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Abstract  Original Research Article 
 

STOCK price prediction is an important topic in financial statistics which stimulates the interest over the years to 

develop better predictive models. It also provides a way to predict and perhaps avoid the risk of large adverse changes 

in price. Autoregressive Integrated Moving Average (ARIMA) methodology: “A real time risk prediction technique, 

flexible in computing and universal approximate because of its simplicity and wide acceptability that can be applied to 

a wide range of forecasting problems with a high degree of accuracy for the convenience of predicting the future value 

in share market and gives a better future scope for investment” is used in this paper to forecast the S&P BSE stock 

price. Before forecasting the stock prices using ARIMA model, a trend analysis was conducted on the sample data to 

find out the nature of the time series, i.e. upward trend, stationary or downward trend. The skewness and kurtosis also 

give the basic idea about the shape of the time series data. Augmented Dickey – Fuller (ADF) and Phillips – Perron 

(PP) unit root test were applied to know about the stationarity of the time series data. A robust model was identified by 

comparing the smallest value of Akaike‟s Information Criteria (AIC) and Bayesian Information Criteria (BIC). The 

parameters: R-Square, Adjusted R-Square, S.E of regression and Durbin-Watson statistic were estimated to regulate 

best ARIMA model. After parameter estimation is done, it is necessary to verify the satisfactoriness of the estimated 

model. The value of serial correlation was studied to verify that the series of correlation residuals is white noise or not. 

After the speculative model has been fitted, Ljung-Box Q statistic was applied for diagnostic checking or suitability of 

the model. Forecasting is the next step of the ARIMA model, which is an essential part of time series analysis. It is the 

predicted values based on identified past values of that variable or other related variable. Mean Absolute Percentage 

Error (MAPE) was calculated to determine the forecast accuracy as well as performance of the model. 

Keywords: Stock, Forecast, ARIMA, Correlogram, Ljung-Box Q statistic and MAPE. 
Copyright @ 2020: This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted 

use, distribution, and reproduction in any medium for non-commercial use (NonCommercial, or CC-BY-NC) provided the original author and source 
are credited. 

 

INTRODUCTION 
A stock is a share in the aspiration of a 

company. It represents the claim on the company‟s 

assets and incomes. It is also known as equity of share 

and a portion of the ownership in a corporate sector by 

an indivisual. Hence, a stock of a company entitles its 

share holders in its profit and issuing shares by a 

corporate company can mobilize huge capitals. Most of 

these shares are traded in exchanges, where buyers and 

sellers will meet and make a decision on a price is 

called „Stock Market‟. It is the aggregation of buyers 

and sellers of stocks and represents the ownership of a 

business. Transaction in stock market means the 

transfer of money from a seller to buyer for equities 

when they agree on a certain price and is facilitated by a 

stock exchange. 

 

Stock market is a place where investors, 

whether Indians or foreigners can invest or take their 

funds for capital appreciation. Their decision to invest 

or withdraw the funds depends upon the numerous 

factors. For this cause Indian stock market plays a 

significant role in the growth of Indian economy and 

every movement on it puts an impact on the 

performance of the economy. 

 

The Indian stock market had seen various up-

down since 1991, after the government implemented the 

LPG, i.e., Liberalization, Privatization and 
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Globalization. According to the Economic Survey 

2019-20, the Gross Domestic Product (GDP) growth 

rate is estimated to be 5% in 2019-20 as compared to 

6.8% in 2018-19. The GDP growth decelerated for the 

sixth consecutive quarter. In 2020-21, India‟s GDP 

growth rate is expected to be in the range of 6.0%-

6.5%. The Consumer Price Index (CPI) based inflation 

increased from 3.7% in 2018-19 to 4.1% in 2019-20. 

This increase was mainly due to food inflation. The 

Wholesale Price Index (WPI) based inflation decreased 

from 4.3% in 2018-19 to 1.5% in 2019-20. India‟s 

Current Account Deficit (CAD) decreased from 2.1% of 

GDP in 2018-19 to 1.5% of GDP in 2019-20. The fiscal 

deficit for 2019-20 is estimated at 3.3% and the primary 

deficit for the year is estimated at 0.2% of GDP 

(primary deficit is the fiscal deficit excluding the 

interest payments). As of November 2019, fiscal deficit 

stood at 114.8% of the budgeted level and India having 

become the fifth largest economy in the world in 2019. 

With this growth rate, India also became the fastest 

growing economy and aspiring to be the third largest 

with a $5 trillion by 2025. 

 

Stock markets are dynamic in nature, means 

prediction of stock market is a complex process because 

the indices are highly fluctuating, as a result of increase 

or decrease that characterize the stock price. 

Forecasting financial time series such as stock market 

has drawn considerable attention among applied 

researchers because of the vital role in the economy of 

any nation. Stock market forecasters focus on 

developing successful approach for predict the value of 

stock index, ultimate aiming to high profit using well 

defined trading strategies. The main idea behind the 

stock market prediction is achieving best result and 

minimizes the risk. 

 

Stock price prediction has always attracted 

interest because of the direct financial benefits and the 

associated complexity. The stock prices reflect all 

information about the stocks and also the expectations 

of the future performances of corporate sector. As a 

result, if stock prices reflect these assumptions in real, 

then it should be used as a major indicator for the 

economic activities [1]. Hence the dynamic relationship 

between stock prices and forecast values contains 

academic interest as well as policy implications. 

 

Bombay Stock Exchange – A Bird’s Eye View 

Established in 1875, the BSE (formerly known 

as Bombay Stock Exchange Ltd.) is Asia's oldest stock 

exchange was founded by an influential businessman 

Premchand Roychand, located at Dalal Street, Mumbai. 

The BSE is the world's 10th largest stock exchange with 

an overall market capitalization of more than $2.2 

trillion. Today, BSE is the world‟s number one 

exchange in the world in terms of the number of listed 

companies (over 5400). It is the world‟s 5th most active 

in terms of number of transaction handle through its 

electronic trading system. On 31
st
 August1957, the BSE 

becomes the first stock exchange to be recognised by 

Indian Government under the Securities Contracts 

Regulation Act. Sensex is India‟s first and most popular 

stock market benchmark index of BSE and calculated 

on a “Market Capitalization-Weighted” methodology of 

30 component stocks representing large, well-

established and financially sound companies across key 

sectors in 1986. It is being calculated on a free-float 

market capitalization methodology. The free-float 

market capitalization-weighted methodology is a widely 

followed index construction methodology on which 

majority of global equity indices are based; all major 

index providers like MSCI, FTSE, STOXX, S&P and 

Dow Jones. In the same year, it developed the S&P 

BSE Sensex index giving the BSE a means to measure 

the overall performance of the exchange. In 2000, the 

BSE used this index to open its derivative market, 

trading S&P BSE Sensex future contracts. The 

development of S&P BSE Sensex options along with 

equity derivatives expanding the BSE‟s trading 

platform. 

 

REVIEW OF LITERATURE 
Forecasting of stock price is a prominent issue 

for the past several decades. Financial managers, 

business analysts, academicians and investors are 

interested for predicting highly accurate future stock 

price as it gives high returns. Therefore it will help the 

investors to give a better view and predict the stock 

price in a reference period of time. 

 

Forecasting can be done on the basis of two 

different techniques; statistical techniques and artificial 

intelligence techniques [2]. But the performance of 

statistical technique is better as compared to artificial 

intelligence techniques [3]. The stock price prediction is 

regarded as one of the most difficult task to achieve due 

to its complex nature [4]. This remains an inspiring 

aspect to evolve new predictive models or improve the 

existing ones [5]. However, still there is a lot of debate 

as to which method is the most appropriate. 

 

Forecasting and policy analysis have been 

conducted using structural macroeconomic model based 

on Cowels Commission Approach [6, 7]. The initial 

relative success of this approach was impeded by Lucas 

Critique for parameter estimation from an econometric 

model [8]. These econometric models have been 

improved depending on their applications [9]. 

 

Since it is necessary to identify a model to 

analyse the trends of stock price with relevance 

information for decision making, it recommends that 

transforming the time series using ARIMA is better 

approach than forecasting directly, as it give more 

accurate result [10]. It is an applied mathematical 

analysis model that uses static information into either 

discern the data set or to predict future trend [11] and 

applied to solve the real world problems in the stock 

market by forecasting the stock prices along with 

https://en.wikipedia.org/wiki/Premchand_Roychand
https://en.wikipedia.org/wiki/Dalal_Street
https://en.wikipedia.org/wiki/Mumbai
https://en.wikipedia.org/wiki/List_of_stock_exchanges
https://en.wikipedia.org/wiki/Market_capitalization
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performance measure, which helps the new investors as 

well as existing ones to make a strategic decision [12]. 

It is an efficient and robust econometric model used to 

forecast the financial time series data for short term 

period [13, 14]. 

 

The popularity of the Box-Jenkins 

methodology to ARIMA models was excited when 

empirical studies [15-22], using real data showed that 

Box-Jenkins ARIMA was equally or more accurate as 

compared to simple methods, when post-sample 

comparisons were made. Today, after a valid arguments 

and considerable debates, it is accepted by a large 

number of researchers that in empirical tests Box-

Jenkins is an accurate method for post-sample time 

series forecasting, at least in the domains of business 

and economic applications where the level of 

randomness is lower and constancy of pattern or 

relationships can be assured. 

 

Askari & Askari [23], compare the ARIMA 

model with the Conventional Grey model and Modified 

Grey Model using fourier series on the noisy gold price 

data whereas, Wong, Tu & Wang [24], compare the 

ARIMA model with Vector ARIMA model with Fuzzy 

Time Series especially Heuristic Model and observed 

better forecasting ability in short term period. Ojo & 

Olatayo [25], focus on the estimation and performance 

of Subset Autoregressive Integrated Moving Average 

(SARIMA) and compared with ARIMA model using 

Marquardt Algorithm and Newton-Raphson Iterative 

Method and examine the performance of the model and 

residual variance using AIC and BIC [26], but Root 

Mean Square Forecast Error (RMSFE) and Mean 

Absolute Percentage Forecast Error (MAPFE) were 

used by Shittu & Yaya [27], to measure long memory 

properties of UK Pound and US Dollar exchange rate 

and compare the performance of ARIMA and AFRIMA 

is a combination of Fuzzy Regression model and 

ARIMA model for stationary time series [28]. 

 

Mandal et al., [29], analysed 56 time series of 

Indian stocks from different sectors to determine the 

85% of forecasting accuracy using ARIMA models, 

whereas Jadhav et al., [30], analysed the historical data 

of 6 years for Indian stock market using six different 

models on monthly closing stock index of Sensex and 

concluded that ARIMA model helps in predicting fairly 

accurate values of the future stock indices and satisfies 

all the condition for the “Goodness of Fit”. In a similar 

study, Edward & Manoj [31], developed and applied 

ARIMA model in Indian stock prices in 6 sectors: 

Automobiles, Banking, Health Care, Information 

Technology Oil & Gas and Power Sector for daily 

actual data of nine years to forecast the stock prices. 

 

Simons & Laryea [32], studied the weak form 

of the efficient market hypothesis of Ghana, Mauritius, 

Egypt and South Africa using ARIMA model to 

generate one period forecast. In a similar study, 

Rahman & Hossain [33], found that the fitted values 

derived from the models and the actual data is all but 

well fitted. Majhi et al., [34], used Adaptive Bacterial 

Foraging Optimization (ABFO) and Bacterial Foraging 

Optimization (BFO) based technique to predict stock 

market indices and compared with the Genetic 

Algorithm based technique. The relative predictive 

power of ARIMA, VAR and ECM models were 

examined by Uko & Nkoro [35]. 

 

The purpose of this paper is to examine the 

post-sample forecasting performance of ARIMA 

models and detect trend in order to determine the 

contribution of each of its elements. That is, dealing 

with stationarity, invertibility and parsimony are the 

three important parameters are used to identification, 

estimation and diagnostic checking respectively [36]. 

When alternative ways of dealing with and 

extrapolating the trend are provided, ARIMA models 

are more accurate than the corresponding time series 

methods that extrapolate the trend in the same way. 

These encouraging results suggest that statistical theory 

and empirical results are in agreement and that more 

appropriate ways of dealing with the trend in ARIMA 

or any other type of time series. 

 

RESEARCH METHODOLOGY 
The ARIMA methodology adopted in this 

study takes into account historical data and decomposes 

it into an Autoregressive (AR) process, where there is a 

memory of past events; an integrated (I) process, which 

accounts for stabilizing or making the data stationary, 

making it valid for forecast; and a Moving Average 

(MA) of the forecast errors, such that the longer the 

historical data, the more accurate the forecast will be, as 

it learns over time. ARIMA model therefore have three 

model parameters, one for the AR(p) process, one for 

the I(d) process, and one for the MA(q) process, all 

combined and interacting with each other and 

recomposed into the ARIMA (p,d,q) model.  

 

In order to identify the proper p, d, and q 

parameters of the model and forecast S&P BSE stock 

price, the Box-Jenkins algorithm was adopted as 

follows: (1) Model Identification, (2) Parameter 

Estimation, (3) Diagnostic Checking, (4) Forecasting 

and (5) Forecast Accuracy. 

 

Model identification involves determining 

whether a particular model with specific p, d and q 

parameters is a good statistical fit. This study employed 

ADF and PP unit root test to identify the d parameter. 

After determined the correct order of differencing, the 

best ARMA model was identified by a.c.f, p.a.c.f and 

their resulting correlograms. The highly subjective 

nature of the a.c.f and p.a.c.f methods made alternative 

objective methods for identifying ARMA models 

imperative. The p-th order autoregressive and q-th order 

moving average parameters are identified by least value 

of AIC and BIC. Before doing this a trend analysis was 
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conducted on the sample data to find out the nature of 

the time series. The next step is estimating the 

parameters of the appropriate ARMA to best fit to the S 

& P BSE stock price. The penalty function statistics 

which was employed in this study include: R-square, 

Adjusted R-square, S.E of regression and Durbin-

Watson Statistic. Diagnostic checking involves ensuring 

that the estimated model is a reasonable fit to the data. 

In order to ensure that the estimated model is a 

reasonable fit to the BSE data, this study used Ljung-

Box Q statistic to examine the residuals obtained from 

the estimated model for signs of autocorrelation and if 

the residuals are white noise, it suggests a good fit. 

Forecasting is the next step of the ARIMA model, 

which is an essential application of time series analysis. 

It is the predicted values based on identified past values 

of that variable or other related variable. Another 

essential check will be to test the robustness of the 

selected model by estimating MAPE to determine the 

forecast accuracy as well as performance of the model. 

 

MATHEMATICAL STRACTURE OF BOX – 

JANKINS ARIMA (p,d,q) MODEL 

The ARIMA model was established in 1990s 

for prediction of time series data [37]. The popularity of 

this model was exhausted when empirical studies [38-

42] using real data showed that simple methods are 

more accurate than ARIMA method. It is often referred 

as ARIMAX model as well as dynamic regression, 

when it includes other time series as an input variable 

and offers great flexibility in univariate time series 

model identification, parameter estimation and 

forecasting [43]. An ARIMA (p,d,q) model is defined 

as an I (d) process whose d-th order difference follow a 

stationary ARMA (p,q) process. In polynomial form: 

 ( )     ( )   

 

Where,  ( ), the generalised autoregressive operator, is 

a polynomial of degree p + d, with exactly d zeros equal 

to unity and all the others outside the unit circle. So 

 ( )    ( )(   )    ( )   

 

Where   ( ) is a stationary autoregressive operator of 

order p, and the operator   reflects a differencing. 

 

An ARIMA (2, 1, 2) model means, it contains 

two autoregressive (p) parameters, two moving average 

(q) parameters and differencing once to obtain the 

stationarity. 

 If d = 0, the models becomes ARMA and is 

considered as linear stationary model. 

 If d > 0, the models becomes ARIMA and is 

considered as linear non stationary model. 

 

In other words If we replace      by    , the 

ARIMA (p, d, q) process *  + is reduced to an 

ARMA(p,q) process *  +. Should a realisation show 

evidence that,  (  )   , then the series    is replaced 

by *       ̅+. Having obtained the *  + fit, the 

corresponding *  + fit can be obtained by the operation 

inverse to the differencing   . 

 

ARIMA model is based on ARMA model and 

the difference is that, it converts a non stationary data to 

a stationary data and widely used to predict linear time 

series data [44]. Before working on it, we have to 

introduce ARMA model is a combination of p-th order 

AR and q-th order MA process. It was formulated by 

the works of Yule [45], Slustky [46], Walker [47] and 

Yoglom [48]. A time series is a sequence of random 

variables *  +, which are not generally independent, but 

serially correlated. A linear process of the form: 

                                   

                   ( ) 

 

Satisfying the Gaussian Assumption: *  + is a 

structure less process of independent normal variable 

with zero mean and constant variance, called a White 

Noise Process. Symbolically: 

     (    
 ) 

 

Without loss of generality, choose   and   sufficiently 

small, such that:          

 

Introducing the backshift operator  , with the property, 

         
 

For any process *  + and any time       ( ) can be 

written as: 

   ( )     ( )              ( ) 

 

When,      it is termed as      order Autoregressive 

Process or AR (p) and 

     it is termed as      order Moving 

average Process or MA (q) 

 

For general,       , it is an ARMA (p,q) 

process. It is called proper when it does not degenerate 

to either AR (p) or MA (q). Simple example and 

alternative terms of AR (1), MA (1) and ARMA (1,1) 

are shown in Table-1. 

 

Table-1: Example and alternative terms of AR (1), MA (1) and ARMA (1,1) 

Process Example Alternative form 

AR ( )             (    )      

MA ( )                 (    )   

ARMA (   )                    (    )   (    )   
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Before going to do ARMA approach in details, 

a stationarity test was conducted to find out the nature 

of the time series data. The Box-Jenkins approach 

suggests short and long term differencing to achieve 

stationarity in the mean and logarithmic or power 

transformation to achieve stationarity in the variance. 

The value of such transformations to improve post-

sample forecasting accuracy has also been debated and 

no agreement has been reached as to whether or not 

transformations are helpful [49]. At the empirical level 

there is also no evidence that logarithmic or power 

transformations improve post-sample forecasting 

accuracy [50]. But some series could be better made 

stationary through differencing while others through 

linear de-trending. 

 

The popular way of finding a unit root is to 

examine mean and covariance of a series, if the mean is 

increasing over period of time. Such type of test is 

called Dickey – Fuller unit root test, proposed by, 

Dickey & Fuller [51]. The possible approach to 

examine the t-value on coefficients, but F-test is 

conducted when the a.c.f for the variable tends to zero 

as the length of lag increases. If a.c.f tends to zero 

quickly, then the variable is stationary; otherwise non 

stationary. 

 

Consider the simple AR(1) model: 

                       (    ) 
 

Under the test hypothesis, 

            ( ) 

   | |         ( ) 
 

The test statistic is 

     
 ̂   

  ( ̂)
 

 

Where  ̂ is the least square estimate and   ( ̂) is the 

S.E. estimate. If *  + is stationary, then it can be shown 

as [52]. 

√ ( ̂   )
 
→  (  (    )) 

  ̂   (  
 

 
(    )) 

  

 

and it follows that         (   )  
  Under the null 

hypothesis, non stationarity of the above result gives, 

 ̂    (   ) 
  

 

Under the unit root null, *  + is not stationary. 

In other words, if    is autocorrelated, then the chance 

of rejecting a correct null hypothesis is high. Hence, 

augmenting the test using lags of the dependent variable 

would be necessary and to use Augmented Dickey - 

Fuller test, proposed by Said & Dickey [53]. Under the 

null hypothesis, a time series *  + is I(1) against I(0), 

assuming that the dynamics in the data have an ARMA 

stracture. The ADF test is based on estimating the test 

regression: 

              ∑           
 
   …….. (3) 

 

Where    is a vector of deterministic terms 

and the p is lagged difference terms.       are used to 

approximate the ARMA stracture of the errors and the 

value of p is set, so that the error    is serially 

uncorrelated. If p is too small, then the remaining serial 

correlation in the errors will bias the test. If p is too 

large, then the power of the test will suffer. For stable 

size of the test and minimal power loss, first set an 

upper bound        for p. Next estimate the ADF test 

regression with         . If the absolute value of t – 

statistic for testing the significance of the last lagged 

difference is greater than 1.6, then set          and 

unit root test is performed. Otherwise, the lag length is 

decreased by 1 and the process is repeated [54]. For 

determining       , Schwert defined [55]: 

       (  (
 

   
)
   

) 

 

The ADF t – statistic and normalized bias statistic based 

on least square estimates of     ( ) are given by 

             
 ̂   

  ( )
 

        
 ( ̂   )

   ̂   ̂     ̂ 

 

 

Both DF and ADF test with no drift and no trend; with 

trend and no drift is summarizes in Table-2. 

Table-2: Equations estimated for DF and ADF test 

DF test ADF test  

            

         ∑        

 

   

   

No Drift, No Intercept 

               

            ∑         

 

   

   

No Drift with Intercept 

                   

                ∑        

 

   

   

With Intercept and trend 
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The PP unit root test, named after Phillips and 

Perron [56], difference from the ADF test mainly in 

how they deals with serial correlation and 

Heteroskedasticity in the errors. In particular, where the 

ADF test use a parametric autoregression to 

approximate the ARMA stracture of the errors in test 

regression the PP test ignores any serial correlation in 

the test regression. The test regression becomes: 

                  
 

Where,    is I(0) and may be 

heteroskedasticity. The PP test correct for any serial 

correlation and heteroskedasticity in the errors    of the 

test regression by directly modifying in the test statistic 

     and   ̂. These modified statistics denoted as    

and    and given as: 

   . ̂
 

 ̂ ⁄ /
  

 ⁄

      
 

 
. ̂

   ̂ 

 ̂ ⁄ / .
     ( ̂)

 ̂ ⁄ / 

     ̂  
 

 
 
      ( ̂)

 ̂ ( ̂   ̂ ) 

 

The terms  ̂  and  ̂  are consistent estimate of the 

variance parameters 

      
 → 

   ∑   (  
 )

 

   

 

      
 → 

∑   (     
 )

 

   

 

 

Where    ∑   
 
    . the sample variance of 

the least square residuals  ̂  is a consistent estimator of 

   and the Newly – West long run variance estimate of 

   using  ̂  is a consistent estimate of   . 

 

Under                           statistics 

have the same asymptotic distribution as the ADF 

statistic and normalized bias statistic. One advantage of 

the PP test over the ADF test is that they are robust to 

general form of heteroskedasticity in the error term   . 

For a stationary process, by definition   ( )   . 

Taking expectations in     ( ), we get  (  )    

 

And for all integer  , defining the autocovariance    at 

log   by     ,       - , 
    ,       -      

 

In particular, 

     
 . 

 

If  (  )      , then the mean correlated process, 

 ̃        
 

is replaced by *  + and the general process is described 

by 

  
 (                     ) 

 

and   
 . Alternatively it can be represented by, 

(             ). 

 

Defining the autocorrelation          by, 

   
  

  
, precisely the same information as in    

  is 

contained in (           ) the complete set of 

autocorrelations         is termed as Autocorrelation 

Function (a.c.f). It shows the correlation of the time 

series with itself lagged by x time units, so that y-axis is 

correlation value and x-axis is the number of lagged 

unit. For an ARIMA model, AR or MA or both are 

deciding how many lags should be used. For applying 

AR or MA, the values of p and q to be set. If the 

autocorrelation plot shows positive correlation at the 

first lag, then it is recommended to use AR in relation to 

lag, if the plot shows, negative correlation, then MA 

should be used. This will allow to decide what actual 

value of p, d and q to provide to ARIMA model. The 

Partial Autocorrelation Function (p.a.c.f) is a set 

         associated with a.c.f and defined as, 

   
|  

 |

|  |
 

 

         = k x k autocorrelation matrix with 

general r, s-th element =  |   | and   
     , with every 

r, k-th element replaced by   
 . 

 

Similarly each    gives the conditional 

correlation between    and       given the intervening 

    ,     , …….       ; and each    can be interpreted 

as    of that     ( ) model which comes closest to 

representing the process. In other words, it may be a 

conditional correlation between two variables. An 

estimated p.a.c.f can be utilized as the guide in 

combination with expected a.c.f. The forms for a.c.f and 

p.a.c.f associared with AR, MA and ARMA models are 

summarized in Table-3. 

 

Table-3: Characteristics of a.c.f & p.a.c.f for linear process 

Process a.c.f p.a.c.f 

AR (p)……. Damps out Cuts off after lag p 

MA (q)……. Cuts off after lag q Damps out 

ARMA (p,q)….. Damps out Damps out 
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The estimated a.c.f and p.a.c.f are sets *  + and *  +, 

where    
  

  
⁄  with 

   
 

 
∑ (    ̅)(      ̅) 

      ; k=0, 1, 2,, 

 

Where,            is a time series of length n. 

 

It will be more difficult to deduce the process 

from the estimated function due to sampling errors and 

the fact that the estimated sets are themselves 

autocorrelated. For an ARMA (p,q) the a.c.f mimics 

that an AR (p) process after     lags, while the p.a.c.f 

resembles that an MA (q) after     lags. For an MA 

(q) process [57],  

      (  )   
 

 
(   ∑   

 

 

   

) 

 

While for an AR (p) process [58] 

      (  )  
 

 ⁄  

 

When „n‟ is fairly large, the distribution of 

        for an MA (q) and   , k>p for an AR (p) are 

roughly normal with zero mean. 

 

In order to identify tentative initial choice of 

        the a.c.f and p.a.c.f are calculated and 

preferably plotted, for the first K-lags. According to 

Anderson [59], 

If   

 
 
 
 N (0, 1/n) for K > p, AR (p) is suggested …..…….. (3) 

 

If    

 
 
 
 N (0, 1/n(   ∑   

  
   )) for K > q, MA (q) is suggested… (4) 

 

If neither     ( )         ( ) occurs, then 

neither a.c.f nor p.a.c.f cut off and an ARMA model is 

inferred. According to Box &Jenkins [60], for p+q ≤ 2, 

    ( )         ( ) indicated that the process should 

be tentatively identified as AR (1), AR (2), MA (1) or 

MA (2); while if none of these are indicated, by default 

an ARMA (1,1) would be tried. 

 

Once the model has been identified, its 

parameter has to be efficiently estimated and resulting 

fit assessed, mainly by an analysis of residuals, to see 

whether it can be accepted as to plausible explanation 

of the series. Firstly, 

 (  )    
 

is plausible. For otherwise, 

        

 

The test is to compare  ̅ in the usual way, with 

its SE assuming  (  )    is true. 

 

Akaike‟s Information Criteria is used to select 

the model that minimizes the negative likelihood 

penalised by the numbers of parameters [61]. It is 

denoted as: 

               ( )     

 

Where, L refers to the likelihood under the 

fitted model and p is the number of parameters [62]. It 

is asymptotically optimal in selecting the model, under 

the assumption that, the true model is not in the 

candidate set (as is virtually always the case in 

practice). For comparison purpose, the one with lowest 

AIC is generally considered to be closer with real data. 

 

Another widely used information criteria is the 

Bayesian Information Criteria (BIC). It is derived 

within a Bayesian framework as an estimate of the 

Bayes factor for two competing models [63]. The BIC 

is defined as: 

              ( )      ( ) 

 

It relies on the assumption that, the true model 

is in the candidate set which makes it asymptotically 

less optimal. Superficially, BIC differs from AIC on 

sample size n. 

 

Performance of the model selection criteria in 

selecting good model for the observed data is examined 

using simulation studies. For application purpose, the 

AIC and BIC do have the same aim in identifying good 

model even if they differ in their exact definition. 

 

Once an appropriate model had been 

entertained and its parameters estimated, the Box-

Jenkins methodology required examining the residuals 

of the actual values minus those estimated through the 

model. If such residuals are random, it is assumed that 

the model is appropriate. If not, another model is 

entertained, its parameters estimated and its residuals 

checked for randomness. In practically all instances a 

model could be found to result in random residuals. 

Several tests (the Box-Pierce Statistic, Ljung-Box Q 

statistic) have been suggested to help users determine if 

overall the residuals are indeed random. 

 

For moderately long series and   not too small, 

the S.E.'s for the autocorrélations and partial 

autocorrelations of the residual series,   ( ̂) and   ( ̂), 

are obtained in the usual way. But for small  , Box & 

Pierce [64], show that this can no longer be done. 

 

Kwan, Sim & Wu [65] indicated that the 

normalization procedure used in Box-Pierce test is 

inappropriate for an independent and identically 

distributed (i.i.d) normal series with an unknown mean. 

Consequently, the poor empirical performance of the 

test is not entirely unexpected. On other hand, Arranz 

[66] showed that in finite samples its distribution falls 

apart from the asymptotic one. After some discussions 

about the finite sample distribution of the test statistic, 

Ljung and Box [67] proposed a modified version of that 

test and defined: 
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 ( ̂)   (   )∑
 ̂ 

 

   

 

   

 

 

Where,  ̂  is the sample autocorrelation of 

order v and k is the number of lags with sample size n. 

 

Ljung and Box showed that their test provides 

a substantially improved approximation to Chi-squared 

distribution with k-p-q degrees of freedom that should 

be adequate for most practical purposes with the same 

critical region as Box & Pierce. 

 

Forecasting is the final step of ARIMA model, 

which is an essential application of time series analysis. 

It is the prediction values based on identified past 

values of that variable or other related variable. For 

predicting a future value     , (h = hence from n = 

now), of a stationary zero-mean series, given the 

realisation to date *           +  but no other data. 

Any forecast of      will evidently be some function of 

            and we will restrict ourselves to just 

linear functions, that is to the class of linear forecasts. 

 

The Mean Absolute Percentage Error (MAPE) 

also referred as Mean Absolute Percentage Deviation 

(MAPD) is one of the most popular measures of the 

forecast accuracy due to its advantages of scale-

independency and interpretability [68, 69]. It produces 

infinite or undefined values, when the actual values are 

zero or closer to zero. If the actual value is very small 

(less than one), the MAPE yields extremely large 

percentage errors or outliers. Makridakis [70], attempts 

to resolve this problem by excluding outliers that have 

actual value less than one or Absolute Percentage Error 

(APE) values greater than the MAPE plus three S.D. 

 

The scale of judgement using MAPE equation 

given by Lawrence et al., [71] is shown in Table-4. 

 

Table-4: Scale of Judgement of Forecast Accuracy 

Sl. No MAPE Judgement of Forecast Accuracy 

1 < 10 % Highly Accurate Forecast 

2 11 % - 20 % Good Forecast 

3 21 % - 50 % Reasonable Forecast 

4 > 51 % Inaccurate Forecast 

 

Let    and    denotes the actual and forecast 

value at specified time„t‟ respectively. Then MAPE is 

defined as [72], 

     
 

 
∑|

     

  

|

 

   

 

 

Where, N is the number of data points. When 

MAPE is multiplied by 100 %, it is called as APE. This 

measure is generally only used when quantity of interest 

is strictly positive. 

 

OUTPUT AND DISCUSSION 
In this paper, the past S&P BSE stock price 

data from 1
st
 January, 2014 to 31

st
 December, 2019 is 

used to find out that the data are normally distributed 

and feasible to forecast for future stock price and the 

data from 1
st
 January, 2020 to 31

st
 January, 2020 will be 

used as validation for compare with the forecast data.  

 

DESCRIPTIVE ANALYSIS 
The S & P BSE stock price having a total 

number of 1478 observations is used in this study was 

taken from the official website of Bombay Stock 

Exchange. Closed stock price is choosen for this study 

because it reflects all the activities of the index in an 

entire trading day. Various descriptive statistics are 

calculated in order to describe the basic characteristics 

of the index with the help of SPSS and E Views 

Software. Table – 5 represents the descriptive analysis 

of the S & P BSE stock price data. 

 

Table-5: Summary of Descriptive Statistics 

Range Minimum Maximum Sum Mean 

Statistic Statistic Statistic Statistic Statistic S.E 

21488.19 20193.35 41681.54 45085805.72 30504.60 136.49 

Std. Dev. Variance Skewness Kurtosis 

Statistic Statistic Statistic S.E Statistic S.E 

5247.44 27535624.52 0.263 0.064 -0.983 0.127 

 

During the study period, the result quantified 

that, S & P BSE stock price has the mean of Rs. 

30504.60 with S.D. of Rs. 5247.44 and the range was 

Rs. 21488.19 with Rs. 41681.54 as maximum and Rs. 

20193.35 as minimum values. Similarly, Skewness for 

the daily stock price is within the permissible limit 

(0.263), which indicates that data are normally 

distributed. Kurtosis or convexity of the curve is the 

peakedness of the distribution and should be lies 

between -3 to +3. From the above table the kurtosis is -

0.983, which is within the limit. 
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The S.E of mean play a very important role in 

large sample theory and forms the basis of the testing of 

hypothesis. For any statistic, the large sample; 

  
           (         )

   (         )
  (   ) 

 

Thus, if the discrepancy between the observed 

and expected / hypothetical value of a statistic is greater 

than    times its S.E, the null hypothesis is rejected at 

  % level of significance. Similarly, if 

|           (         )|         (         ) 
 

The deviation is not regarded significant at 5% 

level of significance. It also enables us to determine the 

probable limits within which the population parameter 

may be expected to lie. So the descriptive statistics 

shows that the values are normally distributed about its 

mean and variance.  

 

Model Identification 

The first step is to identify an ARIMA model 

to determine the order of differencing to make the series 

stationary. Figure 1 & 2 shows the general view of the S 

& P BSE stock price in original pattern and difference 

at level one. From the below figure it is seen that the 

series is non stationary in Figure-1 and have a strong 

upward trend. This is basically describing on average 

what is the value doing for this series on a long period 

of time. Whereas, Figure-2 is a stationary series with 

constant mean and variance over a long period of time. 

A stationary data set will allow predicting our model 

that the mean and variance will be same in future. The 

stationarity could be identified according to the t-

statistic values in ADF and PP unit root test. In other 

words, if the t-statistic value exceeds the calculated 

value, then the series is considered as stationary. In 

Table- 6 & 7 the model checking was done with ADF 

and PP Unit Root Test.  

 

 
Fig-1: Graphical representation of S&P BSE stock price in original pattern 

 

 
Fig-2: Graphical representation of S&P BSE stock price after first difference 
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Table-6: Augmented Dickey - Fuller Unit Root Test 

 Null Hypothesis: D(CLOSE) has a unit root  

 Exogenous: Constant, Linear Trend  

 Lag Length: 0 (Automatic - based on AIC, Maxlag=23) 

   t-Statistic Prob.* 

 Augmented Dickey-Fuller test statistic -35.78291 0.0000 

 Test critical values:  1% level  -3.964274  

  5% level  -3.412857  

  10% level  -3.128415  

 Included observations: 1476 after adjustments  

 Variable Coefficient Std. Error t-Statistic Prob. 

 D(CLOSE(-1)) -0.930233 0.025997 -35.78291 0.0000 

 C 10.79192 13.24668 0.814688 0.4154 

 @TREND("1") 0.002760 0.015518 0.177827 0.8589 

 R-squared 0.465030  Mean dependent var -0.035305 

 Adjusted R-squared 0.464304  S.D. dependent var 347.0640 

 S.E. of regression 254.0205  Akaike info criterion 13.91474 

 Sum squared resid 95047434  Schwarz criterion 13.92550 

 Log likelihood -10266.08  Hannan-Quinn criter. 13.91875 

 F-statistic 640.2136  Durbin-Watson stat 1.998013 

 Prob (F-statistic) 0.000000    

 

Table-7: Phillips and Perron Unit Root Test 

 Null Hypothesis: D(CLOSE) has a unit root  

 Exogenous: Constant, Linear Trend  

 Bandwidth: 18 (Newey-West automatic) using Bartlett kernel 

   Adj. t-Stat Prob.* 

 Phillips-Perron test statistic -35.69677 0.0000 

 Test critical values:  1% level  -3.964274  

  5% level  -3.412857  

  10% level  -3.128415  

 *MacKinnon (1996) one-sided p-values.  

 Residual variance (no correction) 64395.28 

 HAC corrected variance (Bartlett kernel) 54034.47 

 Included observations: 1476 after adjustments  

 Variable Coefficient Std. Error t-Statistic Prob. 

 D(CLOSE(-1)) -0.930233 0.025997 -35.78291 0.0000 

 C 10.79192 13.24668 0.814688 0.4154 

 @TREND("1") 0.002760 0.015518 0.177827 0.8589 

 R-squared 0.465030  Mean dependent var -0.035305 

 Adjusted R-squared 0.464304  S.D. dependent var 347.0640 

 S.E. of regression 254.0205  Akaike info criterion 13.91474 

 Sum squared resid 95047434  Schwarz criterion 13.92550 

 Log likelihood -10266.08  Hannan-Quinn criter. 13.91875 

 F-statistic 640.2136  Durbin-Watson stat 1.998013 

 Prob(F-statistic) 0.000000    

 

From the below table, the calculated values of 

ADF and PP test statistic for S & P BSE stock price is 

less as compared to tabulated t-statistic at 1%, 5% and 

10% level of significance and conforms the series 

becomes stationary after the first difference and avoid 

the problems of spurious regression. To add a high level 

answer to some of other answer that are good, but more 

detailed, it is an important because in its absence, a 

model describing the data will vary in accuracy at 

different time points. 

 

After stationeries the time series by 

differencing, the next step to find out an ARMA model 

to identify the number of AR and / or MA terms to 

correct any autocorrelation that remains in the 

differenced series. The a.c.f represents the correlation 

between a time series and lags of itself, whereas, p.a.c.f 

is partial correlation of time series and its intermediate 

lags. Table-8 represents the correlograms of S & P BSE 

stock price after the first difference and their graphical 

representation are in Figure 3 & 4. 
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Table-8: Correlogram of S & P BSE stock price after the first difference 

Lag 1 2 3 4 5 6 7 8 9 

AC 0.070 -0.003 -0.013 -0.017 -0.043 -0.033 -0.028 -0.042 0.029 

PAC 0.070 -0.008 -0.012 -0.015 -0.041 -0.027 -0.024 -0.040 0.033 

Q-Stat 7.196 7.208 7.458 7.864 10.606 12.181 13.307 15.924 17.205 

Prob 0.007 0.027 0.059 0.097 0.060 0.058 0.065 0.043 0.046 

Lag 10 11 12 13 14 15 16 17 18 

AC 0.045 0.029 -0.009 -0.022 0.010 -0.041 0.015 -0.007 0.005 

PAC 0.038 0.020 -0.015 -0.023 0.014 -0.040 0.024 -0.006 0.007 

Q-Stat 20.248 21.507 21.628 22.330 22.468 24.943 25.266 25.345 25.384 

Prob 0.027 0.028 0.042 0.050 0.070 0.051 0.065 0.087 0.115 

 

 
Fig-3: Autocorrelation Function 

 

 
Fig-4: Partial Autocorrelation Function 

 

From the above table and figure it is seen that: 

 The p.a.c.f of the differenced series displayed a 

sharp cut-off at lag-1 and the lag-1 

autocorrelation is positive. 

 The a.c.f of the differenced series displayed a 

sharp cut-off at lag-1 and the lag-1 

autocottrlation is positive. 

 

So there is possibility of ARMA (1, 1) model 

of the above series. Looking at correlogram the possible 

models and their respective AIC and BIC values are 

summarized in Table-9. 

 

Table-9: Different ARIMA model with their AIC and BIC values 

Model (0,1,1) (1,1,0) (1,1,1) (0,1,2) (2,1,0) (4,1,4) (2,1,1) (1,1,2) (4,1,1) (2,1,4) 

AIC -6.7206 -6.7204 -6.7198 -6.7196 -6.7195 -6.7188 -6.7186 -6.7186 -6.7186 -6.7186 

BIC -6.7099 -6.7097 -6.7055 -6.7053 -6.7051 -6.6829 -6.7007 -6.7007 -6.6935 -6.6899 

Model (0,1,3) (4,1,2) (3,1,0) (1,1,4) (3,3,3) (4,1,0) (0,1,4) (1,1,3) (3,1,1) (2,1,2) 

AIC -6.7185 -6.7185 -6.7183 -6.7183 -6.7182 -6.7181 -6.7179 -6.7173 -6.7173 -6.7173 

BIC -6.7005 -6.6898 -6.7004 -6.6932 -6.6895 -6.6966 -6.6963 -6.6958 -6.6958 -6.6958 

Model (4,1,3) (3,1,2) (2,1,3) (0,1,0) (3,1,4) 

AIC -6.7172 -6.7171 -6.7171 -6.7164 -6.7154 

BIC -6.6849 -6.6920 -6.6919 -6.7092 -6.6832 
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From the above table, ARIMA (0,1,1) is 

considered as best ARIMA as it is based on least AIC 

and BIC values. 

 

Parameters Estimation 
The penalty function statistic which includes 

R-square, adjusted R-square, S.E of regression and 

Durbin-Watson statistic is summarizes in Table-10. 

 

Table-10: Model fit Statistics 

Model R-square Adjusted R-square S.R. of Regression Durbin-Watson Statistic 

Model-1 0.005 0.004 0.008 2.000 

 

From the above table it is seen that both the R-

square and adjusted R-square values are very low and 

conformed that the residuals are free from 

heteroskedasticity and the model is free from 

specification error. Similarly the S.E of regression 

provides the absolute response of the typical distance 

that the data points falls from the regression line. Since 

S.E. of regression = 0.8%, it indicates that the 

observations are closer to fitted line. It also represents 

the average distance of the data points from the fitted 

line is about 0.8% fat. 

 

The value of Durbin-Watson statistic=2.000 

strongly suggested that, there is neither positive nor 

negative first order serial correlation in the series. From 

regression analysis aspect it also detects the absence of 

autocorrelation at the first lag in the preceding error 

terms. 

 

Diagnostic Checking 
The Ljung-Box Q statistic is a diagnostic tool 

used to test lack of fit. The test examines the k-lag 

autocorrelation of the residuals. If the auto correlation is 

very small, we conclude that the model does not exhibit 

significant lack of fit. 

 

Table-11: Ljung-Box Q statistic (18) 

Model Statistic d.f. Sig. 

Model-1 16.912 17 0.460 

 

From the above table Ljung-Box Q statistic > 

10%, and indicates that the model has significant good 

fit to the S & P BSE stock price data. The residual a.c.f 

and p.a.c.f are used to examine the residuals obtained 

from estimated model for significance of 

autocorrelation. 

 
Fig-5: Residual ACF 

 

 
Fig-6: Residual PACF 
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From the residual analysis in Figure 5 & 6, it 

was found that, the residual autocorrelation are equal to 

zeros at different choosen number of lags and indicated 

a good fit. 

 

Forecasting 
From the methodology stated above, the 

forecasted S & P BSE stock price using forecasting 

equation for a period of 23 days, from 1
st
 January, 2020 

to 31
st
 January, 2020 is performed and illustrated in 

Figure-7.  

 

The forecasting equation 

                          

 

is based in the constant term and the coefficient of MA 

(1) is presented in the Table-12. 

 

 
Fig-7: Comparison between Actual Stock Price and Forecasted Stock Price 

 

Table-12: Parameters of ARIMA (0,1,1) Model Estimation 

Model Variable Coefficient S.E. t-statistic Prob. 

Model-1 Const. 0.000452 0.000237 1.909114 0.0564 

MA(1) 0.076362 0.021637 3.529244 0.0004 

 

The correlation coefficient between forecasted 

stock price and actual stock price has a positive 

correlation(        ), which represents a strong 

relationship between actual stock price and forecast 

stock price due to stabilise its mean value in long-run. 

 

Forecast Accuracy 

 

Table-13: Mean Absolute Percentage Error (MAPE) 

Accuracy Measurement MAPE 

Value 8.56 

 

Since the MAPE < 10%, it implies that the 

ARIMA (0,1,1) model is highly accurate for forecasting 

the S&P BSE stock price. Due to random behaviour of 

stock price, ARIMA model is highly suitable for future 

forecasting.  

 

CONCLUSIONS 
The presence of long memory in Bombay 

Stock Exchange stock price was explored by modeling 

and forecasting the series using Box-Jenkins ARIMA 

model. As shown in the results, the predicted price is 

much closer to the actual stock price, which indicates 

that the technique is very useful for any time series with 

any outline of change and it does not need the 

forecasters to pick any parameters in advance. Having a 

reliable statistical forecast model for predicting stock 

price, it is very crucial issue among investors, portfolio 

managers as well as researchers to take decision about 

investment. The main advantage of Box-Jenkins 

ARIMA model can be applied not only on investment 

decision tool but also in managing investment risk. It is 

also able to give high rate of profit returns, minimize 

the risk, investors need information as a reference for 

decision making of which stock they should buy, sell 

and maintain for future, which interest the investors. As 

a form of recommendation, different investors can 

choose companies according to their results, because 

the predictive power of Box-Jenkins ARIMA model 

gives high accurate result. 
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