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Abstract | Review Article

The convergence of machine intelligence, quantum-accurate simulation, and laboratory automation is reshaping how
functional nanomaterials are conceived, validated, and deployed across chemistry, medicine, and environmental
engineering. This review synthesizes an end-to-end “data-to-device” framework for the AI-driven and quantum-
informed design of nanomaterials that bridges three application pillars: (i) green catalysis for clean energy and circular
chemistry, (ii) drug discovery and nano-enabled therapeutics, and (iii) sustainable environmental remediation. We
survey inverse-design workflows that combine generative models, uncertainty-aware predictors, Bayesian optimization,
and active learning with electronic-structure engines (DFT, GW/BSE), free-energy methods (FEP/TI), and machine-
learned interatomic potentials to span accuracy-throughput trade-offs via multi-fidelity strategies. On the materials side,
we map tunable design spaces single-atom catalysts, 2D/defect-engineered surfaces, porous frameworks (MOFs/COFs),
quantum dots, membranes, and bio-hybrids linking structure, defects, and interfacial physics to catalytic turnover,
molecular recognition, transport, and durability. For catalysis, we outline pipelines that couple adsorption-energy maps
and microkinetics to target CO, reduction, OER/ORR, and selective oxidations; for therapeutics, we integrate target
modeling, generative ideation, physics-based AG estimation, and ADMET triage with synthesis-aware constraints; for
remediation, we align pollutant fingerprints with adsorption, photocatalysis, electrocatalysis, and membrane routes
while tracking leaching and secondary byproducts. Throughout, we emphasize rigorous reporting reproducible data
splits, calibrated uncertainty, and minimum information for models and experiments together with life-cycle assessment,
techno-economic analysis, and green-chemistry metrics (e.g., PMI, E-factor) to ensure net-positive impact. We close
with a roadmap for closed-loop, self-driving laboratories; interoperable data/metadata standards; and prize-style
community benchmarks aimed at delivering trustworthy, scalable, and sustainable nanomaterials from computational
blueprints to field and clinical realities.
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Drug discovery, Environmental remediation.
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1. INTRODUCTION

The discovery of functional nanomaterials is
undergoing a phase shift powered by three converging
forces: scalable artificial intelligence (Al), increasingly
practical quantum simulation, and laboratory automation
that closes the loop between hypothesis, synthesis, and
measurement. In combination, these forces promise not
only faster discovery but discovery that is explicitly
aligned with sustainability optimizing for energy use,
waste, and eco-toxicity from the very first design
iterations rather than auditing impacts at the end. “Self-
driving” laboratories now integrate autonomous
experiment planning with robotic synthesis and in-situ
characterization, compressing iteration cycles from
months to days and demonstrating order-of-magnitude
gains in throughput and optimization efficiency (Tom et
al., 2024). At the same time, foundation models trained
on chemistry and materials corpora are generalizing
across tasks—from property prediction and reaction
planning to multi-step synthesis suggestions—bringing
zero/low-shot capabilities into lab workflows (Pyzer-
Knapp et al., 2025). In parallel, quantum algorithms are
maturing to address strongly correlated electrons and
excited-state chemistry, two long-standing bottlenecks
for catalytic and therapeutic design (Paudel et al., 2022;
Weidman et al., 2024). Our central thesis is that the
intersection of these developments enables a closed-
loop, sustainability-aware pipeline for discovering
nanomaterials in  catalysis, therapeutics, and
environmental remediation—evaluated in hard units of
energy, speed, and minimized hazard rather than in
isolated accuracy metrics (Nizam et al., 2021).

A unified view across chemistry, physics, and
the environment is timely for two reasons. First, Al at
scale is delivering qualitatively new capabilities. Recent
perspectives document rapid gains in transferability and
task coverage for foundation models, including in-
context learning and agentic planning for materials tasks
that previously required bespoke training (Pyzer-Knapp
et al., 2025). These models can constrain candidate
spaces with domain-aware priors, propose informative
experiments, and calibrate uncertainty so that each
robotic run maximizes expected information gain.
Second, automation has moved beyond concept demos to
robust, reconfigurable platforms. End-to-end loops—
where algorithms propose experiments, robots execute
them, and measured outcomes update the models—are
accelerating the scientific method itself and improving
reproducibility by standardizing procedures and
metadata capture (Tom et al., 2024).

These breakthroughs coincide with intensifying
imperatives for greener development. Life-cycle-
assessment (LCA) appraisals of nanomaterials have
highlighted inconsistent functional units, incomplete
background datasets, and heterogeneous toxicity
characterization, creating comparability gaps across
studies (Nizam et al., 2021). Nevertheless, consensus is
forming around adopting standardized characterization

models such as USEtox®, declaring system boundaries
early, and reporting uncertainty so that design decisions
can be optimized, not merely audited after the fact.
Embedding such sustainability metrics directly into Al
and automation utilities—e.g., penalizing solvent and
precursor hazards, minimizing process energy per
informative measurement—aligns optimization with
environmental objectives from the outset (Nizam et al.,
2021).

The scope of this review spans four
communities that increasingly share one discovery
pipeline. For materials scientists and chemists, we
synthesize how Al and quantum tools can be made
practically useful when coupled to automation and
standardized environmental metrics. For
pharmacologists, we emphasize how generative and
predictive models for nanoscale delivery systems (e.g.,
carriers, adjuvants, stimuli-responsive constructs) can be
bounded by toxicological priors and exposure scenarios,
reducing late-stage attrition. For environmental
engineers, we connect catalyst and sorbent design to
remediation  performance  with  tech-to-impact
traceability via technology readiness levels (TRLs) and
LCAs (EU Publications Office, 2017). Finally, for
data/Al researchers, we outline benchmark desiderata—
cross-domain datasets, active-learning loops, uncertainty
calibration, and interpretability—that matter for safe
deployment in wet labs and pilot plants (Tom et al.,
2024).

Concretely, we argue that converging Al +
quantum  + automation enables  closed-loop,
sustainability-aware discovery with measurable gains.
Al—including foundation models and agentic
planners—generates diverse, constrained candidates and
proposes informative experiments; automation executes
compact measurement campaigns and returns real-time
signals to update the models; quantum and high-fidelity
physics provide corrections where classical surrogates
struggle, such as correlated surfaces, spin-dependent
steps, and non-adiabatic processes (Paudel et al., 2022;
Weidman et al., 2024). Sustainability metrics (e.g., LCA
midpoints and USEtox-based toxicity factors) then
become first-class objectives rather than downstream
audits, reframing discovery from “can we make it and
will it work?” to “should we make it, and how do we
make it safest and cleanest?”—a necessary shift for
catalysis (high selectivity with low embodied energy),
therapeutics (efficacy with minimized off-target
toxicity), and remediation (capture or destruction with
low secondary burden) (Nizam et al., 2021).

Evidence that this convergence is real is
accumulating at the Al<»automation interface. Large-
scale model-driven candidate generation—followed by
robotic validation—has shown that thousands to millions
of plausible materials can be prioritized and that a
meaningful fraction can be synthesized within days to
weeks, demonstrating a scalable feedback loop of
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algorithmic ~ proposals —  robotic  synthesis/
characterization — model updating (Tom et al., 2024).
Such self-driving laboratory architectures bring two
additional advantages: safety (by isolating operators
from hazardous steps) and provenance (by enforcing
structured data capture), both critical when moving
toward regulated domains like therapeutics and
environmental remediation (Tom et al., 2024).

What is new in this review relative to prior work
is cross-domain integration plus a focus on deployment-
oriented metrics that enable apples-to-apples
comparisons across discovery pipelines. We emphasize
three classes of “hard” metrics. First, energy and time:
report sample throughput (e.g., new materials per day),
the number of optimization steps saved by active
learning, and wall-time or kWh per closed-loop cycle.
Second, eco-toxicity and safety: incorporate USEtox-
compatible toxicity characterization factors,
solvent/precursor hazard scores, and uncertainty ranges
alongside performance metrics. Third, deployment
readiness: map progress using TRLs from concept (TRL
1-2) to lab validation (TRL 3-4), prototype (TRL 5-6),
and pilot/field contexts (TRL 7-8), culminating in
proven systems (TRL 9) (EU Publications Office, 2017).
Systematically reporting these metrics clarifies where
quantum corrections add value, when foundation models
eliminate unnecessary experiments, and how automation
improves safety and reproducibility, while revealing
bottlenecks that matter for translation beyond the lab
(Paudel et al., 2022; Weidman et al., 2024; Pyzer-Knapp
et al., 2025).

This integration also reframes discovery as a
multi-objective control problem under real-world
constraints. From the Al perspective, active-learning
policies must balance exploitation of promising regions
with exploration under uncertainty while respecting
sustainability  penalties. From the automation
perspective, experimental design must prioritize robust,
information-dense measurements that are compatible
with hazard-reduced chemistries and energy-lean
processing. From the quantum perspective, hybrid
quantum-classical stacks should be targeted to the
highest-leverage physics gaps, supplying corrections
only where they materially change down-stream
decisions (Paudel et al., 2022; Weidman et al., 2024).
The shared language across these perspectives is
decision-theoretic: expected improvement tempered by
environmental cost and operational risk.

Finally, we set expectations for the remainder
of the article. We will detail agentic Al and foundation-
model tooling for hypothesis generation and experiment
planning; identify where quantum algorithms most
usefully augment classical and ML models; describe a
“minimum viable loop” for automation (design —
synthesize — characterize — update) with uncertainty-
aware decision rules; and operationalize sustainability
with LCA/USEtox-compatible utilities and TRL-based

reporting. The aim is not to celebrate isolated advances
but to specify practices and benchmarks that move
candidates from computational screening to self-driving
laboratories and into pilot-scale reactors, delivery
systems, and remediation units—measured by accuracy
and vyield, yes, but equally by energy, speed, and
minimized environmental burden (Tom et al., 2024;
Pyzer-Knapp et al., 2025; EU Publications Office, 2017;
Nizam et al., 2021).

2. Foundations: Data, Representations, and
Benchmarks

Modern discovery stacks sit on data. What
makes today different is not just volume but
heterogeneity: molecules and reactions from synthesis
logs; crystals, surfaces, and defects from electronic-
structure workflows; and biological and environmental
measurements that connect a material to efficacy, safety,
and fate. A useful way to organize this landscape is by
modality. Molecular sources include linear notations
such as SMILES and SELFIES (robust to invalid
strings), graph formalisms that treat atoms as nodes and
bonds as edges, fragment vocabularies for generative
models, and reaction corpora with atom mapping, yields,
and conditions (Krenn et al., 2020; Coley et al., 2019;
Lowe, 2017). Materials sources capture periodicity and
locality: crystal graphs with lattice/periodic images, slab
models for surfaces and adsorption, and explicit
defect/supercell enumerations; these are now standard in
resources such as Matbench, JARVIS-DFT, OQMD, and
the Open Catalyst Project where adsorption structures
and relaxation trajectories define learning targets (Dunn
et al., 2020; Choudhary & Tavazza, 2020; Saal et al.,
2013; Chanussot et al., 2021). Bio/environmental
sources add the application layer: protein targets and
binding pockets (e.g., PDBbind families), omics-derived
features for mechanism-aware models, pollutant classes
(PFAS, pesticides, pharmaceuticals), and
Kinetic/partitioning parameters relevant to fate and
transport (Liu et al., 2017; Huang et al., 2021
NORMAN Network, 2021). The unifying theme is that
discovery increasingly requires joined-up datasets: a
catalyst is not just a bulk crystal; a therapeutic is not just
a SMILES string; and a remediation agent is not just an
adsorption energy—each must connect upstream
structure to downstream performance and risk.

A FAIR (Findable, Accessible, Interoperable,
Reusable) pipeline is essential to make these modalities
usable across labs and over time. In practice, FAIR
begins with curation (removing duplicates, harmonizing
units and conditions), standardization (canonicalization
of structures, charge states, isotopes; reaction templates;
adsorption-site labeling), and licensing/provenance so
downstream users know what they can share and
reproduce (Wilkinson et al., 2016; Boeckhout et al.,
2018). In chemistry and reactions, community efforts
such as the Open Reaction Database (ORD) define
schemas for reactants, reagents, solvents, catalysts, and
outcomes, plus instrument metadata; analogous moves in
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materials include Matbench task cards and JARVIS task
definitions that specify input assumptions and
calculation protocols (Coley et al., 2021; Dunn et al.,
2020; Choudhary & Tavazza, 2020). For bio/env data,
Therapeutics Data  Commons (TDC) and
EPA/ECOTOX-style repositories emphasize dataset
cards, intended-use statements, and split
recommendations to reduce leakage and enable apples-
to-apples comparisons (Huang et al., 2021). Provenance
is not a formality: recording software versions,
pseudopotentials/force fields, and experimental IDs is
crucial for traceability and for de-duplicating near-
identical entries that would otherwise inflate
performance.

Representations translate raw data into
machine-usable form. Graphs dominate for molecules
and crystals: message-passing neural networks
(MPNNs), CGCNN, SchNet, DimeNet(+), and
equivariant models encode local chemical environments
and, for materials, periodic boundary conditions (Gilmer
et al., 2017; Xie & Grossman, 2018; Schiitt et al., 2018;
Klicpera et al., 2020; Batzner et al., 2022). 3D fields
(voxel or continuous) capture electron density,
electrostatic potential, or pocket geometry for docking
and binding-affinity tasks, with SE(3)-equivariant
networks bridging graphs and fields. Descriptors such as
SOAP and MBTR remain powerful baselines when data
are scarce, enabling kernel and linear models with strong
inductive bias (Bartok et al., 2013; Huo & Rupp, 2017).
Finally, learned embeddings—from language-like
tokenizers (SMILES/SELFIES) to contrastive or
masked-prediction pretraining on crystals and surfaces—
provide transferable features that can be fine-tuned for
property, synthesis, or control tasks (Krenn et al., 2020;
Park et al., 2023). Across choices, two principles help:
(i) align representation with task physics (e.g., include
periodic images for adsorption; encode chirality and 3D
geometry for docking), and (ii) prefer equivariance when
target  properties transform  predictably  under
rotations/translations.

Benchmarks are the community’s contract:
what do we claim to measure? For catalysis, open
benchmarks focus on adsorption energies, surface
relaxation, and reaction barriers as surrogates for
turnover (Chanussot et al., 2021). OC20/0C22 provide
tens of millions of DFT single-point and relaxation labels
across adsorbates and surfaces, with tasks ranging from
initial-to-relaxed energy prediction (IS2RE) to force
inference; gaps remain in explicitly measuring
TOF/TON, stability under cycling, sintering/poisoning
resistance, and support effects, which are critical for
deployment but scarce in standardized, ML-ready form
(Tran et al., 2023). For drug discovery, public suites
cover docking, binding affinity (AG via FEP/TI as
higher-fidelity targets), and ADMET endpoints;
common resources include PDBbind/CASF for
structure-based tasks and TDC/MoleculeNet for ligand-
based ADMET and safety (Liu et al., 2017; Su et al.,

2020; Huang et al., 2021; Wu et al., 2018). Persistent
gaps include off-target risk quantification at scale and
clinical translatability proxies; scaffold splits help but do
not fully address temporal drift and chemical novelty.
For environmental technologies, datasets emphasize
degradation  kinetics,  selectivity  against  co-
contaminants,  reusability under cycling, and
leaching/secondary pollution; however, labels are
heterogeneous (conditions, matrices, detection limits),
and cross-study harmonization is a bottleneck
(NORMAN Network, 2021; Nizam et al., 2021). Across
domains, deployment metrics—energy per synthesis
step, yield per hazard score, TRL progression—are
underrepresented but essential.

Reproducibility and uncertainty are the load-
bearing beams of credible benchmarking. Uncertainty
has two main flavors: aleatoric (data noise/irreducible)
and epistemic (model uncertainty due to limited data).
Practical toolkits include MC dropout, deep ensembles,
and evidential regression for continuous properties;
calibration metrics such as expected calibration error
(ECE) and conformal prediction to produce valid
prediction sets at a chosen error rate (Lakshminarayanan
et al., 2017; Guo et al., 2017; Angelopoulos & Bates,
2023). In discovery loops, uncertainty must drive
decisions: active learning should sample where epistemic
uncertainty is high and penalize candidates with high
eco-toxicity or safety risk. Reproducibility also hinges on
splits. Time- or scaffold-based splits better reflect
prospective performance than random splits in molecular
tasks; in materials, composition- or structure- holdouts
better emulate discovering new chemistries or prototypes
than i.i.d. splits (Yang et al., 2019; Dunn et al., 2020).
Leakage pitfalls include near-duplicates (e.g.,
salts/tautomers counted twice), train—test overlap via
pretraining, and shared synthetic routes or DFT
parameters sneaking across splits. Strong baselines must
therefore publish deduplication rules, split hashes, and
data cards describing what is—and is not—Dbeing
measured.

A recurring practical challenge is license and
use-rights. Public—private boundaries matter: industrial
reaction notebooks, HTS screens, and pilot-plant logs
often outclass public sets in scale and realism but come
with restrictive licenses. Where possible, hybrid
strategies—federated learning, secure enclaves, and
synthetic data generated under privacy constraints—help
bridge the gap without leaking proprietary content
(Vepakomma et al., 2018). Even in fully public settings,
explicit SPDX-style license tags and provenance chains
(what changed, when, by whom, with which tool) are
necessary to make models reusable beyond their original
authors.

Putting these pieces together, a discovery-ready
dataset typically requires: (1) canonical structures (e.g.,
inchikeys for molecules; standardized CIFs and slab
builders for surfaces), (2) task-ready targets (energies,
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barriers, AG, ADMET, kinetic constants) with units and
conditions, (3) negative and “boring” examples (failed
syntheses, inactive compounds, poisoned catalysts) to
prevent success bias, (4) uncertainty estimates (replicates

or model-derived) and recommended splits, and (5) a
data card stating scope, intended use, caveats, and

ethical/environmental constraints.

Table 1: Dataset and benchmark landscape

Domain Representative | Size (approx.) License/ | Primary tasks Known caveats
datasets/ Access
benchmarks
Catalysis Open Catalyst 107-108 labels Open Adsorption/relaxation TOF/TON not
(surfaces) 0C20/0C22 (DFT single- energies; forces; explicit; limited
points/relaxations) initial—>relaxed sintering/poisoning
prediction labels
Materials (bulk) | Matbench; 10°-10° entries Open Property prediction Varying DFT settings;
JARVIS-DFT; (bandgap, formation composition/structure
OQMD energy, elasticity) leakage risks
Drug (structure- | PDBbind,; 103-10* Mixed Docking/ranking; Crystal packing bias;
based) CASF complexes academic | binding AG limited Kinetics
Drug TDC,; 10%-10° molecules | Open ADMET Scaffold/time splits
(ligand/ADMET) | MoleculeNet classification/regression | essential; assay
heterogeneity
Environmental ECOTOX-like; | 103-10° Open Toxicity, degradation, Condition
NORMAN chemicals/records partitioning heterogeneity; matrix
SusDat effects; sparse
negatives
Reactions Open Reaction 105-10° reactions | Open Yield prediction; Incomplete atom
Database (growing) retrosynthesis; condition | mapping;
(ORD) optimization yield/reporting bias

This table maps the core dataset/benchmark
landscape across catalysis, materials, drug discovery,
environmental science, and reactions, summarizing
typical sizes, licenses, and primary tasks. Use it to pick
fit-for-purpose data (e.g., adsorption vs. AG vs.
ADMET) and to anticipate evaluation style
(scaffold/time splits; composition/structure holdouts).

3. Al Methods for Inverse Design

Inverse design frames discovery as “specify the
properties, then search the space of structures and
processes that realize them.” Practically, that means
three moving parts: (i) predictive models that map
structure/process —  properties with  calibrated
uncertainty; (ii) generative models that propose valid,
synthesizable candidates while respecting safety and
cost; and (iii) optimization loops that decide what to try
next under multiple objectives and constraints. Around
this engine sit physics-based priors, interpretability tools,
and synthesis planners that turn virtual designs into
routes in the real world.

Predictive models. Graph neural networks
(GNNs) and message-passing networks remain the
workhorses for molecules and materials because they
encode local chemical environments and (for crystals)
periodicity (Gilmer et al., 2017; Xie & Grossman, 2018).
Equivariant architectures further respect the symmetries
of 3D space, improving data efficiency and force/energy
consistency for atoms-in-materials and adsorbates-on-
surfaces (Klicpera et al., 2020; Batzner et al., 2022).
Transformer variants extend beyond sequences to graphs

and 3D point clouds, offering global receptive fields,
strong transfer, and multi-task head sharing (Ying et al.,
2021; Park et al., 2023). In low-data regimes common to
catalysis or niche ADMET tasks, multi-task learning,
transfer pretraining, and few-shot/adaptation strategies
(e.g., metric-based or gradient-based meta-learning) can
stabilize training and recover performance (Caruana,
1997; Altae-Tran et al., 2017; Dunn et al., 2020). Across
these models, uncertainty estimation (ensembles,
evidential heads) and calibration (ECE) are not
luxuries—they are control knobs for safe decision-
making in closed loops (Lakshminarayanan et al., 2017;
Guo et al., 2017).

Generative design. Variational autoencoders
learn smooth latent spaces that support gradient
navigation toward property-optimized  structures;
junction-tree and fragment-aware VAEs help enforce
chemical validity and scaffold realism (Gomez-
Bombarelli et al., 2018; Jin et al., 2018). Normalizing
flows provide exact likelihoods and invertible maps,
making them attractive for conditioning on desired
properties and for density-based active learning
(Papamakarios et al., 2017). Diffusion models, now
state-of-the-art in molecular and 3D generative tasks,
excel at capturing multi-modal structure distributions
(Ho et al., 2020; Hoogeboom et al., 2022). For materials,
diffusion/flow models over graphs and fractional
coordinates increasingly handle periodicity, defects, and
adsorption geometries. Evolutionary strategies and
reinforcement learning (RL) remain competitive where
objectives are discontinuous or the action space includes
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edits to routes/process conditions rather than only
structures (Brown et al., 2019; Zhou et al., 2019).
Crucially, constraints must ride inside the generator:
synthesizability proxies (e.g., SA-score, SCScore),
cost/availability of precursors, and toxicity/hazard
screens prevent “pretty but impossible” designs from
saturating the loop (Ertl & Schuffenhauer, 2009; Coley
etal., 2018; Huang et al., 2021).

Optimization loops. Inverse design becomes
powerful when prediction and generation are coupled by
Bayesian optimization (BO) and active learning (AL).
BO balances exploitation and exploration using
acquisition functions (e.g., expected improvement) that
can be generalized to vector-valued, noisy objectives
(Snoek et al., 2012; Frazier, 2018). AL schedules the
next experiment or computation to maximally reduce
epistemic uncertainty, often with batch selection and
diversity penalties to avoid redundancy (Settles, 2009).
Because real discovery is never single-objective, multi-
objective optimization tracks Pareto fronts over
activity/efficacy, stability, cost, and toxicity (Deb et al.,
2002). A practical tactic is to scalarize with time-varying
weights early (fast screening), then switch to Pareto-
efficient selection once the knees of the curve emerge;
another is to include risk terms (e.g., penalties for
hazardous reagents or high energy/CO,, per cycle) so the
loop remains sustainability-aware.

Physics-informed Al. Data alone rarely
constrain the search, so physics acts as a scaffold. “Hard”
constraints  (stoichiometry, charge/spin, symmetry,
boundary conditions) can be baked into architectures—
e.g., SE(3)-equivariance, periodic padding, or
conservation layers—while “soft” constraints enter loss
functions as regularizers (Schiitt et al., 2018; Klicpera et
al., 2020). Differentiable physics and operator-learning
surrogates let models backpropagate through PDE
solvers or tight-binding/DFT-like approximations,
providing gradients that reflect real invariants and
reducing spurious optima (Raissi et al., 2019; Pfaff et al.,
2021). In catalysis, surrogate models pre-screen
adsorption and barrier energies before expensive
relaxations, and in therapeutics, differentiable docking or
learned scoring functions provide physics-aware signals
that stabilize generative training (Chanussot et al., 2021;
Su et al., 2020). The art is choosing fidelity wisely:
hybrids that call high-fidelity physics only where it will
likely change rank order tend to dominate end-to-end
throughput.

Interpretability. Inverse design must explain
what it is doing, especially when choices have safety
implications. Attention maps in graph transformers,
substructure saliency for message-passing, and post-hoc
attributors such as SHAP values can highlight which
atoms, fragments, sites, or process features drive
predictions (Ying et al., 2019; McCloskey et al., 2019;
Lundberg & Lee, 2017). Yet interpretability is not
causality. To avoid “Clever Hans” shortcuts (e.g.,

spurious correlations from assay conditions), teams
increasingly combine attribution with counterfactuals
(minimal edits that flip predictions) and with causal-
inference ideas such as invariance testing across
environments or interventions (Schélkopf et al., 2021).
For regulators and scale-up partners, interpretable
decision records—what was proposed, why it was
chosen, and what evidence supported it—are as
important as raw scores.

Synthesis-aware design. A candidate is only as
good as the route that makes it. In small-molecule drug
design, retrosynthesis  planners  (template-based,
template-free, and mixed) produce tree- or graph-
structured routes subject to constraints on reagents,
number of steps, yield priors, and cost (Segler et al.,
2018; Coley et al., 2019; Schwaller et al., 2020). For
materials and nanomaterials, route planning means
selecting precursors, solvents, temperatures/pressures,
and time/atmosphere windows consistent with phase
diagrams, safety, and scale (Dunn et al., 2020).
Embedding route constraints inside the design loop helps
avoid dead-ends and leverages procurement reality
(availability, pricing, hazard classes). A practical
heuristic is two-stage generation: first, generate route-
feasible candidates (filters: SA/SCScore, precursor lists,
solvent classes), then fine-tune structure and process
jointly using BO/AL while tracking embodied energy
and hazard metrics. For remediation media and catalysts,
include aging, sintering/poisoning resistance, and
regeneration steps as part of the objective so the loop
“sees” lifecycle costs, not only fresh performance.

Putting it all together (a typical closed loop).
Start from a seed pool (legacy compounds, known
materials, scaffold libraries, or enumerated adsorption
geometries). Train a calibrated predictor with multi-task
heads (property + uncertainty). Use a generator
(diffusion/flow/VAE/RL) conditioned on target vectors
and route constraints to propose a diverse batch. Run
multi-objective BO to pick experiments that maximize
acquisition while spreading along the Pareto front, with
explicit diversity and safety terms. Execute the batch—
via computation (DFT/FEP/TI) or SDLs—log metadata
and failures, and update models (including uncertainty).
Repeat, occasionally inserting high-fidelity physics
where the model is uncertain but decisions are sensitive.
Terminate when Pareto improvements saturate or when
a candidate clears predefined gates (e.g., TRL-aligned
criteria).

Common failure modes and mitigations. (i)
Mode collapse in generators — enforce diversity with
determinantal point processes, nucleus sampling, or
diversity-aware acquisitions. (ii) Data leakage — use
scaffold/time/composition-aware  splits; hash and
publish splits; quarantine pretraining overlaps. (iii)
Reward hacking in RL/generative settings — add realism
constraints (SA/SCScore, route cost), human-in-the-loop
vetoes, and physics-based validators. (iv) Overconfident
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predictors — ensembles + temperature scaling +
conformal prediction to produce valid coverage. (v) Non-
stationary objectives (e.g., updated toxicity assays) —

adopt time-aware evaluation and reweighting;
validate surrogates when protocols change.
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Figure 1. Closed-loop AL/BO inverse-design workflow

A calibrated predictor and a conditional
generator propose route-feasible candidates under
synthesizability and toxicity constraints. A multi-
objective Bayesian optimizer selects batches that balance
efficacy/activity, stability, cost, and hazard, routing high-
uncertainty items to higher-fidelity physics or
experiments. Results feedback to update both predictor
and generator, advancing the Pareto front each cycle.

4. Quantum & Atomistic Engines

Design loops rise or fall with the physics
underneath them. The practical rule is simple: use the
cheapest model that is trustworthy for the decision at
hand, and escalate fidelity only where it could flip the
rank order among candidates. In this section, we
assemble a working stack—from Kohn-Sham density
functional theory (DFT) and its many-body corrections,
to phonons and reaction barriers, solvation and
interfacial realism, free-energy methods, machine-
learning interatomic potentials (MLIPS), near-term
quantum  computing, and finally  multi-fidelity
workflows that couple these tools to maximize
throughput without losing accuracy (Mardirossian &
Head-Gordon, 2017).

Electronic-structure ~ stack.  Ground-state
structures and energetics are typically obtained with
Kohn-Sham DFT along Perdew’s “Jacob’s ladder”:
LDA — GGA (e.g., PBE) — meta-GGA (e.g., SCAN)
— hybrids (e.g., HSE, PBEO) — double hybrids, with
DFT+U for localized d/f shells and dispersion

corrections as needed. Climbing rungs trades cost for
accuracy; method choice should be justified per target
(bonding type, correlation, charge transfer). For excited
states, GW corrects quasiparticle levels and Bethe—
Salpeter (BSE) captures excitons—essential for
photocatalysis and optoelectronic screening. Reaction
pathways rely on the nudged elastic band (NEB)
family—especially the climbing-image variant—to
locate minimum-energy paths and saddle points
(Henkelman et al., 2000). Lattice dynamics via phonons
(harmonic or anharmonic) probe dynamical stability,
finite-temperature free energies, and thermal transport
(Togo, 2023). A robust recipe for catalysis or solid-state
screening is: (i) relax structures with a meta-GGA or
screened hybrid on a subset, (ii) map key barriers with
NEB, (iii) compute phonons on shortlisted candidates,
and (iv) apply GW/BSE only when spectra or level
alignment could change decisions (Mardirossian &
Head-Gordon, 2017; Henkelman et al., 2000; Togo,
2023).

Beyond-DFT and ML interatomic potentials.
Where DFT is marginal—strong correlation, dispersion-
dominated binding, multi-reference pockets—one can
stitch in CCSD(T) or other high-level references on
fragments to A-correct DFT energies. For long times and
large systems, MLIPs deliver near-DFT forces at orders-
of-magnitude lower cost. Equivariant models such as
NequlP encode rotational and permutational symmetries,
improving data efficiency and stability for nanosecond-
scale molecular dynamics (MD), rare-event sampling,
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and thermal transport. In practice: curate a diverse
active-learning set (including strained/defected/TS-like
geometries), train an equivariant MLIP with uncertainty
monitoring, validate on barriers/elastic constants/
phonons, then run long MD or kinetic Monte Carlo to
connect mechanisms to rates (Batzner et al., 2022).

Solvation and interfaces. Real chemistry
happens in solvents and at interfaces. Three modeling
tiers are common. (1) Implicit solvation adds a
continuum dielectric—fast and often sufficient for
trends. (2) Explicit solvent (shells or slabs) captures
hydrogen bonding, structuring, and entropic effects;
combine with umbrella sampling when barriers matter.
(3) Electrochemistry demands constant-potential (grand-
canonical) DFT, where the electron chemical potential is
controlled and the double layer is represented; constant-
charge results can mislead when compared to
experiments at fixed potential. Protein—ligand or
protein—surface problems require protonation/ionic-
strength realism and careful ensemble choice (Melander
et al., 2024).

Free-energy methods. Decisions hinge on free
energies (AG), not just electronic energies: solvation,
binding, selectivity, phase stability, and reaction
equilibria.  In molecular  settings, free-energy
perturbation (FEP) and thermodynamic integration (TI)
yield absolute or relative AG; umbrella sampling +
WHAM reconstructs potentials of mean force along
collective variables. In condensed phases and at surfaces,
constrained MD (blue-moon ensembles) and anharmonic
corrections are used; MLIPs make the needed sampling
affordable. Modern variance-reduction schemes—e.g.,
mapped reference potentials—accelerate convergence
by shaping sampling toward high-variance regions.
Budget these expensive calculations where rank order is
tight (e.g., AAG selectivity within tens of meV or ~1
kcal-mol™) and rely on calibrated surrogates elsewhere
(Rizzi, Rehbein, Zeller, & Hummer, 2021).

Quantum computing (forward look). Near-term
devices remain noisy and small, but variational quantum
eigensolvers (VQE) and related hybrid methods have
matured on strongly correlated fragments and model
Hamiltonians. The credible near-term role in design
loops is specialist oracle: invoke a mitigated VQE
calculation only where classical surrogates disagree and
decisions are sensitive (e.g., spin-crossover centers,
multi-reference adsorbates). Progress in error mitigation
(symmetry checks, zero-noise extrapolation, learned
noise models) defines feasibility windows for such calls
(Jiang, Sun, Shaydulin, Lubasch, & Liu, 2024).

Multi-fidelity workflows. The throughput
multiplier is layering: couple fast but approximate
models (descriptors, MLIPs, GGA-DFT) with high-
accuracy corrections (hybrids, GW/BSE, CCSD(T),

explicit free energies) only where they are likely to
change rank order. Two patterns dominate. A-learning
uses sparse paired labels to learn the difference between
cheap and expensive levels and applies it broadly.
Adaptive routing with  multi-fidelity Bayesian
optimization/active learning sends a candidate to a
higher rung when its value of information is high (i.e.,
uncertainty is large and the decision is sensitive);
otherwise it stays on the cheap track. This approach
yields higher Pareto throughput (activity/efficacy,
stability, cost, toxicity) at fixed budget, and it integrates
naturally with laboratory automation and safety filters.
The Jacob’s-ladder intuition helps communicate the idea:
ascend only when necessary (Mardirossian & Head-
Gordon, 2017).

Heterogeneous catalysis. Screen adsorption on
key facets with GGA/meta-GGA,; fit an equivariant
MLIP for long-time coverage and site-disorder effects;
escalate a handful of candidates to NEB for rate-limiting
steps and to hybrids where charge transfer is delicate; if
photophysics matters, compute GW/BSE on finalists;
close with microkinetics to estimate TOF under
operating conditions (Henkelman et al., 2000; Togo,
2023).

Drug discovery. Use docking and learned
scorers to prune; reserve FEP/TI for near-ties in AAG;
include explicit solvent/ions for charged series and water
networks; push flexible systems with MLIP-accelerated
sampling; gate candidates by ADMET surrogates before
costly physics (Rizzi et al., 2021).

Environmental remediation. Prioritize
binding/selectivity versus co-contaminants; simulate
regeneration/aging (fouling, poisoning) and leaching in
explicit solvent; verify framework stability by phonons
and  thermodynamics;  route  constant-potential
electrochemical steps to grand-canonical DFT (Melander
et al., 2024).

Checks and common pitfalls. (i) Functional
sensitivity: re-compute a subset (e.g., SCAN — HSE) to
detect cancellations. (ii) Finite-size artifacts: ensure slab
thickness,  k-points,  plane-wave cutoffs, and
counterpoise checks are converged—and record them for
provenance. (iii) Double counting in A-corrections:
match geometries and dispersion schemes across levels.
(iv) Electrochemical realism: avoid comparing constant-
charge simulations to constant-potential experiments. (v)
Free-energy convergence: monitor overlap and statistical
inefficiency; use replica exchange or enhanced sampling
if barriers are rough. (vi) MLIP brittleness: maintain an
active-learning loop with disagreement triggers and
validate on forces and curvatures (phonons), not only
energies (Henkelman et al., 2000; Togo, 2023; Melander
et al., 2024; Batzner et al., 2022).
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Figure 2. Multi-fidelity ladder for quantum & atomistic design loops

A low-fidelity branch (descriptors/
MLIPs/GGA-DFT) screens quickly; a high-fidelity
branch (hybrids, GW/BSE, CCSD(T), explicit free
energy) validates only decision-sensitive points
(Mardirossian & Head-Gordon, 2017). Information
flows bidirectionally: sparse high-fidelity labels A-
correct the cheap model; the cheap model supplies
diverse proposals and uncertainty cues.

Adaptive routing via multi-fidelity Bayesian
optimization/active learning escalates samples when
value of information is high—balancing accuracy, cost,
and throughput. Use this schematic to communicate
fidelity-escalation policies and to justify compute
allocation across rungs.

5. Materials Platforms & Design Spaces

Modern inverse design is only as powerful as
the design space it explores. Here we organize practical
platforms—nanostructures, frameworks and membranes,
2D materials and defect chemistries, and bio-hybrids—
and outline knobs that move performance, the
stability/scalability traps to watch, and how to couple
these spaces to closed-loop optimization.

Discrete nanoparticles offer high surface-to-
volume ratios and tunable coordination environments;
quantum dots add size-quantized electronic states; core—
shells and heterostructures decouple functions (e.g., light
absorption vs. charge separation) while single-atom
catalysts (SACs) maximize metal atom efficiency and
uniformity of active sites (Wu & Yang, 2020; Chen et
al., 2021). Key knobs include composition (alloying,
dopants), size/shape (facets, edges), support/ligand
identity, and defect density. For photocatalysis or optical

delivery, quantum-confined dots (e.g., chalcogenides,
perovskites) permit bandgap tuning across ~1-3 eV by
radius control, while surface passivation governs non-
radiative losses and colloidal stability (Li & Zeng, 2019).
For thermal and electro-catalysis, sub-10 nm particles
balance activity with sinter-resistance; SACs on
nitrogen-doped carbons or oxide supports offer high
turnover with reduced noble-metal loading, provided the
anchoring coordination is robust under operating
temperatures and redox swings (Chen et al., 2021). In
drug delivery, inorganic cores (Au, SiO,, Fe;0,) can be
shaped and coated for photothermal, imaging, or
magnetic targeting functions, but surface corona
formation and RES (reticuloendothelial system) uptake
must be managed through ligand chemistry (Anselmo &
Mitragotri, 2019).

Metal-organic frameworks (MOFs), covalent
organic frameworks (COFs), and zeolites provide
crystalline, modular scaffolds whose pore size, topology,
and chemistry can be systematically varied (Diercks &
Yaghi, 2017; Waller et al., 2019). In catalysis and

separations, hierarchical porosity  (micro—meso)
alleviates diffusion limits, while post-synthetic
modification  introduces  catalytic = motifs  or

hydrophobic/hydrophilic balance for complex feeds
(Waller et al., 2019). For mixed-matrix membranes
(MMMs), dispersing MOF/COF/zeolite fillers in
polymers can beat the permeability—selectivity trade-off
by creating preferential pathways; success depends on
interfacial compatibility and filler percolation (Pérez-
Reyes et al., 2021). Stability is platform-dependent:
carboxylate-linked MOFs may hydrolyze; Zr-based
nodes and imine-to-B-ketoenamine COFs improve
water/thermal resistance; zeolites excel at hydrothermal
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stability but are compositionally less flexible (Diercks &
Yaghi, 2017; Waller et al., 2019). For remediation,
MOFs/COFs bearing chelating groups capture
PFAS/heavy metals, but regeneration, fouling, and
leaching define viability; embedding in robust MMMs
mitigates particle loss and eases module integration
(Pérez-Reyes et al., 2021).

Transition-metal dichalcogenides (TMDs) such
as MoS,/WS,, hexagonal BN, and doped graphene
expose edge and basal-plane sites whose defect/strain
chemistry can be engineered for catalysis, sensing, or
separation (Voiry et al., 2018; Zhao et al., 2020). In
hydrogen evolution, for instance, basal planes are inert
while edge sulfur vacancies and 1T’ phases activate sites;
heteroatom doping (N, B, P) in graphene tunes
adsorption energies and electron density, creating
ORR/OER/CO,RR-relevant ensembles (Voiry et al.,
2018; Zhao et al., 2020). For membranes, stacked
graphene oxide or MXene laminates produce angstrom-
scale channels for ion sieving; swelling control and
oxidation state stability are the limiting factors (Ding et
al., 2020). In optics, 2D excitons yield strong light—
matter coupling but suffer photobleaching under high
flux; encapsulation and defect passivation extend
lifetimes (Zhao et al., 2020). Defect engineering must
balance activity with structural fragility: vacancy-rich
lattices can reconstruct, and dopants may segregate under
potential/temperature cycling (Voiry et al., 2018).

Bio-hybrids. Enzyme—nanoparticle conjugates
and nanozymes marry catalytic specificity with
nanomaterial robustness. Enzymes immobilized on
porous oxides, carbons, or MOFs gain thermal and
solvent tolerance; mass transfer through mesopores and
retention of active-site orientation are the design levers
(Li et al., 2018). Nanozymes—nanostructured oxides,
metals, or carbon allotropes with enzyme-like kinetics—
offer low-cost, scalable alternatives for
peroxidase/oxidase-mimicking reactions in sensing and
therapeutics, though substrate specificity and in vivo
compatibility remain challenges (Wang et al., 2020). For
drug delivery, lipid nanoparticles (LNPs) and polymeric
carriers  (PLGA, PEGylated blocks) control
biodistribution via size (~60-150 nm), surface charge,
and ligand targeting; endosomal escape and payload
stability are the gating mechanisms, and batch-to-batch
reproducibility under GMP constraints is critical for
translation (Kulkarni et al., 2021; Anselmo & Mitragotri,
2019). Hybrid constructs—e.g., enzyme-loaded MOF
shells  or  stimuli-responsive  polymer—inorganic
composites—enable cascade catalysis or on-demand
release but add interfacial failure modes (Li et al., 2018).

Across platforms, stability loss mechanisms
usually dominate lifetime and cost. In nanoparticle
catalysts, sintering and Ostwald ripening coarsen size
distributions; supports that anchor single atoms/clusters

through strong metal-support interactions and defect-
rich carbons delay coalescence (Chen et al., 2021). In
MOFs/COFs/MMMs, hydrolysis, linker oxidation, and
polymer  plasticization degrade performance;
crosslinkers and robust nodes (e.g., Zr, Ti) raise tolerance
(Waller et al., 2019; Pérez-Reyes et al., 2021). For 2D
materials and quantum dots, photobleaching, photo-
oxidation, and ligand desorption under illumination and
heat degrade optoelectronic response; inorganic shells
and short-chain, multidentate ligands help (Li & Zeng,
2019). In bio-hybrids, corona formation, enzyme
denaturation, and carrier aggregation alter targeting and
kinetics;  protein-repellent  coatings and  mild
immobilization chemistries mitigate these (Anselmo &
Mitragotri, 2019; Li et al., 2018).

Scale strategy strongly influences costs and
footprints. Batch wet-chemistry remains dominant for
colloids and COFs/MOFs but struggles with heat/mass
transfer uniformity; continuous-flow microreactors and
millifluidic systems improve control and reproducibility
for nanoparticles and QDs, reduce solvent use, and
integrate inline analytics for closed-loop control (Khan
et al., 2021). Mechanochemical synthesis (ball milling)
avoids bulk solvents and can access otherwise difficult
linkages in MOFs/COFs; solvent-lean microwave,
photochemical, and supercritical CO, routes likewise
support green chemistry goals when evaluated over full
MMM modules, roll-to-roll casting and phase-inversion
lines dominate CAPEX decisions; filler alignment and
dispersion uniformity are the hidden bottlenecks (Pérez-
Reyes et al., 2021). Across all spaces, integrating LCA
metrics (energy per Kg, solvent hazard scores,
regeneration cycles) into optimization closes the loop
between performance and sustainability.

First, define the minimum viable manifold of
knobs that control the property of interest—e.g., particle
size and ligand field for plasmonic heating; linker
identity and node valency for MOF adsorption; defect
type and areal density for TMD catalysis; or N/P ratio
and lipid identity for LNP transfection. Second, choose
representations that tie directly to those knobs (e.g.,
graph features for coordination, SOAP/MBTR for local
environments, slit-pore descriptors for membranes, or
learned embeddings for carrier composition), and bind
them to constraints that reflect synthesis reality
(temperature/solvent windows, precursor availability,
GMP/biocompatibility). Third, encode failure modes as
penalties or objectives—sintering propensity, hydrolytic
stability, photobleaching rates, protein corona scores—
so the optimizer “sees” lifetime and safety as early as
activity. Finally, route stability testing into the loop:
aging protocols, cycling under realistic feeds, and
regeneration tests are as important as headline selectivity
or turnover.
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Table 2: Design-space catalog

Platform Tunable knobs

Typical property
ranges/examples

Synthesis/scale constraints

Nanoparticles / Size (1-50 nm), shape/facet,

Bandgap ~1-3 eV (QDs);

Sintering/Ostwald; ligand

size/functionalization,
hierarchical porosity

QDs / core— alloying/dopants, TOF1 with facet control; desorption; continuous-flow for

shells / SACs ligand/support, single-atom SAC M-Nj, sites for narrow dispersity; support
coordination ORR/CO,RR anchoring for SACs

MO / COFs / Linker/node chemistry, BET 500-6000 m2 g4, Hydrolysis/oxidation; particle

zeolites topology, pore selective shedding in MMMs; interfacial

adsorption/separation;
catalytic site installation

compatibility with polymers

2D (TMDs, h- Phase 2H<1T’), vacancy Edge/vacancy sites for Swelling/oxidation; defect

BN, doped density, heteroatom doping, HER/ORR; angstrom- reconstruction; scalable

graphene) strain, stacking channels for ion sieving exfoliation/CVD; laminate
stability

Bio-hybrids Enzyme loading/orientation, kcat/KM tuning; peroxidase- | Corona formation;

(enzymes, pore size, nanozyme like activity; targeted delivery | denaturation; GMP

nanozymes, composition, carrier & controlled release reproducibility;

carriers) size/charge/ligand immunogenicity; solvent and

pH windows

6. Application Domain | — Catalysis

Catalysis underpins low-carbon fuels, green
chemicals, and polymer circularity. We focus on thermo-
, electro-/photo-electro-, and photocatalysis across CO,
reduction (CO,RR), oxygen reduction/evolution
(ORR/OER), nitrogen reduction (NRR), selective
oxidations, and plasticupcycling—domains where Al-
guided screening, quantum/atomistic validation, and
microkinetics now run as one loop from idea to reactor
(Motagamwala & Dumesic, 2020; Leonzio, 2024).

In heterogeneous catalysis, high-throughput
DFT and learned surrogates map adsorption/barrier
landscapes, while Brgnsted—Evans—Polanyi (BEP)
relations tie thermodynamics to kinetics. Microkinetic
models then convert elementary energetics into rates and
selectivities under realistic feeds, enabling volcano
analyses and coverage effects. Practically: (i) pretrain
surrogates on open and in-house slabs; (ii) run active
learning/Bayesian optimization (AL/BO) to sample sites
(facets, steps, defects, ensembles); (iii) escalate high-
value points to higher fidelity (hybrids, explicit
solvation, constant-potential DFT for electrocatalysis);
and (iv) select batch experiments that maximize expected
improvement in turnover frequency or selectivity subject
to stability and cost (Chanussot et al., 2021; Baz, Comas-
Vives, & Lopez, 2021; Goltl et al., 2022).

» Thermo-catalysis. Rates reflect barriers governed by
scaling and BEP; microkinetics plus microreactor data
guide reactor choice (fixed/packed beds, fluidized or
slurry systems). Dehydrogenation/oxidation selectivity
often emerges from tuned bifunctional ensembles and
acid-base balance. Plastic upcycling combines
hydrogenolysis and selective C-C scission with coke
management (Motagamwala & Dumesic, 2020).

« Electrocatalysis. Device-relevant metrics require gas-
diffusion or MEA flow cells that manage mass transport,
carbonate chemistry, and ohmic losses. Constant-

potential modeling clarifies Tafel slopes and rate orders;
catalyst—ionomer—membrane architectures co-determine
local fields and water management (Baz et al., 2021; Lin
et al., 2022).

. Photocatalysis/photo-electrochemistry. Light
absorption, charge separation, and interfacial transfer
dominate; photo-corrosion and photobleaching drive
lifetime. PV-coupled CO,RR or redox-mediated
architectures can decouple intermittency from reaction
conditions while preserving selectivity (Motagamwala &
Dumesic, 2020).

Report, at minimum: turnover frequency (TOF)
and turnover number (TON); selectivity (molar/carbon
basis); overpotential (n) for electro/photo steps; Faradaic
efficiency (FE) and partial current density at specified
cell voltages; stability with hour counts and drift criteria;
and catalyst cost and earth-abundance proxies. For
CO2RR, add single-pass carbon efficiency, energy
efficiency, and flow/MEA performance at >200
mA-cm2 if claiming device readiness; recent reports of
sustained C,* at ampere-scale current densities define
today’s benchmark bar (Leonzio, 2024; Lin et al., 2022;
Chen, Wang, Li, & Chen, 2024).

Dominant routes include coking, poisoning
(S/CI/P/halides), sintering/Ostwald ripening, dissolution/
leaching (electrochemical), phase reconstruction, and
support corrosion. Materials levers are strong metal—
support interactions, defect-anchored single-atom sites,
corrosion-resistant supports, and alloying to resist
halides; process levers are periodic regeneration
(oxidative  burn-off/reduction), potential  pulsing,
electrolyte impurity control, and operation inside phase-
stable windows. Durability claims should pair
accelerated stress tests with long-hold runs (>100 h) and
post-mortems (TEM/XRD/XPS/ICP) that separate
sintering from poisoning or leaching (Forzatti, 1999;
Anekwe, Li, Salako, & Zhang, 2025; Pham et al., 2025).
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” BEP relations transform reaction energies into
activation energies, enabling fast kinetic surrogates;
generalized forms handle multi-step networks and site
specificity. Microkinetics converts those into coverage-
dependent rates/selectivities, revealing Sabatier volcano
structure and identifying which adsorption-energy tweak
would move a surface toward the peak without
sacrificing stability (Goltl et al., 2022; Yang et al., 2024;
Motagamwala & Dumesic, 2020).

Case study flow (CO;RR): AL — DFT — cell
benchmarking.

» Seed & learn. Begin with Cu-rich, Ag-
decorated, and defect-rich carbon motifs; train
a surrogate on adsorption energies and key
barriers from open OC datasets and in-house
slabs. Use active learning to explore steps, grain
boundaries, and heteroatom ensembles; treat the
interface with constant-potential DFT where
fields matter (Chanussot et al., 2021; Cheng,
Luo, & Cheng, 2022).

» Down-select via microkinetics. Convert
energetics into predicted partial currents and
selectivities across CO,/H,0O/CO activities;
penalize dissolution or reconstruction windows
at target potentials/pH (Baz et al., 2021).

» Validate physics. Escalate finalists to hybrid
DFT for charge-transfer-sensitive steps; include
explicit water/ionomer when trends hinge on
local fields.

» Device-level test. Fabricate MEA/flow-cell
electrodes; benchmark FE(C,*), partial current

density at >200 mA-cm2, energy efficiency,
and drift over 24-100 h; compare to state-of-
the-art cells reporting A-cm™2 C,* production
(Lin et al., 2022; Chen et al., 2024).

» Close the loop. Feed positives and negatives
back to the surrogate; update BO to advance the
Pareto front (selectivity—stability—cost). When
ranks are ambiguous, request new high-fidelity
labels (e.g., explicit-solvation free energies)
(Goltl et al., 2022).

After clearing device bars, reactor models size
mass/heat  transfer and  balance-of-plant.  For
thermocatalysis, packed-/fluidized-bed or slurry models
constrain particle size, gradients, and pressure drop; for
electrolyzers, gas-diffusion electrodes, CO, delivery,
carbonate management, and membrane/ionomer
durability dominate. Techno-economic analysis (TEA)
ties productivity and lifetime to levelized cost, with
sensitivity to electricity price, current density, FE, and
stability. Report earth-abundance metrics to avoid
breakthroughs that cannot scale (Leonzio, 2024; Lin et
al., 2022).

Encode durability proxies—sintering
propensity, halide/sulfur binding, leaching windows—
directly into the objective so AL/BO avoids fragile
optima. Track regeneration efficacy and post-mortem
signatures to drive causal fixes rather than parametric
overfitting (Forzatti, 1999; Pham et al., 2025).
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Diagram comparing H-cell, microchannel/
flow-cell, and MEA architectures commonly used to
evaluate CO,RR catalysts at increasing mass-transport
and current-density demands. Highlights where device-
relevant metrics (partial current density, FE, energy
efficiency) are obtained and why flow/MEA cells are
essential for >200 mA-cm™2 operation. Place this figure
adjacent to your CO,RR case study to anchor “AL —
DFT — cell” transitions in real hardware

7. Application Domain Il — Drug Discovery

Drug discovery now spans a wide target
space—enzymes, GPCRs, ion channels, protein—protein
interfaces (PPIs), and nucleic-acid targets—and multiple
modalities, from small molecules and peptides/
peptidomimetics to oligonucleotides and nano-enabled
delivery systems. Since 2017, the biggest shift has been
toward integrated funnels that couple structure/dynamics
of targets with generative chemistry, calibrated scoring,
physics-based free energies, and early ADMET triage,
all guided by uncertainty and synthesis constraints
(EKins et al., 2019; York et al., 2023).

Target space & modality choice. Enzymes
remain tractable because pocket geometry constrains
design, but PPIs and RNA/DNA motifs are increasingly
addressable via hot-spot mapping, fragment merging,
macrocycles, and peptide/peptidomimetic scaffolds.
Structure sources blend crystallography/cryogenic EM
with AlphaFold-class models and molecular dynamics to
reveal cryptic or induced-fit pockets that reshape SAR.
Modality should be chosen for biophysics + distribution:
small molecules for intracellular enzymology;
macrocycles/peptides for shallow PPIs; siRNA/ASO
payloads when gene-level control is needed; and
nanocarriers when permeability, stability, or tissue
access limit efficacy (Mehta et al., 2023; Kim et al.,
2023).

Screening funnels. A robust end-to-end loop is staged
and data-calibrated:

» Generative ideation. Constrained generation
(scaffolds, pharmacophores, synthesizability)
proposes diverse chemotypes; synthesis scores
and building-block availability gate feasibility.

» Docking + rescoring. Docking is treated as a
pose proposer; ML rescoring (graph/
transformer models) provides calibrated AG
estimates with uncertainties.

» Physics refinement. Alchemical FEP/TI or
enhanced-sampling PMFs resolve near-ties (~1
kcal-mol™) and water-network edge cases;
these steps are reserved for shortlists to control
cost.

» ADMET triage. Permeability/solubility,
metabolic stability and CYP liabilities, hERG
risk, and reactive substructure flags reduce late
attrition.

» Make-test-analyze. Prospective assay data
(biophysics, enzymology/cell, early PK) are fed
back to re-train scorers and generators under
uncertainty, closing the loop (York et al., 2023;
Ekins et al., 2019).

Nanocarriers as part of the design problem.
Lipid nanoparticles (LNPs), liposomes, polymeric
nanoparticles/micelles, dendrimers, and inorganic cores
(gold, silica, magnetic) extend the accessible
pharmacology by controlling biodistribution, release,
and stability. Design knobs include size (=60-150 nm for
systemic use), surface charge, PEG density, ligand
display, core/shell chemistry, and endosomal-escape
motifs. Failure modes—protein corona, aggregation,
complement activation, and immunogenicity—must be
screened early, and carrier choice must be co-optimized
with payload potency and PK; a vehicle cannot rescue
weak pharmacology (Alshawwa et al., 2022; Mehta et
al., 2023; Kim et al., 2023).

Safety & translation. Early off-target prediction
reduces rework: hERG (K_v11.1) risk models combine
ligand-based and structure-informed features; CYP
inhibition/induction predictors anticipate DDIs; broader
in-silico panels (kinases, GPCRs, ion channels) and
transcriptomic/phenotypic  profiling flag liabilities.
Lessons since 2019: (i) hERG models improve with
assay-consistent labels and protein context; (ii) CYP
models benefit from multimodal inputs and domain
adaptation to novel chemistry; and (iii) nanocarrier
safety hinges on orthogonal tests (hemolysis,
complement, macrophage uptake) and PBPK that
accounts for corona-driven sequestration (Garrido et al.,
2020; Weiser et al., 2023; Kim et al., 2023).

CMC and scalability. Translation stalls when
chemistry, manufacturing, and controls (CMC) lag
behind discovery. For small molecules this means
convergent routes, impurity fate maps, and solid-form
control; for nanotherapeutics it requires scalable mixing
(e.g., microfluidic LNP production), in-process
analytics, lot-to-lot reproducibility, and GMP-ready
CQAs (size/PDl/encapsulation, stability). Lock a DoE
early to avoid “one-off” lab formulations that fail at scale
(Liu et al., 2021; Agha et al., 2023).

Clinical & regulatory notes; digital twins
(forward look). A credible preclinical package
documents target engagement, exposure—response, GLP
tox (including ion-channel safety), and a control strategy
linking process to product quality (ALCOA+ data
integrity). Digital twins/virtual patients are emerging to
pressure-test dose, inclusion criteria, and responder
enrichment before Phase trials—but demand external
validation and bias checks (An, 2022; Alsalloum et al.,
2024).

[ © 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India

[ 401 |




Sadig Khan et al, Sch J Phys Math Stat, Nov, 2025; 12(9): 389-418

Putting it together: End-to-end molecule + nanocarrier
loop.

» Choose the modality per target biology and
delivery constraints (enzyme vs PPl vs RNA;
free-drug vs carrier).

» Constrained generation — docking/ML-AG —
FEP/TI for shortlists to resolve rank ties and
waters.

» ADMET triage (permeability, metabolic
stability, hERG/CYP/off-targets, reactivity
flags) with calibrated uncertainty.

» Carrier co-design only when PK/access
demands it; screen corona/immune interactions
and manufacturability.

» Prospective calibration via make-test-analyze
cycles; lock scalable routes (for LNPs,
microfluidic mixing and lyophilization).

» Preclinical to IND with GLP tox, stability-
indicating methods, and a CMC control strategy
linking CQAs to clinical material. Across all
steps, treat uncertainty as a first-class signal to
route expensive physics and experiments where
they change decisions (York et al., 2023; Mehta
etal., 2023; Liu et al., 2021).
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Polymeric Nanoparticles

Figure 4: Representative nanocarrier classes for therapeutic delivery.

Panel illustrating liposomes, polymeric
nanoparticles,  metallic-core  nanoparticles, and
dendrimers—highlighting how carrier architecture
affects loading and release. Use this to anchor the
“molecule + nanocarrier” decision: when potency is
adequate but PK, stability, or targeting limit efficacy, the
design space expands from ligand chemistry to carrier
CQAs. Place near the nanocarrier paragraph and CMC
notes to signal the translation pathway from formulation
choice to GMP-ready attributes.

8. Application Domain Il — Environmental
Remediation

Industrial effluents and diffuse pollution now
present mixed contaminant streams—dyes with high
chromophoric stability, heavy metals (As, Pb, Cd, Hg)
lacking degradation pathways, PFAS with extreme
fluorinated persistence, pharmaceuticals with bioactivity
at ng-L™, microplastics as colloidal carriers of sorbed
toxics, VOCs impacting air and water, and NO,/SOy in
flue gas—water couplings. Effective remediation
therefore matches pollutant class — mechanism —
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material under realistic matrices (ionic strength, NOM,
co-ions) and tracks not only removal but byproducts,
durability, and cost/energy (Crini & Lichtfouse, 2019;
Wang, DeWitt, Higgins, & Cousins, 2017). Mechanisms
and where they win.

Adsorption/ion exchange excels  for
hydrophobic dyes, many APIs, and metals
(outer-/inner-sphere complexation), offering
modular  columns and  straightforward
regeneration. Selectivity hinges on surface
functionality (e.g., —COOH/-NH,),
microporosity, and competing anions; for
arsenic, iron (oxy)hydroxide and Zr-based
sorbents form inner-sphere complexes that
resist desorption (Crini & Lichtfouse, 2019).
Photocatalysis & advanced oxidation (AOPs)
mineralize organics via *OH or SO,*~, with
TiO, and 0-C3N, as  workhorses;
heterojunctions and dopants shift band
positions and suppress recombination, while
persulfate activation broadens pH windows and
matrix tolerance (Huang, He, & Zhong, 2019;
Wang & Wang, 2020).

Electrocatalytic degradation (EAOPSs)
leverages reactive oxygen on BDD or
dimensionally stable anodes; paired with
electrosorption or Fe/Cu mediators, EAOPs
handle persistent pharmaceuticals and PFAS
precursors, and integrate readily into modular
reactors (Garcia-Segura, Ocon, & Chong, 2018;
Qiao, Guo, & Sun, 2023).

Membranes deliver phase barriers
(MF/UF/NF/RO) and reactive separations
(photocatalytic or adsorptive layers). They
excel for microplastics and metals but face
fouling, concentration polarization, and
retentate  handling—hence hybrid trains
(adsorption — NF/RO — AOP) are common
(Qiu, Zhang, & Zhao, 2019).

Materials palette and tuning.
MOFs/COFs/zeolites.  MOFs/COFs  offer
designer pore chemistry and high surface areas;
sulfonated/aminated nodes capture dyes and
metals, while Zr-based nodes tolerate
water/oxidants. Zeolites bring hydrothermal
stability and ion exchange capacity for
NH,*/heavy metals (Dong, Tu, & Zheng,
2020).

Carbons (biochar/AC/graphene derivatives).
Surface oxygen/nitrogen groups and w7
domains bind dyes and APIs; doped carbons
introduce Lewis basicity and redox mediation.
Biochars deliver low-cost capacity with
ash/alkali side effects; activation and acid
washing tailor selectivity (Tran, Ok, & Sik,
2017).

Semiconductors. TiO, (UV) and ¢-CsN,
(visible) form Z-schemes or S-schemes with
oxides/sulfides to widen spectral response and
suppress recombination; perovskites and

bimetallics (e.g., Ag-Cu, Fe-Ni) tune
adsorption and radical generation at interfaces
(Wang & Wang, 2020; Huang et al., 2019).

e Bio-sorbents and hybrids. Chitosan, alginate,
and protein-functional materials chelate metals
and bind dyes; immobilizing enzymes in MOFs
or on oxides adds biocatalytic steps. Stability
and microbial growth control are the design
constraints (Crini & Lichtfouse, 2019).

e Durability, leaching, and secondary pollution.
Capacity alone is not sufficiency. Assess: (i)
leaching of metals/ligands from MOFs or
nanoparticle supports; (ii) byproduct toxicity—
AOP intermediates, short-chain PFAS from
precursor oxidation; (iii) photobleaching of
sensitizers and corrosion under EAOPS; and (iv)
regeneration routes (thermal/solvent/pH swing,
electro-regeneration) with minimal capacity
fade. Report cycle life (>5-10 cycles), mass
balance  (parent + intermediates +
mineralization), and post-mortem analytics
(XPS/ICP/ITEM) to deconvolute mechanisms
(Dong et al., 2020; Garcia-Segura et al., 2018;
Wang & Wang, 2020).

e PFAS, microplastics, and metals: three stress
tests.

e PFAS. C-F persistence defeats conventional
AOPs; the field favors separate-and-destroy:
high-affinity capture (ion-exchange resins,
fluorophilic sorbents) followed by destructive
steps (electrochemical oxidation/reduction,
UV-sulfite, plasma). Avoid partial
defluorination that yields equally persistent/
toxic fragments; fluoride balance and targeted
HRMS for precursors are required (Wang et al.,
2017; Qiao et al., 2023).

e  Microplastics. Size-fractioned removal by
coagulation—flocculation, DAF, and
membranes is effective; aging increases
polarity and adsorption of co-pollutants, calling
for upstream carbon or hybrid AOPs to avoid
contaminant-rich concentrates (Qiu et al.,
2019).

e Metals (As, Pb, Cd, Hg). Favor inner-sphere
complexation and redox stabilization (e.g.,
As(V) precipitation, Hg(ll) complexation) on
iron/zinc oxides, thiolated carbons, or MOF
linkers; design around competing anions
(PO,%, SO,%) and pH windows (Crini &
Lichtfouse, 2019; Dong et al., 2020).

From bench to field. Laboratory wins must
survive matrix effects (hardness, NOM, alkalinity) and
fouling (biofouling, scaling). Fieldable trains often adopt
adsorption — membrane — AOP sequences to separate,
concentrate, and finally destroy, or EAOP polishing
post-RO to treat retentate. Pilot — municipal scaling
requires skid-mounted modules, backwash/clean-in-
place SOPs, and energy/cost accounting (kWh-m3;
$-m~3) including regenerant disposal. TEA/LCA should
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report media $-kg™, bed volumes to breakthrough,
specific energy per log removal, and sludge/retentate
handling to avoid burden shifting (Garcia-Segura et al.,
2018; Qiu et al., 2019).

Putting the decision tree to work. Start with
contaminant identity + matrix: (1) Hydrophobic dye in
high-NOM water? — hydrophobic carbon or COF + low-
dose UV/PS AOP; KPI = capacity (mg-g™1), pseudo-
second-order rate, color removal, energy per m3. (2)
As(V)/Pb(ll) in groundwater? — Fe/Zr oxide or thiolated

carbon with pH-swing regeneration; KPI = breakthrough
bed volumes at regulatory limit, selectivity over
HCO;7/S0,%". (3) PFAS (C4-C8) in municipal influent?
— ion-exchange or fluorophilic adsorbent +
electrochemical destruction of regenerant; KPI = ZPFAS
and fluoride balance, energy per mmol F~ released. (4)
Mixed pharmaceuticals (ug-L™t) — NF/RO + UV/H,0,
or EAOP polishing; KPI = parent/intermediate toxicity
and specific energy. (Crini & Lichtfouse, 2019; Wang et
al., 2017; Garcia-Segura et al., 2018; Qiu et al., 2019).

Table 3: Remediation KPIs with standardized units

KPI Definition Typical unit Notes for reporting
Capacity Sorbate uptake at equilibrium mg-gt Report isotherm (Langmuir/Freundlich),
(per mass of sorbent) temperature, pH, ionic strength
Rate constant | Apparent kinetic constant min~t or Provide reactor type (batch/column),
(pseudo-first/second order) g-mg~tmin~t film/mass-transfer limits
Selectivity Preference vs. competing species | dimensionless Specify competitors and concentrations
(ratio) or % (e.g., SO, CI~, NOM)
Removal Fraction of parent removed % or log1o Pair with mineralization (% TOC/fluoride
reduction balance) to avoid byproduct masking
Energy Specific electrical/UV energy kWh-m=or kJ-g* | Include duty cycle, electrode/UV
pollutant efficiency, and matrix absorbance
Stability Performance over reuse cycles to 20% Include regeneration protocol, leachate
capacity loss analysis (ICP, LC-MS)
Pressure Hydraulic performance kPa; L-m™2-h™1 Report fouling control (CIP/backwash),
drop/Flux (membranes/columns) temperature, crossflow
Cost Media/reactor cost normalized $-m73 treated Include media lifetime, regenerant/disposal
costs (avoids burden shifting)

This table standardizes what to report so results
are comparable across materials and pilots. Pair removal
with mineralization/toxicity to prevent green-washing
via persistent intermediates. Express energy and cost on
a per-volume basis, with media lifetime and waste
handling. Always include matrix descriptors (NOM,
hardness, pH, co-ions) and uncertainty to support scale-
up decisions.

9. Closed-Loop Experimentation & Automation

Modern discovery programs increasingly hinge
on closed-loop experimentation—hardware and software
that plan, execute, analyze, and then decide the next
experiments with minimal human intervention. The core
ingredients are (i) high-throughput experimentation
(HTE) and robotics to generate dense, high-quality data;
(i) active-learning planners that balance exploration and
exploitation; and (iii) standards that let instruments and
informatics talk reliably, with rich metadata and robust
error handling. When these pieces click, self-driving
workflows compress months of manual iteration into
days while maintaining traceability and reproducibility
(Tom et al., 2024; Christensen et al., 2021).

HTE & robotics. Microfluidic and mesofluidic
platforms now serve as agile “workhorses” for synthesis,
formulations, and materials processing. Arrays of
microliter-scale reactors, controlled by syringe/pressure
manifolds and LED modules, can sweep temperature,

residence time, stoichiometry, light intensity, and
reagent identity = with  exquisite  repeatability.
Inline/online analytics—UV-Vis/IR probes, MS/ESI-
MS, HPLC/UHPLC with autosamplers, Raman, DLS,
even compact XRD—collapse feedback time from hours
to minutes, so the planner learns on the fly rather than
after a batch campaign. For solid-handling or
membrane/coating work, collaborative robots and liquid
handlers prepare libraries, while integrated balances,
viscometers, tensiometers, and contact-angle tools
measure key physical attributes. Critically, the physical
layout should be “planner-aware”: parallel reactors
feeding a shared analytics queue, with barcoded
consumables and fail-safe waste routing to prevent cross-
contamination (Shields et al., 2021; Guo, Rankovi¢, &
Schwaller, 2023).

Active learning with sample-budget limits.
Because experiments are costly, the planner must choose
wisely. Bayesian optimization (BO) is the default engine
for continuous conditions, using a surrogate (often a
Gaussian process) with an acquisition function (e.g.,
expected improvement, upper confidence bound) that
trades off exploitation (trying the current best
neighborhood) and exploration (reducing uncertainty in
poorly known regions). For reaction or formulation
spaces that mix continuous and categorical choices
(ligand, solvent, membrane polymer), specialized
methods incorporate descriptors for the categorical
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options to guide search in a “soft” space (Hise et al.,
2020). In multi-response settings—yield and selectivity,
or flux and rejection—multi-objective BO pushes a
Pareto front rather than a single optimum. Two
pragmatic constraints dominate real labs: batching
(proposing N experiments in parallel for a plate/run) and
scheduling (coordinating reactors and analytics).
Planners therefore co-optimize the which (next
conditions) and the when/where (assignment to
modules), so idle time is minimized and analytical
queues do not become bottlenecks (Ruan et al., 2022;
Shields et al., 2021).

Scheduling and orchestration. Self-driving
campaigns are rarely single-instrument affairs. A robust
loop models the lab as a set of resources (reactors,
shakers, ovens, chromatographs) with capacities and
service times. The planner emits action graphs (“dose A,
heat 60 °C for 8 min, irradiate 455 nm, quench, inject
HPLC”), while a scheduler enforces resource constraints,
retries transient failures, and logs state transitions.
Practical heuristics—like “hedged batches” that include
a few exploitation points, a few uncertainty-reduction
points, and a couple of controls—keep learning on track
when measurements arrive asynchronously. For
heterogenous tasks (e.g., membrane casting +
permeability testing), the loop may switch objectives
between phases: first maximize film integrity/defect-free
casting, then optimize permeability—selectivity under
fixed casting conditions.

Interfacing instruments (APIs, schemas, and
provenance). To be reliable and shareable, an
autonomous loop needs standardized control and data.
On the control side, SiLA 2 defines device services and
command/response  structures so pumps, Vvalves,
photoreactors, and balances expose consistent APIs—
vital when swapping vendors or scaling up. On the data
side, experiment schemas keep context intact: for small-
molecule reactions, the Open Reaction Database (ORD)
schema captures reagents, operations, conditions, and
outcomes in a machine-readable way; for analytical
results, AnIML-style containers record
spectra/chromatograms with method metadata and
calibration. Minimal yet FAIR (Findable, Accessible,
Interoperable, Reusable) pipelines start with strict
deduplication and standardization, unit harmonization
(SI), and provenance (who/what/when/how), then
append data-quality flags (outlier detection, sensor
health) and licensing so data can be reused downstream
(Kearnes et al., 2021; SiLA Consortium, 2019).

Error handling and robustness. Automation
fails; resilient loops plan for it. Distinguish hard faults
(device offline, comms failure) from soft faults (pressure
spike, detector saturation, out-of-spec peak). Hard faults
trigger re-routing or safe shutdown; soft faults yield
censored data—which the model should ingest with
uncertainty rather than discarding. Calibration drift is
mitigated by interleaving standards and references;

concept drift (chemistry changes as the loop moves) is
handled with time-aware kernels or periodic re-
initialization around newly discovered regions. Every
loop should maintain audit trails (actions, firmware
versions, calibrations, chem inventory lots) to make
results reproducible.

Mini-vignette 1 — Autonomous photoredox
discovery. A flow photoreactor with LED modules
(blue/green) and HPLC-MS inline analytics explores
catalyst, base, solvent, light intensity, residence time, and
stoichiometry. The planner begins with a diverse seeding
design, trains a GP on conversion/selectivity, and
proposes batches via expected improvement under a
sample-budget of 12-24 experiments per hour. When the
GP’s predictive variance spikes—e.g., a new
photocatalyst family—it triggers exploration; near
promising basins, it switches to local exploitation and,
for close contenders, escalates to physics-based checks
(e.g., transient spectroscopy to confirm productive
excited states). Over a day, the loop finds higher
selectivity at lower light power by shifting to a different
photocatalyst/solvent pair and slightly longer residence
time—an outcome a purely manual DoE would likely
miss (Shields et al., 2021).

Mini-vignette 2 — Autonomous membrane
formulation. A casting robot prepares polymer—additive—
solvent  blends on glass, controls drying
temperature/humidity, then runs inline thickness and
defect imaging; cured films are mounted in a mini-
permeation skid to measure permeability and selectivity
for water/organic or gas pairs. The planner first
optimizes film integrity (defect rate < 1%) under
manufacturing constraints (max solids %, drying ramp),
then switches objective to the permeability—selectivity
Pareto front, proposing formulations that respect
viscosity windows (pumpability) and cost caps. A multi-
reactor/one-analyzer scheduler parcels batches to keep
the permeation skid saturated; the best formulations are
re-cast at larger area to verify scale effects (Christensen
etal., 2021).

People and process. Autonomy amplifies expert
time rather than replacing it. Chemists and engineers still
define objective functions (what does “good” mean?),
constraints (synthetic plausibility, safety, waste), stop
rules (sufficient confidence or resource cap), and
validation plans (orthogonal assays, out-of-distribution
tests). Teams should adopt model cards and data sheets
for experiments, documenting assumptions, training
data, and known failure modes; this avoids over-claiming
and eases tech transfer. Finally, governance matters:
version-controlled recipes, Cl tests for instrument
drivers, and simulation sandboxes for planner updates
prevent “bricking the lab” during software changes (Tom
et al., 2024).
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10. Safety, Sustainability, and Life-Cycle Thinking

Designing  catalysts, therapeutics, and
remediation materials to be safe and sustainable by
design means elevating environmental and human-health
considerations to the same level as performance and cost.
In practice, that requires three tight couplings: (i) green
chemistry metrics that steer route and process choices
while the chemistry is still malleable; (ii) life-cycle
assessment (LCA) and circularity thinking that extend
the boundary from flask to factory to fate; and (iii)
nanosafety principles and regulatory alignment so scale-
up does not create new risks. When these are embedded
in closed-loop discovery, the optimizer no longer seeks
“the best material,” but rather the best feasible material
under sustainability and safety constraints (Sheldon,
2017, 2018; Jiménez-Gonzalez et al., 2011).

Green chemistry metrics that drive decisions.
Three yardsticks consistently influence outcomes early
enough to matter. Atom economy rewards
transformations that place most of the reactant atoms into
product, but it is blind to workup and solvent. The E-
factor (kg waste per kg product) broadens the lens to
every stream exiting the process; high E-factors typically
correlate with poor economics and environmental load.
Process Mass Intensity (PMI), now common in pharma
and fine chemicals, goes further by counting all inputs—
solvents, reagents, auxiliaries—per kilogram of product,
making it sensitive to recovery and recycle strategies.
Together, E-factor and PMI let teams trade yield against
separations burden and solvent volumes; both can be
forecast from route sketches and refined as unit
operations are locked (Sheldon, 2017, 2018; Jiménez-
Gonzélez et al., 2011; Benison et al., 2022; Kekessie et
al., 2024). Because solvents often dominate PMI, solvent
selection guides have become the largest early lever:
moving from chlorinated or high-toxicity ethers toward
alcohols, esters, water, or carbonates can lower PMI and
hazard without sacrificing process windows, provided
drying and separation energies are accounted for
(Benison et al., 2022; Kekessie et al., 2024).

From gate-level metrics to cradle-level
footprints. Route- and step-level indicators are necessary
but not sufficient. LCA extends analysis to the full life
cycle—cradle-to-gate (raw materials to factory gate),
cradle-to-grave (through use and end-of-life), or cradle-
to-cradle (with recovery loops). Following 1SO
14040/14044, credible LCAs specify goal/scope, system
boundaries, functional unit, inventory sources, impact
methods (e.g., ReCiPe), and uncertainty/sensitivity
analyses. For materials achieving the same function, it is
routine to observe burden shifting: a composition with
lower climate impact may worsen freshwater ecotoxicity
or mineral depletion. Communicating these trade-offs
with normalized, multi-category radar (spider) charts
helps decision-makers select options consistent with
project priorities and policy constraints (Hollberg &
Ruth, 2021). In closed loops, fast LCA surrogates—fed
by bills of materials, unit operations, and assumed energy

mixes—can provide impact vectors that sit alongside
performance metrics so multi-objective optimization is
truly performance x footprint, not performance first,
footprint later (Hollberg & Ruth, 2021).

Circularity and life-cycle sustainability
assessment. Circular design targets recyclability,
recoverability, and benign end-of-life, not just lower
footprints at manufacture. Life-cycle sustainability
assessment (LCSA) integrates environmental LCA with
life-cycle costing and social metrics (worker safety,
supply risk, community impacts), recognizing that a low-
carbon material relying on scarce or conflict-exposed
inputs is not legitimately “sustainable.” Adding critical-
minerals flags and recovery yields as constraints in the
design loop helps avoid stranded breakthroughs that
cannot be responsibly scaled (Finkbeiner et al., 2020).

Nano-(eco)tox: design rules for particles and
interfaces. At the nanoscale, hazard and exposure depend
on size, shape/aspect ratio, dissolution kinetics, and
surface chemistry—all of which evolve in real media as
“coronas” of proteins or natural organic matter adsorb.
This bio/eco-corona rewires particle identity, tuning
aggregation, transport, uptake, and immune recognition.
Robust evidence now shows trophic transfer in aquatic
food webs and context-dependent toxicity that shifts with
ionic strength and organic matter. Reproducible
assessment therefore requires standardized reporting of
hydrodynamic size distributions, number concentrations,
zeta potential, dissolution, and corona composition in
relevant media, alongside realistic exposure metrics
(Drasler et al., 2017; Abdolahpur Monikh et al., 2020;
Liuetal., 2023; Zhang et al., 2024). For discovery, these
factors can be encoded as penalties or constraints:
avoiding high-aspect-ratio shapes in environmental
applications unless fate data are strong; preferring
coatings that remain stable across expected pH/ionic-
strength windows; and prioritizing compositions with
low bioaccumulation potential.

Standardization is catching up—use it. The
OECD Working Party on Manufactured Nanomaterials
has issued and updated test guidelines relevant to
particles, including guidance for size distribution
measurement, dispersion stability, dissolution/leaching,
and adaptations of bioaccumulation and toxicokinetics
studies to nanoforms. These harmonized protocols, along
with sector guidance from EFSA for agri-food and
environmental contexts, enable comparability and
regulatory acceptance across labs. Treat them as design
constraints, not just compliance hurdles: plan
characterization and hazard screens that map one-to-one
to these methods so datasets are reusable and auditable
(Drasler et al., 2017; Abdolahpur Monikh et al., 2020).

Regulatory landscape to design for—mnot
around. In the EU, REACH now requires explicit
nanoform identification and characterization in
registrations, with data bridging allowed only when
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scientifically justified. In the United States, FDA
guidance clarifies how nanomaterials in drug products
trigger additional CMC and risk-benefit considerations,
and EPA uses TSCA mechanisms (including significant
new use rules) to manage new nanoscale substances.
Cross-cutting actions on persistent classes—e.g.,
expanding PFAS reporting and phase-out schedules—
illustrate how surfactants, processing aids, or polymer
additives can suddenly fall under stricter scrutiny,
reshaping material choices and manufacturing routes
(ECHA, 2020; FDA, 2022; EPA, 2024). Building
regulatory readiness into optimization—by tagging
candidates that would trigger special reporting or
nanoform dossiers—prevents late-stage redesigns.

Operationalizing “safe & sustainable by
design” in a loop. Practically, make sustainability a first-
class objective. Train multi-task predictors to output
performance (activity, selectivity, potency),
processability (solubility windows, synthesis steps), and
proxy hazard (e.g., aquatic toxicity tiers; hERG/CYP for
drugs) with calibrated uncertainty; route low-confidence
regions to higher-fidelity tests. Attach a solvent plan and
PMI/E-factor snapshot to every candidate proposal so
Bayesian optimization trades performance against mass
intensity at acquisition time. Bundle a fast LCA vector
with each recipe using scenario-appropriate energy and

transport inventories to expose climate, toxicity, and
resource-use trade-offs during selection. For nano-
enabled options, require OECD-compatible
characterization and leaching/dispersion screens before
escalating exposure scenarios, and treat regeneration and
end-of-life as optimization targets (cycles to 20%
capacity loss; recovery yields). Finally, document
assumptions and data provenance model cards for
predictors, data sheets for experiments, and change logs
for PMI/LCA snapshots so sustainability claims are
transparent and reproducible (Sheldon, 2018; Kearns et
al., 2021; Hollberg & Ruth, 2021).

Putting the spider chart to work. When three
materials achieve the same functional unit (e.g., equal
conversion or dose efficacy), compare normalized LCA
categories on a spider chart beside KPI tables. A
candidate that minimizes climate and fossil resource
impacts might score worse on ecotoxicity due to metal
leaching or solvent choices; another might excel on
toxicity but depend on a scarce element. Selecting the
Pareto-efficient option then becomes a policy-aware
choice, not a single-metric race. Include uncertainty
bands and sensitivity to hotspots (e.g., solvent recovery
rate, electricity mix) so readers can see where additional
data would change the decision (Hollberg & Ruth, 2021).

Sovereignty

Product Performance

Transparency & Information

'Value Chain Collaboration

Value Chain Actions

Employment & Workers

Local Communities h
Consumers /
Well-being

Economic and Technical

Safe and
Sustainable-
by-Design

Chemicals Toxicity

Product Safety

Health & Safety

Reduced Climate Impact

Improved Circularity

Protect, Preserve & Restore
Ecosystems Services

Figure 5: Comparative Life-Cycle Impact Radar for Function-Equivalent Materials

This section makes sustainability a first-class
objective alongside performance, using atom economy,
E-factor, and PMI to steer routes and solvent choices
early. We extend the boundary with life-cycle
assessment and circularity, comparing candidates on
climate, toxicity, and resource use for the same function.

Nano-(eco)tox rules—size, surface, dissolution, and
corona—are encoded as constraints, with standardized
assays for reproducibility. Finally, we align designs with
evolving regulations (REACH, FDA, EPA) so winners
are deployable, not just publishable.
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11. Cross-Cutting Physics & Theory

Across catalysis, therapeutics, and remediation,
the same physical primitives govern behavior: how
structure fixes electronic and vibrational states; how
interfaces shape charge and mass exchange; how Kinetics
couples to transport under operando conditions; and how
we pass information across time and length scales.
Making these connections explicit lets Al and
automation optimize what is physically achievable rather
than what is merely convenient to compute
(Motagamwala & Dumesic, 2020).

Structure — property. Point and extended
defects, elastic strain, and quantum confinement remap
bands, phonons, and dielectric response, thereby tuning
reactivity, transport, and stability. Vacancies and
antisites introduce mid-gap states and trap carriers, while
grain boundaries host strained, chemically distinct
ensembles that often become the true active sites in
heterogeneous catalysis. In soft, polar semiconductors—
most famously halide perovskites—strong electron—
phonon coupling stabilizes large polarons that screen
charged defects and renormalize effective masses;
transport, recombination, and hot-carrier cooling
therefore deviate from simple band pictures (Frost, 2017;
Meggiolaro & De Angelis, 2020). Quantum confinement
raises exciton binding energies in 2D materials and
quantum dots, and modest biaxial strain can shift
adsorption energies and band edges enough to move a
catalyst along a Sabatier volcano or a bioelectronic
sensor across a detection threshold (Ghosh, Zhou, &
Wong, 2020). These links set the hard bounds for inverse
design: microstructure and fields can flip trends for the
same chemistry.

Interfacial phenomena. Real devices are
typically interface-limited. At electrochemical solid—
liquid boundaries, the electric double layer (EDL) sets
the local potential drop, screening length, and solvent
structure; specific adsorption, finite-size sterics, and the
quantum capacitance of the electrode all modulate
kinetics beyond classical Gouy—Chapman-Stern models
(Baz, Comas-Vives, & Lépez, 2021). Band alignment at
aqueous interfaces depends not only on surface
termination but also on hydration, surface dipoles, and
pH-controlled protonation; explicit-solvent ab initio
molecular dynamics combined with dielectric-
continuum embedding has clarified how these factors pin
absolute energy levels relevant to photocatalysis and
sensing (Hérmann, Ambrosio, & Pasquarello, 2019). In
nano-bio contexts, rapidly evolving solvation shells and
protein or humic coronas rewrite particle identity within
milliseconds, changing adhesion, charge-transfer
pathways, and cellular uptake—one reason simulations
and experiments must represent the intended medium
(Liu, Zhang, & Lowry, 2023).

Kinetics and transport under operando. Rates
arise from elementary steps embedded in fields and
flows. Microkinetic models convert adsorption energies

and transition states into coverages, rates, and
selectivities while honoring site balances and lateral
interactions; coupling these to mass, heat, and charge
transport explains why a surface that looks selective in
UHYV becomes diffusion-limited or potential-limited in a
flow cell, membrane, or tissue (Motagamwala &
Dumesic, 2020). In electrocatalysis, constant-potential
kinetics should be solved self-consistently with the EDL
to capture Tafel slopes, reaction orders, and buffering
effects (Baz, Comas-Vives, & Lopez, 2021). In
separations and  remediation, reaction—diffusion
equations with Donnan partitioning describe depletion
layers and selectivity in charged pores; in drug delivery,
permeability and binding kinetics embed within PBPK-
style tissue transport, turning in vitro potency into
exposure—response (An, 2022).

Bridging time and length scales. No single
method spans femtoseconds to hours or angstroms to
millimeters, so we assemble a ladder. At the
electronic/atomistic level, DFT (with +U or hybrids
where localization matters) and GW/BSE for excitations
resolve local chemistry and excitons; phonons and non-
adiabatic couplings capture vibronic effects essential for
polarons and hot carriers (Frost, 2017; Meggiolaro & De
Angelis, 2020). Event-level kinetic Monte Carlo (kMC)
then projects rare barrier-crossing events—surface
reconstruction, sintering, defect migration—onto
laboratory timescales using rate catalogs derived from
atomistics, increasingly with time-dependent fields and
open-system boundary conditions (Yang et al., 2024).
For soft matter and nano-bio interfaces, coarse-grained
(CG) models and machine-learned CG force fields
compress many-body atomistics into tractable beads
while preserving thermodynamics and key Kinetics,
enabling studies of permeation, aggregation, and corona
evolution at orders-of-magnitude lower cost (Durumeric,
Vani, & Onuchic, 2023; Ye & Zhang, 2021). Finally,
continuum models—reaction—diffusion—migration
PDEs, phase-field for morphology, Nernst—Planck—
Poisson or Darcy-Brinkman in porous media—deliver
device-level fluxes, selectivity, and stability; parameters
“flow up” from atomistic/kMC/CG, while boundary
conditions “flow down” from reactors or physiology.

Information  contracts and  uncertainty.
Multiscale workflows succeed when each level passes
upward compact, meaningful summaries—barrier
distributions,  adsorption isotherms, diffusivities,
partition coefficients—and requests from above only
those boundary conditions it truly needs—fields,
loadings, and chemical potentials. Two patterns are
especially effective. First, train surrogates with
guardrails: fast predictors (equivariant GNNs for
energies, graph transformers for AG, neural CG forces)
that respect symmetries, conservation laws, and correct
far-field limits, and that emit calibrated uncertainty so
active learning can request the most valuable new labels
(Shields et al., 2021). Second, use embedded coupling:
microkinetics inside continuum solvers for reactors or
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tissues; EDL/solvation models inside electrochemical
kinetics; or KMC event rates coupled to diffusion or
elasticity so local depletion and stress feed back on event
frequencies (Yang et al., 2024). Treating uncertainty as
a first-class quantity turns these stacks into decision
engines rather than just simulators.

Implications for inverse design. Structure—
property maps, interfacial band diagrams, and coupled
kinetics—transport define feasible regions before
optimization begins. Polaronic screening can render
certain dopants benign—or catastrophic—depending on
dielectric response (Frost, 2017). EDL structure and
specific adsorption can move a volcano summit across
electrolytes, so a “best” electrocatalyst at one pH fails at
another (Baz, Comas-Vives, & L6pez, 2021). Diffusion—
reaction coupling can turn a top-ranked surface into a
mass-transfer-limited one in flow cells or porous
scaffolds; in membranes, phase-field evolution and kMC
growth rules predict pore connectivity and fouling
propensity; in drug delivery, CG predictions of mucus
penetration or corona-mediated opsonization propagate
into PBPK exposure and therapeutic index (An, 2022;
Durumeric, Vani, & Onuchic, 2023). Embedding these
mechanisms—with uncertainties—allows Bayesian or
Pareto planners to trade activity against stability,
transport, safety, and manufacturability, advancing along
frontiers that matter to devices and regulators (Yang et
al., 2024; Hormann, Ambrosio, & Pasquarello, 2019).

Takeaway. A modern discovery stack is not
data versus physics but data plus physics, architected
across scales. Atomistic theory sets elementary rules;
interfacial models define operating microenvironments;
kinetics and transport predict operando behavior; and
CG/continuum models carry insights to application
scale. With uncertainty explicitly modeled, the pipeline
proposes only those candidates whose physics permits
high  performance  and  real-world  viability
(Motagamwala & Dumesic, 2020).

12. Best Practices: Reporting & Reproducibility
Reproducible  science and  trustworthy
deployment start with complete, standardized reporting.
At minimum, every study should disclose data splits
(how the training/validation/test partitions were
constructed and why), random seeds and the number of
independent runs, uncertainty quantification (UQ) and
calibration  metrics, baselines  (well-tuned and
appropriate to the task), and the compute budget and
hardware used to obtain results. Reporting a single lucky
run obscures variance due to initialization and
nondeterminism; instead, authors should provide mean,
standard deviation, and confidence intervals across
multiple seeds, and pre-register the stopping criterion
and early-stopping policy to avoid post-hoc cherry-
picking (Henderson, Islam, Bachman, Pineau, Precup, &
Meger, 2018; Dodge, Gururangan, Card, Schwartz, &
Smith, 2019). UQ should move beyond raw accuracy to
include calibration (e.g., expected calibration error) and

coverage under distribution shift, because well-
calibrated probabilities are the substrate for active
learning and risk-aware decision making in closed loops
(Guo, Pleiss, Sun, & Weinberger, 2017). Finally, the
compute and carbon cost of training and selection—
datasets, model sizes, hyperparameter sweeps—should
be summarized alongside accuracy; “Green AI”
encourages comparisons at fixed compute budgets and
transparency about energy sources to incentivize
efficient methods (Schwartz, Dodge, Smith, & Etzioni,
2020).

Model cards and datasheets are now essential
artefacts that travel with a trained model or dataset. A
good model card states intended use, out-of-scope uses,
training data characteristics, known biases, applicability
domains, and failure modes, plus performance broken
down by subgroups or regimes when relevant (Mitchell
et al., 2019). Datasheets for datasets document how data
were collected, filtered, labeled, and split; legal and
ethical constraints; and known hazards such as label
ambiguity or class imbalance (Gebru et al., 2018). For
scientific ML in chemistry, materials, and bio, these
ideas translate directly: disclose assay protocols or DFT
settings that generated labels; cite software versions and
pseudopotentials; list preprocessing (standardization,
conformer generation, charge states); and include assay
drift or batch effects if data were collected over time.
Both artefacts should explicitly flag the applicability
domain—for example, chemical space boundaries
defined by Bemis—Murcko scaffolds or materials
prototypes—and summarize OOD (out-of-distribution)
performance where tested.

Open science is not just a philosophy but a set
of release practices. Code and data should ship with
explicit licenses—permissive when possible, for broad
reuse—and, for datasets and models, archived with DOIs
so versions are citable and immutable. Reproducible
execution is dramatically easier when authors provide
containers (e.g., Docker) or environment specifications
pinned to exact versions, and when they include scripts
to reproduce every table and figure end-to-end. For
computational chemistry and materials, releases should
include seed lists, hyperparameter grids, and, when
applicable, trained weights for baselines so reviewers
and downstream users can verify claims without
rerunning expensive training (Boettiger, 2015; Pineau et
al., 2021). Public leaderboards can help track progress,
but they must be curated to prevent overfitting to a static
test set; hidden or rolling test sets, and periodic refreshes,
reduce gaming while preserving comparability (Recht,
Roelofs, Schmidt, & Shankar, 2019).

Evaluation design is where many otherwise
solid studies fail. Data leakage—any flow of information
from the test set into training or model selection—
artificially inflates metrics. In molecular Al, random
splits routinely let near-duplicates (or close analogs) leak
across splits; scaffold splits mitigate this by holding out
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chemical scaffolds never seen in training, offering a
more realistic generalization test (Wu et al., 2018). In
materials discovery, structure-aware splits must ensure
that compaositions, prototypes, or even space groups in
the test set are not trivial variants of training exemplars;
failing that, reported performance mostly reflects
interpolation. Across domains, authors should probe
distribution shift explicitly—temporal splits, domain
splits (e.g., assay lab or instrument), or geographic
splits—and report degradation and calibration drift
relative to i.i.d. conditions (Recht et al., 2019). When
hyperparameters are tuned, the validation set must be
strictly disjoint from the test set, and any ablation or
ensembling done after peaking at test results should be
labeled post-hoc and re-validated.

Because many scientific targets are noisy—
from assay variability to DFT functional errors—studies
should quantify and propagate aleatoric and epistemic
uncertainty. Techniques such as temperature scaling or
Dirichlet calibration improve probability estimates;
ensembles, Monte Carlo dropout, deep evidential
regression, and conformal prediction provide well-
defined coverage guarantees or uncertainty intervals that
are actionable in downstream decision making (Guo et
al., 2017; Angelopoulos & Bates, 2022). Crucially,
uncertainty reporting should include coverage vs. set size
plots and risk—coverage curves, not just a single ECE
number, and it should be repeated under the same
distribution-shift settings used for accuracy.

To make results durable, every paper should
include a Reproducibility Checklist covering data access,
preprocessing, model specification, training regimen,
hardware, runtime, and exact commands.
Hyperparameters should be reported as complete config
files (not prose), and early-stopping criteria and patience
values should be specified. For stochastic training,
authors should release the exact train/validation/test
indices used (or the code and seed that deterministically
generates them) so that later work can reproduce
comparisons. When claims hinge on statistical
significance, papers should report the test used, the effect
size, and the number of trials; tiny but statistically
significant gains with very large sample sizes should be
contextualized against computational cost and
complexity.

Benchmarking culture benefits from multiple,
diverse baselines and from unit-consistent metrics. For
example, in adsorption or catalysis tasks, include
physically motivated baselines (simple descriptors,
linear models) and report error units (e.g., eV, kJ-mol™)
alongside dimensionless metrics. In drug discovery,
include docking or physics-based baselines where
appropriate and stratify performance by chemotype; in
remediation, stratify by matrix conditions. Negative
results—failed transfer to a new assay, or degraded
performance in a new water matrix—should be reported
with the same care as positive results; they are often the

most valuable information to future practitioners.
Finally, set deployment-minded thresholds: for any
model intended to guide experiments, define acceptable
confidence or coverage targets that would trigger
escalation to higher-fidelity physics or wet-lab
confirmation rather than blind action.

13. Case Studies

Catalysis — Single-atom catalyst discovered via
active learning, validated by DFT, and scaled to an
electrolyzer.

A carbon-supported single-atom catalyst (SAC)
program for oxygen evolution illustrates the full closed
loop from hypothesis to device. The team began with
heteroatom-doped carbons hosting isolated M—N, motifs
and used an uncertainty-aware active-learning planner to
batch-propose syntheses, guided by a calibrated graph
model trained on prior ex situ spectra and ab initio
adsorption descriptors. Each cycle fed standardized
rotating-disk tests at matched electrolyte and pH, and top
candidates advanced to density-functional theory with
nudged-elastic-band checks to confirm barrier trends
consistent with microkinetic optima rather than
overbinding artefacts (Motagamwala & Dumesic, 2020).
Within ten iterations, the loop converged on a narrow
neighborhood of coordination and co-dopant patterns
whose local strain and ligand field positioned
intermediates on the OER volcano while suppressing site
blockage. Crucially, down-selection then shifted from
half-cell metrics to membrane—electrode assembly
(MEA) targets, letting the planner trade intrinsic activity
against ink rheology, ionomer ratio, and through-plane
porosity. Several half-cell “winners” fell away once
mass-transport and  humidity  sensitivities  were
penalized. The final MEA sustained target current
density at low cell voltage for extended hours with
minimal agglomeration, consistent with the SAC
mechanism inferred from operando spectroscopy and ab
initio signatures. The case highlights three lessons: (i)
sequential learning accelerates exploration only when
paired with faithful physics checks; (ii) device-level
constraints must be embedded as objectives, not applied
post hoc; and (iii) reporting uncertainty and variance
across replicates is essential to avoid over-claiming
incremental gains (Shields et al., 2021; Motagamwala &
Dumesic, 2020).

Drug — Generative lead optimized with alchemical
free energies and ADMET filters to an in vivo efficacy
signal.

A kinome-biased generator seeded chemotypes
for an ATP-competitive kinase program, but proposals
advanced only if they cleared synthesis-feasibility
constraints and a multi-task predictor returned potency
with calibrated uncertainty plus early-risk proxies
(hERG, CYP, reactivity). Poses were generated and
rescored; near-ties triggered alchemical free-energy
refinement (FEP/TI) using ensemble protocols to resolve
~1 kcal-mol~t differences—Ilarge enough to reorder top-
10 ranks (York et al, 2023). Make-test-analyze
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cycles—each logging negative results with equal
fidelity—mapped the local SAR while uncertainty
routing periodically forced exploration beyond the initial
scaffold basin (Ekins et al., 2019). In parallel, ADMET
triage moved from in-silico to in vitro (microsomal
stability, CYP panels, solubility/permeability, early
cardiotoxicity). A potency-neutral scaffold edit that
improved polarity reduced hERG risk and lifted
metabolic stability, enabling exposures compatible with
a short in vivo pharmacology study where one analog
produced a statistically significant efficacy signal at
tolerated doses. Retrospective attribution showed
inflection points aligned with physics-based decisions—
FEP/TI reversals of ML ties and uncertainty-driven
sampling of underrepresented chemotypes—rather than
brute-force enumeration. The case demonstrates that
generative ideation must be coupled to calibrated
prediction, targeted physics, and staged ADMET to turn
in silico promise into in vivo signal quickly while
managing compute and wet-lab risk (York et al., 2023;
Ekins et al., 2019).

Environment — MOF/COF platform for PFAS
capture with LCA vs. activated carbon and a
regeneration plan.

Facing mixed per- and polyfluoroalkyl
substances (PFAS), the program targeted water-stable
Zr-MOFs (UiO-66 derivatives) and fluorophilic COFs
tuned for head-group electrostatics and tail-framework
affinity. Batch isotherms in realistic matrices (hardness,
competing anions, natural organic matter) identified
candidates with fast kinetics and high capacities; column
tests quantified breakthrough bed volumes and
regeneration via salt/solvent swings or electro-
regeneration. UiO-66 variants delivered robust affinity
for long-chain PFAS, while tailored COFs showed
advantages for short-chain species due to pore
architecture. Because PFAS management is prone to
burden shifting, the team ran a life-cycle comparison at
a common functional unit (liters treated to below limits):
baseline granular activated carbon versus best-MOF and
best-COF. Inventories covered synthesis precursors,
solvent recovery, transport, pressure drop, regeneration
chemicals/energy, and end-of-life. While activated
carbon remained competitive on cost and embodied
energy, the optimized MOF reduced media consumption
and waste when regeneration and media lifetime were
credited; COFs narrowed the gap for short-chain PFAS
but required solvent-recovery improvements to retain
advantage (Wang, DeWitt, Higgins, & Cousins, 2017;
Dong, Tu, & Zheng, 2020). Sensitivity analysis flagged
electricity mix and solvent recycle as dominant levers.
The techno-environmental outcome was pragmatic: a
hybrid train—GAC bulk removal followed by
MOF/COF cartridges targeted to the local PFAS
profile—minimized energy per log removal and landfill
burden, provided operations tracked fluoride balance and
screened for precursor-to-short-chain by-products to
keep “destruction” claims auditable (Qiao, Guo, & Sun,
2023; Crini & Lichtfouse, 2019).

14. Grand Challenges & Outlook

The next decade will be defined less by
algorithmic novelty than by our ability to learn from
scarcity and to elevate negative results into first-class
training signals. In chemistry, materials, and bio, data are
sparse, noisy, and biased toward successes; failed
syntheses, unstable formulations, and null bioassays are
rarely curated with the same care as “wins,” yet they are
disproportionately informative for calibrating risk and
shaping acquisition functions in closed loops.
Community norms must shift toward routine release of
structured nulls, with datasheets that document assay
drift, batch effects, and provenance, and with conformal
or Bayesian machinery that converts uncertainty into
actionable coverage guarantees (Gebru et al., 2018;
Pineau et al., 2021; Angelopoulos & Bates, 2022).
Without this, sample-efficient planners overfit to
historical luck and under-explore the regimes where
breakthroughs usually hide.

A second, persistent obstacle is building
generalizable, uncertainty-aware models that cross
domains and distribution shifts. Random splits and
single-seed reporting are no longer defensible; scaffold-,
temporally-, and site-aware splits should become the
default in molecular, materials, and process datasets,
accompanied by calibration metrics and risk—coverage
curves rather than single accuracies (Wu et al., 2018;
Recht, Roelofs, Schmidt, & Shankar, 2019; Guo, Pleiss,
Sun, & Weinberger, 2017). Practically, this means multi-
task and transfer learners that ingest heterogeneous
modalities—graphs, grids, spectra, sequence, operando
streams—while emitting well-calibrated predictive
intervals that tell planners when to escalate to physics or
experiment. It also means guardrailed surrogates that
encode symmetries, conservation laws, and correct far-
field limits so extrapolation fails gracefully rather than
confidently wrong (Shields et al., 2021).

The frontier is no longer “accuracy only,” but
multi-objective sustainability: performance and safety
and cost. Discovery stacks must optimize
activity/selectivity alongside PMI/E-factor, solvent
guides, and fast LCA vectors so acquisition decisions
reflect whole-system impact, not just a yield or AG
(Sheldon, 2018; Hollberg & Ruth, 2021). For nano-
enabled systems, eco-tox and corona dynamics should be
encoded as constraints with  OECD-aligned
characterization plans, so risky shapes, coatings, or
leaching behaviors are down-weighted early (Drasler et
al., 2017; Abdolahpur Monikh et al., 2020). The cultural
shift is to treat sustainability numbers like any KPI:
plotted, benchmarked, and traded on a Pareto front—
rather than relegated to the supplement.

Trust and interpretability will determine
adoption in the clinic, plant, and municipal utility. For
regulators and operators, the question is not only “does it
work?” but “why should we believe, it will keep working
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here, now?” Model cards and datasheets must move into
scientific ML with domain-specific content: assay
conditions, DFT settings, pseudopotentials, instrument
versions, and applicability domains by
scaffold/prototype, plus OOD behavior under known
shifts (Mitchell et al., 2019; Gebru et al., 2018).
Interpretable  mechanisms—substructure  saliency,
counterfactuals, mechanistic ablations, and microkinetic
attribution—should be demanded when decisions carry
safety or regulatory consequences. Above all, calibration
matters more than raw AUC: a well-calibrated 0.80 AUC
model with coverage guarantees is more deployable than
a brittle 0.85 that hides its uncertainty (Guo et al., 2017;
Angelopoulos & Bates, 2022).

Scaling from high-throughput experimentation
(HTE) to plant or clinic remains a chasm. Self-driving
campaigns excel at local optimization under tight
control; translation collapses when unit operations,
mass/heat transfer, supply chains, and GxP data integrity
enter. Best practice is to carry deployment constraints
into the loop: rheology windows and ionomer ratios for
MEAs; microfluidic mixing and critical quality attributes
for LNPs; fouling, pressure drop, and regenerant
handling for water trains. Optimization targets should be
device-level (cell voltage at current density; cycle life to
20% fade; $-m™3 treated) and paired with TEA/LCA so
plant-scale viability evolves with the chemistry (Tom et
al., 2024; Hollberg & Ruth, 2021). Real-world validation
needs multi-site pilots and prospective studies with pre-
registered metrics and stop rules; “hero plots” from one
lab are no longer enough.

On the compute horizon, quantum advantage
and exascale HPC will be complementary rather than
substitutive. Exascale enables many-query physics—
GW/BSE, NEB ensembles, long-time molecular
dynamics, and uncertainty propagation—so that active
learners can afford the expensive labels that actually
change decisions. Near-term quantum devices are
unlikely to replace this, but they may carve out niche
accelerants: strongly correlated fragments, compact
ansatze for excited states, or discrete optimization within
retrosynthesis and materials packing—provided error
mitigation and problem encoding are robust (Tom et al.,
2024). The realistic outlook is hybrid: HPC-backed
surrogates and ML interatomic potentials do the bulk
lifting, with quantum subroutines called as specialized
oracles where classical scaling is the bottleneck.

A final challenge is coordination: we need a
community roadmap that makes progress legible,
comparable, and cumulative. Three ingredients stand
out. First, shared testbeds—modular photoreactors,
membrane skids, electrochemical stacks, and biophysics
benches—with standardized schemas, drivers, and QC
protocols, so methods can be drop-in evaluated under
identical conditions (SiLA-style). Second, open
reference workflows that run end-to-end—from data
ingestion to plots—captured in containers with DOIs, so

claims can be rerun years later on new hardware
(Boettiger, 2015; Pineau et al., 2021). Third, prize
challenges that reward not only peak accuracy but also
calibrated uncertainty, robustness under shift,
compute/carbon efficiency, and sustainability trade-offs.
The prize metric could be composite: weighted
performance, calibrated coverage, TEA/LCA penalty,
and a reproducibility score derived from the reporting
checklist.

What, concretely, should teams do next? Treat
uncertainty as currency: quantify it, report it, and spend
it where it buys the most information. Elevate negative
results and operational constraints to first-class citizens
in optimization. Couple physics and data with explicit
information contracts across scales. Make sustainability
part of the acquisition function, not the after-action
review. And align artifacts—model cards, datasheets,
containers, DOls—with the expectation that others will
build on your work. If the field adopts these norms,
closed-loop discovery can move from spectacular one-
offs to reliable, auditable pipelines that deliver
deployable catalysts, therapeutics, and remediation
technologies at the pace society now demands (Sheldon,
2018; Mitchell et al.,2019; Pineau et al., 2021; Tom et
al., 2024).
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