving 

workflows compress months of manual iteration into 

days while maintaining traceability and reproducibility 

(Tom et al., 2024; Christensen et al., 2021). 

 

HTE & robotics. Microfluidic and mesofluidic 

platforms now serve as agile “workhorses” for synthesis, 

formulations, and materials processing. Arrays of 

microliter-scale reactors, controlled by syringe/pressure 

manifolds and LED modules, can sweep temperature, 

residence time, stoichiometry, light intensity, and 

reagent identity with exquisite repeatability. 

Inline/online analytics—UV-Vis/IR probes, MS/ESI-

MS, HPLC/UHPLC with autosamplers, Raman, DLS, 

even compact XRD—collapse feedback time from hours 

to minutes, so the planner learns on the fly rather than 

after a batch campaign. For solid-handling or 

membrane/coating work, collaborative robots and liquid 

handlers prepare libraries, while integrated balances, 

viscometers, tensiometers, and contact-angle tools 

measure key physical attributes. Critically, the physical 

layout should be “planner-aware”: parallel reactors 

feeding a shared analytics queue, with barcoded 

consumables and fail-safe waste routing to prevent cross-

contamination (Shields et al., 2021; Guo, Ranković, & 

Schwaller, 2023). 

 

Active learning with sample-budget limits. 

Because experiments are costly, the planner must choose 

wisely. Bayesian optimization (BO) is the default engine 

for continuous conditions, using a surrogate (often a 

Gaussian process) with an acquisition function (e.g., 

expected improvement, upper confidence bound) that 

trades off exploitation (trying the current best 

neighborhood) and exploration (reducing uncertainty in 

poorly known regions). For reaction or formulation 

spaces that mix continuous and categorical choices 

(ligand, solvent, membrane polymer), specialized 

methods incorporate descriptors for the categorical 
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options to guide search in a “soft” space (Häse et al., 

2020). In multi-response settings—yield and selectivity, 

or flux and rejection—multi-objective BO pushes a 

Pareto front rather than a single optimum. Two 

pragmatic constraints dominate real labs: batching 

(proposing N experiments in parallel for a plate/run) and 

scheduling (coordinating reactors and analytics). 

Planners therefore co-optimize the which (next 

conditions) and the when/where (assignment to 

modules), so idle time is minimized and analytical 

queues do not become bottlenecks (Ruan et al., 2022; 

Shields et al., 2021). 

 

Scheduling and orchestration. Self-driving 

campaigns are rarely single-instrument affairs. A robust 

loop models the lab as a set of resources (reactors, 

shakers, ovens, chromatographs) with capacities and 

service times. The planner emits action graphs (“dose A, 

heat 60 °C for 8 min, irradiate 455 nm, quench, inject 

HPLC”), while a scheduler enforces resource constraints, 

retries transient failures, and logs state transitions. 

Practical heuristics—like “hedged batches” that include 

a few exploitation points, a few uncertainty-reduction 

points, and a couple of controls—keep learning on track 

when measurements arrive asynchronously. For 

heterogenous tasks (e.g., membrane casting + 

permeability testing), the loop may switch objectives 

between phases: first maximize film integrity/defect-free 

casting, then optimize permeability–selectivity under 

fixed casting conditions. 

 

Interfacing instruments (APIs, schemas, and 

provenance). To be reliable and shareable, an 

autonomous loop needs standardized control and data. 

On the control side, SiLA 2 defines device services and 

command/response structures so pumps, valves, 

photoreactors, and balances expose consistent APIs—

vital when swapping vendors or scaling up. On the data 

side, experiment schemas keep context intact: for small-

molecule reactions, the Open Reaction Database (ORD) 

schema captures reagents, operations, conditions, and 

outcomes in a machine-readable way; for analytical 

results, AnIML-style containers record 

spectra/chromatograms with method metadata and 

calibration. Minimal yet FAIR (Findable, Accessible, 

Interoperable, Reusable) pipelines start with strict 

deduplication and standardization, unit harmonization 

(SI), and provenance (who/what/when/how), then 

append data-quality flags (outlier detection, sensor 

health) and licensing so data can be reused downstream 

(Kearnes et al., 2021; SiLA Consortium, 2019). 

 

Error handling and robustness. Automation 

fails; resilient loops plan for it. Distinguish hard faults 

(device offline, comms failure) from soft faults (pressure 

spike, detector saturation, out-of-spec peak). Hard faults 

trigger re-routing or safe shutdown; soft faults yield 

censored data—which the model should ingest with 

uncertainty rather than discarding. Calibration drift is 

mitigated by interleaving standards and references; 

concept drift (chemistry changes as the loop moves) is 

handled with time-aware kernels or periodic re-

initialization around newly discovered regions. Every 

loop should maintain audit trails (actions, firmware 

versions, calibrations, chem inventory lots) to make 

results reproducible. 

 

Mini-vignette 1 — Autonomous photoredox 

discovery. A flow photoreactor with LED modules 

(blue/green) and HPLC-MS inline analytics explores 

catalyst, base, solvent, light intensity, residence time, and 

stoichiometry. The planner begins with a diverse seeding 

design, trains a GP on conversion/selectivity, and 

proposes batches via expected improvement under a 

sample-budget of 12–24 experiments per hour. When the 

GP’s predictive variance spikes—e.g., a new 

photocatalyst family—it triggers exploration; near 

promising basins, it switches to local exploitation and, 

for close contenders, escalates to physics-based checks 

(e.g., transient spectroscopy to confirm productive 

excited states). Over a day, the loop finds higher 

selectivity at lower light power by shifting to a different 

photocatalyst/solvent pair and slightly longer residence 

time—an outcome a purely manual DoE would likely 

miss (Shields et al., 2021). 

 

Mini-vignette 2 — Autonomous membrane 

formulation. A casting robot prepares polymer–additive–

solvent blends on glass, controls drying 

temperature/humidity, then runs inline thickness and 

defect imaging; cured films are mounted in a mini-

permeation skid to measure permeability and selectivity 

for water/organic or gas pairs. The planner first 

optimizes film integrity (defect rate < 1%) under 

manufacturing constraints (max solids %, drying ramp), 

then switches objective to the permeability–selectivity 

Pareto front, proposing formulations that respect 

viscosity windows (pumpability) and cost caps. A multi-

reactor/one-analyzer scheduler parcels batches to keep 

the permeation skid saturated; the best formulations are 

re-cast at larger area to verify scale effects (Christensen 

et al., 2021). 

 

People and process. Autonomy amplifies expert 

time rather than replacing it. Chemists and engineers still 

define objective functions (what does “good” mean?), 

constraints (synthetic plausibility, safety, waste), stop 

rules (sufficient confidence or resource cap), and 

validation plans (orthogonal assays, out-of-distribution 

tests). Teams should adopt model cards and data sheets 

for experiments, documenting assumptions, training 

data, and known failure modes; this avoids over-claiming 

and eases tech transfer. Finally, governance matters: 

version-controlled recipes, CI tests for instrument 

drivers, and simulation sandboxes for planner updates 

prevent “bricking the lab” during software changes (Tom 

et al., 2024). 
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10. Safety, Sustainability, and Life-Cycle Thinking 

Designing catalysts, therapeutics, and 

remediation materials to be safe and sustainable by 

design means elevating environmental and human-health 

considerations to the same level as performance and cost. 

In practice, that requires three tight couplings: (i) green 

chemistry metrics that steer route and process choices 

while the chemistry is still malleable; (ii) life-cycle 

assessment (LCA) and circularity thinking that extend 

the boundary from flask to factory to fate; and (iii) 

nanosafety principles and regulatory alignment so scale-

up does not create new risks. When these are embedded 

in closed-loop discovery, the optimizer no longer seeks 

“the best material,” but rather the best feasible material 

under sustainability and safety constraints (Sheldon, 

2017, 2018; Jiménez-González et al., 2011). 

 

Green chemistry metrics that drive decisions. 

Three yardsticks consistently influence outcomes early 

enough to matter. Atom economy rewards 

transformations that place most of the reactant atoms into 

product, but it is blind to workup and solvent. The E-

factor (kg waste per kg product) broadens the lens to 

every stream exiting the process; high E-factors typically 

correlate with poor economics and environmental load. 

Process Mass Intensity (PMI), now common in pharma 

and fine chemicals, goes further by counting all inputs—

solvents, reagents, auxiliaries—per kilogram of product, 

making it sensitive to recovery and recycle strategies. 

Together, E-factor and PMI let teams trade yield against 

separations burden and solvent volumes; both can be 

forecast from route sketches and refined as unit 

operations are locked (Sheldon, 2017, 2018; Jiménez-

González et al., 2011; Benison et al., 2022; Kekessie et 

al., 2024). Because solvents often dominate PMI, solvent 

selection guides have become the largest early lever: 

moving from chlorinated or high-toxicity ethers toward 

alcohols, esters, water, or carbonates can lower PMI and 

hazard without sacrificing process windows, provided 

drying and separation energies are accounted for 

(Benison et al., 2022; Kekessie et al., 2024). 

 

From gate-level metrics to cradle-level 

footprints. Route- and step-level indicators are necessary 

but not sufficient. LCA extends analysis to the full life 

cycle—cradle-to-gate (raw materials to factory gate), 

cradle-to-grave (through use and end-of-life), or cradle-

to-cradle (with recovery loops). Following ISO 

14040/14044, credible LCAs specify goal/scope, system 

boundaries, functional unit, inventory sources, impact 

methods (e.g., ReCiPe), and uncertainty/sensitivity 

analyses. For materials achieving the same function, it is 

routine to observe burden shifting: a composition with 

lower climate impact may worsen freshwater ecotoxicity 

or mineral depletion. Communicating these trade-offs 

with normalized, multi-category radar (spider) charts 

helps decision-makers select options consistent with 

project priorities and policy constraints (Hollberg & 

Ruth, 2021). In closed loops, fast LCA surrogates—fed 

by bills of materials, unit operations, and assumed energy 

mixes—can provide impact vectors that sit alongside 

performance metrics so multi-objective optimization is 

truly performance × footprint, not performance first, 

footprint later (Hollberg & Ruth, 2021). 

 

Circularity and life-cycle sustainability 

assessment. Circular design targets recyclability, 

recoverability, and benign end-of-life, not just lower 

footprints at manufacture. Life-cycle sustainability 

assessment (LCSA) integrates environmental LCA with 

life-cycle costing and social metrics (worker safety, 

supply risk, community impacts), recognizing that a low-

carbon material relying on scarce or conflict-exposed 

inputs is not legitimately “sustainable.” Adding critical-

minerals flags and recovery yields as constraints in the 

design loop helps avoid stranded breakthroughs that 

cannot be responsibly scaled (Finkbeiner et al., 2020). 

 

Nano-(eco)tox: design rules for particles and 

interfaces. At the nanoscale, hazard and exposure depend 

on size, shape/aspect ratio, dissolution kinetics, and 

surface chemistry—all of which evolve in real media as 

“coronas” of proteins or natural organic matter adsorb. 

This bio/eco-corona rewires particle identity, tuning 

aggregation, transport, uptake, and immune recognition. 

Robust evidence now shows trophic transfer in aquatic 

food webs and context-dependent toxicity that shifts with 

ionic strength and organic matter. Reproducible 

assessment therefore requires standardized reporting of 

hydrodynamic size distributions, number concentrations, 

zeta potential, dissolution, and corona composition in 

relevant media, alongside realistic exposure metrics 

(Drasler et al., 2017; Abdolahpur Monikh et al., 2020; 

Liu et al., 2023; Zhang et al., 2024). For discovery, these 

factors can be encoded as penalties or constraints: 

avoiding high-aspect-ratio shapes in environmental 

applications unless fate data are strong; preferring 

coatings that remain stable across expected pH/ionic-

strength windows; and prioritizing compositions with 

low bioaccumulation potential. 

 

Standardization is catching up—use it. The 

OECD Working Party on Manufactured Nanomaterials 

has issued and updated test guidelines relevant to 

particles, including guidance for size distribution 

measurement, dispersion stability, dissolution/leaching, 

and adaptations of bioaccumulation and toxicokinetics 

studies to nanoforms. These harmonized protocols, along 

with sector guidance from EFSA for agri-food and 

environmental contexts, enable comparability and 

regulatory acceptance across labs. Treat them as design 

constraints, not just compliance hurdles: plan 

characterization and hazard screens that map one-to-one 

to these methods so datasets are reusable and auditable 

(Drasler et al., 2017; Abdolahpur Monikh et al., 2020). 

 

Regulatory landscape to design for—not 

around. In the EU, REACH now requires explicit 

nanoform identification and characterization in 

registrations, with data bridging allowed only when 
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scientifically justified. In the United States, FDA 

guidance clarifies how nanomaterials in drug products 

trigger additional CMC and risk-benefit considerations, 

and EPA uses TSCA mechanisms (including significant 

new use rules) to manage new nanoscale substances. 

Cross-cutting actions on persistent classes—e.g., 

expanding PFAS reporting and phase-out schedules—

illustrate how surfactants, processing aids, or polymer 

additives can suddenly fall under stricter scrutiny, 

reshaping material choices and manufacturing routes 

(ECHA, 2020; FDA, 2022; EPA, 2024). Building 

regulatory readiness into optimization—by tagging 

candidates that would trigger special reporting or 

nanoform dossiers—prevents late-stage redesigns. 

 

Operationalizing “safe & sustainable by 

design” in a loop. Practically, make sustainability a first-

class objective. Train multi-task predictors to output 

performance (activity, selectivity, potency), 

processability (solubility windows, synthesis steps), and 

proxy hazard (e.g., aquatic toxicity tiers; hERG/CYP for 

drugs) with calibrated uncertainty; route low-confidence 

regions to higher-fidelity tests. Attach a solvent plan and 

PMI/E-factor snapshot to every candidate proposal so 

Bayesian optimization trades performance against mass 

intensity at acquisition time. Bundle a fast LCA vector 

with each recipe using scenario-appropriate energy and 

transport inventories to expose climate, toxicity, and 

resource-use trade-offs during selection. For nano-

enabled options, require OECD-compatible 

characterization and leaching/dispersion screens before 

escalating exposure scenarios, and treat regeneration and 

end-of-life as optimization targets (cycles to 20% 

capacity loss; recovery yields). Finally, document 

assumptions and data provenance model cards for 

predictors, data sheets for experiments, and change logs 

for PMI/LCA snapshots so sustainability claims are 

transparent and reproducible (Sheldon, 2018; Kearns et 

al., 2021; Hollberg & Ruth, 2021). 

 

Putting the spider chart to work. When three 

materials achieve the same functional unit (e.g., equal 

conversion or dose efficacy), compare normalized LCA 

categories on a spider chart beside KPI tables. A 

candidate that minimizes climate and fossil resource 

impacts might score worse on ecotoxicity due to metal 

leaching or solvent choices; another might excel on 

toxicity but depend on a scarce element. Selecting the 

Pareto-efficient option then becomes a policy-aware 

choice, not a single-metric race. Include uncertainty 

bands and sensitivity to hotspots (e.g., solvent recovery 

rate, electricity mix) so readers can see where additional 

data would change the decision (Hollberg & Ruth, 2021). 

 

 
Figure 5: Comparative Life-Cycle Impact Radar for Function-Equivalent Materials 

 

This section makes sustainability a first-class 

objective alongside performance, using atom economy, 

E-factor, and PMI to steer routes and solvent choices 

early. We extend the boundary with life-cycle 

assessment and circularity, comparing candidates on 

climate, toxicity, and resource use for the same function. 

Nano-(eco)tox rules—size, surface, dissolution, and 

corona—are encoded as constraints, with standardized 

assays for reproducibility. Finally, we align designs with 

evolving regulations (REACH, FDA, EPA) so winners 

are deployable, not just publishable. 
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11. Cross-Cutting Physics & Theory 

Across catalysis, therapeutics, and remediation, 

the same physical primitives govern behavior: how 

structure fixes electronic and vibrational states; how 

interfaces shape charge and mass exchange; how kinetics 

couples to transport under operando conditions; and how 

we pass information across time and length scales. 

Making these connections explicit lets AI and 

automation optimize what is physically achievable rather 

than what is merely convenient to compute 

(Motagamwala & Dumesic, 2020). 

 

Structure → property. Point and extended 

defects, elastic strain, and quantum confinement remap 

bands, phonons, and dielectric response, thereby tuning 

reactivity, transport, and stability. Vacancies and 

antisites introduce mid-gap states and trap carriers, while 

grain boundaries host strained, chemically distinct 

ensembles that often become the true active sites in 

heterogeneous catalysis. In soft, polar semiconductors—

most famously halide perovskites—strong electron–

phonon coupling stabilizes large polarons that screen 

charged defects and renormalize effective masses; 

transport, recombination, and hot-carrier cooling 

therefore deviate from simple band pictures (Frost, 2017; 

Meggiolaro & De Angelis, 2020). Quantum confinement 

raises exciton binding energies in 2D materials and 

quantum dots, and modest biaxial strain can shift 

adsorption energies and band edges enough to move a 

catalyst along a Sabatier volcano or a bioelectronic 

sensor across a detection threshold (Ghosh, Zhou, & 

Wong, 2020). These links set the hard bounds for inverse 

design: microstructure and fields can flip trends for the 

same chemistry. 

 

Interfacial phenomena. Real devices are 

typically interface-limited. At electrochemical solid–

liquid boundaries, the electric double layer (EDL) sets 

the local potential drop, screening length, and solvent 

structure; specific adsorption, finite-size sterics, and the 

quantum capacitance of the electrode all modulate 

kinetics beyond classical Gouy–Chapman–Stern models 

(Baz, Comas-Vives, & López, 2021). Band alignment at 

aqueous interfaces depends not only on surface 

termination but also on hydration, surface dipoles, and 

pH-controlled protonation; explicit-solvent ab initio 

molecular dynamics combined with dielectric-

continuum embedding has clarified how these factors pin 

absolute energy levels relevant to photocatalysis and 

sensing (Hörmann, Ambrosio, & Pasquarello, 2019). In 

nano-bio contexts, rapidly evolving solvation shells and 

protein or humic coronas rewrite particle identity within 

milliseconds, changing adhesion, charge-transfer 

pathways, and cellular uptake—one reason simulations 

and experiments must represent the intended medium 

(Liu, Zhang, & Lowry, 2023). 

 

Kinetics and transport under operando. Rates 

arise from elementary steps embedded in fields and 

flows. Microkinetic models convert adsorption energies 

and transition states into coverages, rates, and 

selectivities while honoring site balances and lateral 

interactions; coupling these to mass, heat, and charge 

transport explains why a surface that looks selective in 

UHV becomes diffusion-limited or potential-limited in a 

flow cell, membrane, or tissue (Motagamwala & 

Dumesic, 2020). In electrocatalysis, constant-potential 

kinetics should be solved self-consistently with the EDL 

to capture Tafel slopes, reaction orders, and buffering 

effects (Baz, Comas-Vives, & López, 2021). In 

separations and remediation, reaction–diffusion 

equations with Donnan partitioning describe depletion 

layers and selectivity in charged pores; in drug delivery, 

permeability and binding kinetics embed within PBPK-

style tissue transport, turning in vitro potency into 

exposure–response (An, 2022). 

 

Bridging time and length scales. No single 

method spans femtoseconds to hours or ångströms to 

millimeters, so we assemble a ladder. At the 

electronic/atomistic level, DFT (with +U or hybrids 

where localization matters) and GW/BSE for excitations 

resolve local chemistry and excitons; phonons and non-

adiabatic couplings capture vibronic effects essential for 

polarons and hot carriers (Frost, 2017; Meggiolaro & De 

Angelis, 2020). Event-level kinetic Monte Carlo (kMC) 

then projects rare barrier-crossing events—surface 

reconstruction, sintering, defect migration—onto 

laboratory timescales using rate catalogs derived from 

atomistics, increasingly with time-dependent fields and 

open-system boundary conditions (Yang et al., 2024). 

For soft matter and nano-bio interfaces, coarse-grained 

(CG) models and machine-learned CG force fields 

compress many-body atomistics into tractable beads 

while preserving thermodynamics and key kinetics, 

enabling studies of permeation, aggregation, and corona 

evolution at orders-of-magnitude lower cost (Durumeric, 

Vani, & Onuchic, 2023; Ye & Zhang, 2021). Finally, 

continuum models—reaction–diffusion–migration 

PDEs, phase-field for morphology, Nernst–Planck–

Poisson or Darcy–Brinkman in porous media—deliver 

device-level fluxes, selectivity, and stability; parameters 

“flow up” from atomistic/kMC/CG, while boundary 

conditions “flow down” from reactors or physiology. 

 

Information contracts and uncertainty. 

Multiscale workflows succeed when each level passes 

upward compact, meaningful summaries—barrier 

distributions, adsorption isotherms, diffusivities, 

partition coefficients—and requests from above only 

those boundary conditions it truly needs—fields, 

loadings, and chemical potentials. Two patterns are 

especially effective. First, train surrogates with 

guardrails: fast predictors (equivariant GNNs for 

energies, graph transformers for ΔG, neural CG forces) 

that respect symmetries, conservation laws, and correct 

far-field limits, and that emit calibrated uncertainty so 

active learning can request the most valuable new labels 

(Shields et al., 2021). Second, use embedded coupling: 

microkinetics inside continuum solvers for reactors or 
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tissues; EDL/solvation models inside electrochemical 

kinetics; or kMC event rates coupled to diffusion or 

elasticity so local depletion and stress feed back on event 

frequencies (Yang et al., 2024). Treating uncertainty as 

a first-class quantity turns these stacks into decision 

engines rather than just simulators. 

 

Implications for inverse design. Structure–

property maps, interfacial band diagrams, and coupled 

kinetics–transport define feasible regions before 

optimization begins. Polaronic screening can render 

certain dopants benign—or catastrophic—depending on 

dielectric response (Frost, 2017). EDL structure and 

specific adsorption can move a volcano summit across 

electrolytes, so a “best” electrocatalyst at one pH fails at 

another (Baz, Comas-Vives, & López, 2021). Diffusion–

reaction coupling can turn a top-ranked surface into a 

mass-transfer-limited one in flow cells or porous 

scaffolds; in membranes, phase-field evolution and kMC 

growth rules predict pore connectivity and fouling 

propensity; in drug delivery, CG predictions of mucus 

penetration or corona-mediated opsonization propagate 

into PBPK exposure and therapeutic index (An, 2022; 

Durumeric, Vani, & Onuchic, 2023). Embedding these 

mechanisms—with uncertainties—allows Bayesian or 

Pareto planners to trade activity against stability, 

transport, safety, and manufacturability, advancing along 

frontiers that matter to devices and regulators (Yang et 

al., 2024; Hörmann, Ambrosio, & Pasquarello, 2019). 

 

Takeaway. A modern discovery stack is not 

data versus physics but data plus physics, architected 

across scales. Atomistic theory sets elementary rules; 

interfacial models define operating microenvironments; 

kinetics and transport predict operando behavior; and 

CG/continuum models carry insights to application 

scale. With uncertainty explicitly modeled, the pipeline 

proposes only those candidates whose physics permits 

high performance and real-world viability 

(Motagamwala & Dumesic, 2020). 

 

12. Best Practices: Reporting & Reproducibility 

Reproducible science and trustworthy 

deployment start with complete, standardized reporting. 

At minimum, every study should disclose data splits 

(how the training/validation/test partitions were 

constructed and why), random seeds and the number of 

independent runs, uncertainty quantification (UQ) and 

calibration metrics, baselines (well-tuned and 

appropriate to the task), and the compute budget and 

hardware used to obtain results. Reporting a single lucky 

run obscures variance due to initialization and 

nondeterminism; instead, authors should provide mean, 

standard deviation, and confidence intervals across 

multiple seeds, and pre-register the stopping criterion 

and early-stopping policy to avoid post-hoc cherry-

picking (Henderson, Islam, Bachman, Pineau, Precup, & 

Meger, 2018; Dodge, Gururangan, Card, Schwartz, & 

Smith, 2019). UQ should move beyond raw accuracy to 

include calibration (e.g., expected calibration error) and 

coverage under distribution shift, because well-

calibrated probabilities are the substrate for active 

learning and risk-aware decision making in closed loops 

(Guo, Pleiss, Sun, & Weinberger, 2017). Finally, the 

compute and carbon cost of training and selection—

datasets, model sizes, hyperparameter sweeps—should 

be summarized alongside accuracy; “Green AI” 

encourages comparisons at fixed compute budgets and 

transparency about energy sources to incentivize 

efficient methods (Schwartz, Dodge, Smith, & Etzioni, 

2020). 

 

Model cards and datasheets are now essential 

artefacts that travel with a trained model or dataset. A 

good model card states intended use, out-of-scope uses, 

training data characteristics, known biases, applicability 

domains, and failure modes, plus performance broken 

down by subgroups or regimes when relevant (Mitchell 

et al., 2019). Datasheets for datasets document how data 

were collected, filtered, labeled, and split; legal and 

ethical constraints; and known hazards such as label 

ambiguity or class imbalance (Gebru et al., 2018). For 

scientific ML in chemistry, materials, and bio, these 

ideas translate directly: disclose assay protocols or DFT 

settings that generated labels; cite software versions and 

pseudopotentials; list preprocessing (standardization, 

conformer generation, charge states); and include assay 

drift or batch effects if data were collected over time. 

Both artefacts should explicitly flag the applicability 

domain—for example, chemical space boundaries 

defined by Bemis–Murcko scaffolds or materials 

prototypes—and summarize OOD (out-of-distribution) 

performance where tested. 

 

Open science is not just a philosophy but a set 

of release practices. Code and data should ship with 

explicit licenses—permissive when possible, for broad 

reuse—and, for datasets and models, archived with DOIs 

so versions are citable and immutable. Reproducible 

execution is dramatically easier when authors provide 

containers (e.g., Docker) or environment specifications 

pinned to exact versions, and when they include scripts 

to reproduce every table and figure end-to-end. For 

computational chemistry and materials, releases should 

include seed lists, hyperparameter grids, and, when 

applicable, trained weights for baselines so reviewers 

and downstream users can verify claims without 

rerunning expensive training (Boettiger, 2015; Pineau et 

al., 2021). Public leaderboards can help track progress, 

but they must be curated to prevent overfitting to a static 

test set; hidden or rolling test sets, and periodic refreshes, 

reduce gaming while preserving comparability (Recht, 

Roelofs, Schmidt, & Shankar, 2019). 

 

Evaluation design is where many otherwise 

solid studies fail. Data leakage—any flow of information 

from the test set into training or model selection—

artificially inflates metrics. In molecular AI, random 

splits routinely let near-duplicates (or close analogs) leak 

across splits; scaffold splits mitigate this by holding out 
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chemical scaffolds never seen in training, offering a 

more realistic generalization test (Wu et al., 2018). In 

materials discovery, structure-aware splits must ensure 

that compositions, prototypes, or even space groups in 

the test set are not trivial variants of training exemplars; 

failing that, reported performance mostly reflects 

interpolation. Across domains, authors should probe 

distribution shift explicitly—temporal splits, domain 

splits (e.g., assay lab or instrument), or geographic 

splits—and report degradation and calibration drift 

relative to i.i.d. conditions (Recht et al., 2019). When 

hyperparameters are tuned, the validation set must be 

strictly disjoint from the test set, and any ablation or 

ensembling done after peaking at test results should be 

labeled post-hoc and re-validated. 

 

Because many scientific targets are noisy—

from assay variability to DFT functional errors—studies 

should quantify and propagate aleatoric and epistemic 

uncertainty. Techniques such as temperature scaling or 

Dirichlet calibration improve probability estimates; 

ensembles, Monte Carlo dropout, deep evidential 

regression, and conformal prediction provide well-

defined coverage guarantees or uncertainty intervals that 

are actionable in downstream decision making (Guo et 

al., 2017; Angelopoulos & Bates, 2022). Crucially, 

uncertainty reporting should include coverage vs. set size 

plots and risk–coverage curves, not just a single ECE 

number, and it should be repeated under the same 

distribution-shift settings used for accuracy. 

 

To make results durable, every paper should 

include a Reproducibility Checklist covering data access, 

preprocessing, model specification, training regimen, 

hardware, runtime, and exact commands. 

Hyperparameters should be reported as complete config 

files (not prose), and early-stopping criteria and patience 

values should be specified. For stochastic training, 

authors should release the exact train/validation/test 

indices used (or the code and seed that deterministically 

generates them) so that later work can reproduce 

comparisons. When claims hinge on statistical 

significance, papers should report the test used, the effect 

size, and the number of trials; tiny but statistically 

significant gains with very large sample sizes should be 

contextualized against computational cost and 

complexity. 

 

Benchmarking culture benefits from multiple, 

diverse baselines and from unit-consistent metrics. For 

example, in adsorption or catalysis tasks, include 

physically motivated baselines (simple descriptors, 

linear models) and report error units (e.g., eV, kJ·mol⁻¹) 
alongside dimensionless metrics. In drug discovery, 

include docking or physics-based baselines where 

appropriate and stratify performance by chemotype; in 

remediation, stratify by matrix conditions. Negative 

results—failed transfer to a new assay, or degraded 

performance in a new water matrix—should be reported 

with the same care as positive results; they are often the 

most valuable information to future practitioners. 

Finally, set deployment-minded thresholds: for any 

model intended to guide experiments, define acceptable 

confidence or coverage targets that would trigger 

escalation to higher-fidelity physics or wet-lab 

confirmation rather than blind action. 

 

13. Case Studies 

Catalysis — Single-atom catalyst discovered via 

active learning, validated by DFT, and scaled to an 

electrolyzer. 

A carbon-supported single-atom catalyst (SAC) 

program for oxygen evolution illustrates the full closed 

loop from hypothesis to device. The team began with 

heteroatom-doped carbons hosting isolated M–Nₓ motifs 

and used an uncertainty-aware active-learning planner to 

batch-propose syntheses, guided by a calibrated graph 

model trained on prior ex situ spectra and ab initio 

adsorption descriptors. Each cycle fed standardized 

rotating-disk tests at matched electrolyte and pH, and top 

candidates advanced to density-functional theory with 

nudged-elastic-band checks to confirm barrier trends 

consistent with microkinetic optima rather than 

overbinding artefacts (Motagamwala & Dumesic, 2020). 

Within ten iterations, the loop converged on a narrow 

neighborhood of coordination and co-dopant patterns 

whose local strain and ligand field positioned 

intermediates on the OER volcano while suppressing site 

blockage. Crucially, down-selection then shifted from 

half-cell metrics to membrane–electrode assembly 

(MEA) targets, letting the planner trade intrinsic activity 

against ink rheology, ionomer ratio, and through-plane 

porosity. Several half-cell “winners” fell away once 

mass-transport and humidity sensitivities were 

penalized. The final MEA sustained target current 

density at low cell voltage for extended hours with 

minimal agglomeration, consistent with the SAC 

mechanism inferred from operando spectroscopy and ab 

initio signatures. The case highlights three lessons: (i) 

sequential learning accelerates exploration only when 

paired with faithful physics checks; (ii) device-level 

constraints must be embedded as objectives, not applied 

post hoc; and (iii) reporting uncertainty and variance 

across replicates is essential to avoid over-claiming 

incremental gains (Shields et al., 2021; Motagamwala & 

Dumesic, 2020). 

 

Drug — Generative lead optimized with alchemical 

free energies and ADMET filters to an in vivo efficacy 

signal. 

A kinome-biased generator seeded chemotypes 

for an ATP-competitive kinase program, but proposals 

advanced only if they cleared synthesis-feasibility 

constraints and a multi-task predictor returned potency 

with calibrated uncertainty plus early-risk proxies 

(hERG, CYP, reactivity). Poses were generated and 

rescored; near-ties triggered alchemical free-energy 

refinement (FEP/TI) using ensemble protocols to resolve 

~1 kcal·mol⁻¹ differences—large enough to reorder top-

10 ranks (York et al., 2023). Make–test–analyze 
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cycles—each logging negative results with equal 

fidelity—mapped the local SAR while uncertainty 

routing periodically forced exploration beyond the initial 

scaffold basin (Ekins et al., 2019). In parallel, ADMET 

triage moved from in-silico to in vitro (microsomal 

stability, CYP panels, solubility/permeability, early 

cardiotoxicity). A potency-neutral scaffold edit that 

improved polarity reduced hERG risk and lifted 

metabolic stability, enabling exposures compatible with 

a short in vivo pharmacology study where one analog 

produced a statistically significant efficacy signal at 

tolerated doses. Retrospective attribution showed 

inflection points aligned with physics-based decisions—

FEP/TI reversals of ML ties and uncertainty-driven 

sampling of underrepresented chemotypes—rather than 

brute-force enumeration. The case demonstrates that 

generative ideation must be coupled to calibrated 

prediction, targeted physics, and staged ADMET to turn 

in silico promise into in vivo signal quickly while 

managing compute and wet-lab risk (York et al., 2023; 

Ekins et al., 2019). 

 

Environment — MOF/COF platform for PFAS 

capture with LCA vs. activated carbon and a 

regeneration plan. 

Facing mixed per- and polyfluoroalkyl 

substances (PFAS), the program targeted water-stable 

Zr-MOFs (UiO-66 derivatives) and fluorophilic COFs 

tuned for head-group electrostatics and tail–framework 

affinity. Batch isotherms in realistic matrices (hardness, 

competing anions, natural organic matter) identified 

candidates with fast kinetics and high capacities; column 

tests quantified breakthrough bed volumes and 

regeneration via salt/solvent swings or electro-

regeneration. UiO-66 variants delivered robust affinity 

for long-chain PFAS, while tailored COFs showed 

advantages for short-chain species due to pore 

architecture. Because PFAS management is prone to 

burden shifting, the team ran a life-cycle comparison at 

a common functional unit (liters treated to below limits): 

baseline granular activated carbon versus best-MOF and 

best-COF. Inventories covered synthesis precursors, 

solvent recovery, transport, pressure drop, regeneration 

chemicals/energy, and end-of-life. While activated 

carbon remained competitive on cost and embodied 

energy, the optimized MOF reduced media consumption 

and waste when regeneration and media lifetime were 

credited; COFs narrowed the gap for short-chain PFAS 

but required solvent-recovery improvements to retain 

advantage (Wang, DeWitt, Higgins, & Cousins, 2017; 

Dong, Tu, & Zheng, 2020). Sensitivity analysis flagged 

electricity mix and solvent recycle as dominant levers. 

The techno-environmental outcome was pragmatic: a 

hybrid train—GAC bulk removal followed by 

MOF/COF cartridges targeted to the local PFAS 

profile—minimized energy per log removal and landfill 

burden, provided operations tracked fluoride balance and 

screened for precursor-to-short-chain by-products to 

keep “destruction” claims auditable (Qiao, Guo, & Sun, 

2023; Crini & Lichtfouse, 2019). 

 

14. Grand Challenges & Outlook 

The next decade will be defined less by 

algorithmic novelty than by our ability to learn from 

scarcity and to elevate negative results into first-class 

training signals. In chemistry, materials, and bio, data are 

sparse, noisy, and biased toward successes; failed 

syntheses, unstable formulations, and null bioassays are 

rarely curated with the same care as “wins,” yet they are 

disproportionately informative for calibrating risk and 

shaping acquisition functions in closed loops. 

Community norms must shift toward routine release of 

structured nulls, with datasheets that document assay 

drift, batch effects, and provenance, and with conformal 

or Bayesian machinery that converts uncertainty into 

actionable coverage guarantees (Gebru et al., 2018; 

Pineau et al., 2021; Angelopoulos & Bates, 2022). 

Without this, sample-efficient planners overfit to 

historical luck and under-explore the regimes where 

breakthroughs usually hide. 

 

A second, persistent obstacle is building 

generalizable, uncertainty-aware models that cross 

domains and distribution shifts. Random splits and 

single-seed reporting are no longer defensible; scaffold-, 

temporally-, and site-aware splits should become the 

default in molecular, materials, and process datasets, 

accompanied by calibration metrics and risk–coverage 

curves rather than single accuracies (Wu et al., 2018; 

Recht, Roelofs, Schmidt, & Shankar, 2019; Guo, Pleiss, 

Sun, & Weinberger, 2017). Practically, this means multi-

task and transfer learners that ingest heterogeneous 

modalities—graphs, grids, spectra, sequence, operando 

streams—while emitting well-calibrated predictive 

intervals that tell planners when to escalate to physics or 

experiment. It also means guardrailed surrogates that 

encode symmetries, conservation laws, and correct far-

field limits so extrapolation fails gracefully rather than 

confidently wrong (Shields et al., 2021). 

 

The frontier is no longer “accuracy only,” but 

multi-objective sustainability: performance and safety 

and cost. Discovery stacks must optimize 

activity/selectivity alongside PMI/E-factor, solvent 

guides, and fast LCA vectors so acquisition decisions 

reflect whole-system impact, not just a yield or ΔG 

(Sheldon, 2018; Hollberg & Ruth, 2021). For nano-

enabled systems, eco-tox and corona dynamics should be 

encoded as constraints with OECD-aligned 

characterization plans, so risky shapes, coatings, or 

leaching behaviors are down-weighted early (Drasler et 

al., 2017; Abdolahpur Monikh et al., 2020). The cultural 

shift is to treat sustainability numbers like any KPI: 

plotted, benchmarked, and traded on a Pareto front—

rather than relegated to the supplement. 

 

Trust and interpretability will determine 

adoption in the clinic, plant, and municipal utility. For 

regulators and operators, the question is not only “does it 

work?” but “why should we believe, it will keep working 



 
 

Sadiq Khan et al, Sch J Phys Math Stat, Nov, 2025; 12(9): 389-418 

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          412 

 

 

here, now?” Model cards and datasheets must move into 

scientific ML with domain-specific content: assay 

conditions, DFT settings, pseudopotentials, instrument 

versions, and applicability domains by 

scaffold/prototype, plus OOD behavior under known 

shifts (Mitchell et al., 2019; Gebru et al., 2018). 

Interpretable mechanisms—substructure saliency, 

counterfactuals, mechanistic ablations, and microkinetic 

attribution—should be demanded when decisions carry 

safety or regulatory consequences. Above all, calibration 

matters more than raw AUC: a well-calibrated 0.80 AUC 

model with coverage guarantees is more deployable than 

a brittle 0.85 that hides its uncertainty (Guo et al., 2017; 

Angelopoulos & Bates, 2022). 

 

Scaling from high-throughput experimentation 

(HTE) to plant or clinic remains a chasm. Self-driving 

campaigns excel at local optimization under tight 

control; translation collapses when unit operations, 

mass/heat transfer, supply chains, and GxP data integrity 

enter. Best practice is to carry deployment constraints 

into the loop: rheology windows and ionomer ratios for 

MEAs; microfluidic mixing and critical quality attributes 

for LNPs; fouling, pressure drop, and regenerant 

handling for water trains. Optimization targets should be 

device-level (cell voltage at current density; cycle life to 

20% fade; $·m⁻³ treated) and paired with TEA/LCA so 

plant-scale viability evolves with the chemistry (Tom et 

al., 2024; Hollberg & Ruth, 2021). Real-world validation 

needs multi-site pilots and prospective studies with pre-

registered metrics and stop rules; “hero plots” from one 

lab are no longer enough. 

 

On the compute horizon, quantum advantage 

and exascale HPC will be complementary rather than 

substitutive. Exascale enables many-query physics—

GW/BSE, NEB ensembles, long-time molecular 

dynamics, and uncertainty propagation—so that active 

learners can afford the expensive labels that actually 

change decisions. Near-term quantum devices are 

unlikely to replace this, but they may carve out niche 

accelerants: strongly correlated fragments, compact 

ansätze for excited states, or discrete optimization within 

retrosynthesis and materials packing—provided error 

mitigation and problem encoding are robust (Tom et al., 

2024). The realistic outlook is hybrid: HPC-backed 

surrogates and ML interatomic potentials do the bulk 

lifting, with quantum subroutines called as specialized 

oracles where classical scaling is the bottleneck. 

 

A final challenge is coordination: we need a 

community roadmap that makes progress legible, 

comparable, and cumulative. Three ingredients stand 

out. First, shared testbeds—modular photoreactors, 

membrane skids, electrochemical stacks, and biophysics 

benches—with standardized schemas, drivers, and QC 

protocols, so methods can be drop-in evaluated under 

identical conditions (SiLA-style). Second, open 

reference workflows that run end-to-end—from data 

ingestion to plots—captured in containers with DOIs, so 

claims can be rerun years later on new hardware 

(Boettiger, 2015; Pineau et al., 2021). Third, prize 

challenges that reward not only peak accuracy but also 

calibrated uncertainty, robustness under shift, 

compute/carbon efficiency, and sustainability trade-offs. 

The prize metric could be composite: weighted 

performance, calibrated coverage, TEA/LCA penalty, 

and a reproducibility score derived from the reporting 

checklist. 

 

What, concretely, should teams do next? Treat 

uncertainty as currency: quantify it, report it, and spend 

it where it buys the most information. Elevate negative 

results and operational constraints to first-class citizens 

in optimization. Couple physics and data with explicit 

information contracts across scales. Make sustainability 

part of the acquisition function, not the after-action 

review. And align artifacts—model cards, datasheets, 

containers, DOIs—with the expectation that others will 

build on your work. If the field adopts these norms, 

closed-loop discovery can move from spectacular one-

offs to reliable, auditable pipelines that deliver 

deployable catalysts, therapeutics, and remediation 

technologies at the pace society now demands (Sheldon, 

2018; Mitchell et al.,2019; Pineau et al., 2021; Tom et 

al., 2024). 
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