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Abstract  Review Article 
 

In this article, we elaborate the mathematical framework of quantum mechanics, we obtaine relevant results about 

quantum measurements, and find that for an arbitrary 2-qubit state, the order of the partial measurement in 

computational basis only affects the probability of obtaining the measurement result. 
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INTRODUCTION 
Quantum measurement is the main way to 

obtain quantum information which plays an important 

role in the information industry [6]. For the quantum 

measurement a more complete approach, see [1]. 

Quantum computing is the basis of the quantum 

measurement which the specific introduction and 

applications can be see [2, 3, 4, 7]. In recent years, 

Davis [8] discovered that quantum measurement may 

also affect the development of human perception and 

consciousness. 

 

Quantum measurement is mainly to read the 

final quantum state after the closed quantum system 

interacts with the physical quantity, which makes the 

quantum state change. In generally, the quantum 

measurement will irreversibly change the quantum 

state. 

 

This article mainly discusses the projective 

measurement and the measurement in computational 

basis. Under the premise of following postulates of 

quantum mechanics, for an arbitrary two-qubit state, the 

order of partial measurement in computational basis 

will affect the probability of obtaining the measurement 

result, but it will not affect the final measurement result. 

 

We briefly summarize the contents of this 

paper. In section 2, we elaborate the mathematical 

framework of quantum mechanics. In section 3, we 

focus on the projective measurement and the partial 

measurement in computational basis, moreover, we 

obtain the important result that for an arbitrary two-

qubits state, the order of the partial measurement in 

computational basis in that state only affects the 

probability of obtaining the corresponding result. In 

section 4, we made a brief summary. 

 

Preliminary knowledge of quantum mechanics 

Quantum mechanics provides the 

mathematical framework for the development of 

physical theory, and its four postulates relate the 

physical world to the mathematical description of 

quantum mechanics. 

 

Qubits as the most basic quantum mechanical 

system. A qubit has a two-dimensional state space. Let

| 0 and |1 constitute a standard orthogonal basis of the 

state space, then any vectors in the state space can be 

written 

 

| | 0 |1a b     , 

 

Where a and b are complex numbers and 
2 2| | | | 1a b  , that is | 1    . 

 

When we consider the composite quantum 

system composed of two or more different isolated 

physical systems. The composite system postulate gives 

a description method. 

 

Definition 1. [5] The postulate of composite 

systems states that the state space of a composite 

system is the states of n isolated quantum systems, the 

state of the composite system is 

 

1 2| | | n      . 
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It is easy to see that the state space of a two-

qubit is . 

             Therefore, the basis vector is 

| 0,0 ,| 0,1 ,|1,0 ,|1,1 ,      

             Where | 0,0 | 0 | 0    . | 0,1 ,|1,0 ,|1,1    Have 

a similar interpretation. 

 

Definition 2. [6] In composite physical 

systems, a state that cannot be expressed as a tensor 

product of the states of each isolated system is called an 

entangled state. 

 

We have assumed that the closed quantum 

system evolves according to the unitary operator, but if 

we want to observe the system to understand the 

internal situation, at this time, the closed quantum 

system interacts with the external macro environment, 

so it no longer obey the unitary evolution. 

 

Proposition 1.[5] A projective measurement is 

described by a Hermitian operator O , called observable 

in the state space of the system being measured. The 

observable O  has a diagonal representation: 

O P


 ,                                           (1) 

Where P  is the projector on the eigenspace of O  

associated with the eigenvalue  .  

 

The possible results of measurement of the 

observableb O  are the eigenvalues  . If the system 

state at the time of measurement is |  , the 

probability of obtaining the result   will be 
2|P ‖ ‖  or | |p P     .       (2) 

 

If the result of the measurement is  , the state 

of the quantum system immediately after the 

measurement will be 

1
| |P

p




  . 

 

Since the possible outcomes of a measurement 

of observable O  obey a probability distribution, we can 

define the expected value of a measurement as 

O p


   ,                                 (3) 

The standard deviation as 

2 2O O O       .                     (4) 

 

 

 

 

 

 

Measurement and partial measurement in 

computational basis  

The computational basis of space  is the set

{| 0 ,|1 }  . For one qubit, the observable of the 

measurement in the computational basis is Pauli matrix

Z , whose spectral decomposition is 

1+1Z=(+ ( 11)P + )P , 

Where 1 1| 0 0 |, |1 1|P P      

 

The possible results of the measurement are

1 . Consider an observable O  with the following 

spectral decomposition  
1

0

| |
k

O k k k


  .                            (5) 

 

Since the eigenvalues of O  are 0  and1 , the 

above analysis holds if we replace +1  by 0  and 1  

by1 . With this new observable, there is a one-to-one 

correspondence in the nomenclature of the 

measurement result and the final state. If the result is 0 , 

the state after the measurement is | 0 . If the result is1 , 

the state after the measurement is |1 . 

 

The computational basis of the Hilbert space 

of n  qubits in decimal notation is the set

{| 0 , | 2 1 }n   .  Generalizing to n  qubits, we have 

the following proposition. 

 

 

Proposition 2.[5] The measurement in the 

computational basis is associated with observable 

2 1

0

| |

n

k

O k k k




  . 

 

A generic state of n  qubits is given by 

2 1

0

| |

n

k

k

a k




                                    (6) 

where amplitudes ka  satisfying the constraint 

2| | 1k

k

a  . 

 

The measurement result is an integer value k  

in the range 0 2 1nk    with a probability 

distribution given by 
2| | | |k k kp P a     . 
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The n  qubit state immediately after the measurement 

is 
1

| |k

k

P k
p

   . 

Proposition 3. For a given state |  , the expected value of an arbitrary measurement observed at the state has the 

following expression: 

| |O O      . 

  

Proof. By (1), (2), (3), we have | |O O       

 

Proposition 4. If the physical system is in a state |   that is an eigenvector of O , then 0O  . 

 

Proof.  From the definition of standard deviation, just prove 
2 2O O     . 

 

By Proposition 3,  
2 2 2| | | ( ) .O O P



             

Since P  is a projection operator,  

†2P P P    , 

where †  means hermite conjugate. We have 

2 †2 |O P P 


       . 

 

And since |   is an eigenvector, suppose the correspondence eigenvalue is i , we have 

†2 2 2|
i ii iO P P          . 

 

Similarly,  
2 †2 2 2 2( | | ) ( | ) ( | )

i ii iO O P P P  


                    . 

 

Thus 0O  . 

   

Proposition 5. Suppose that the physical system is in generic state |  ,  then 
2 1p



  to an observable O  if and 

only if 0O  . 

   

Proof. By 
2 1p p 

 

   and Non-negativity of probability, we have 1
k

p  . 

Suppose

2 1

0

| |

n

k

k

a k




   , we have  

 
2 2 2 2 2 2 2( ) ( | | ) (| | | | ) | |

kk k k kO p P a k P k a  
 

                . 

 

Similarly,  
2 2 2 2 2 2†| | | ( ) | | | | |k kO O P P P a  

 

                     . 

Thus 0O  . 
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By 0O   and 1p


 , we have 

21
k

p p p  
 

    . 

              

The term measurement in the computational basis of n  

qubits implies a measurement of all n  qubits. 

However, it is possible to perform a partial 

measurement; the result in this case is not necessarily a 

state of the computational basis. 

 

Definition 3. [5] If a system composed of 

subsystems A  and B , a partial measurement is a 

measurement of an observable of the type A BO I  or

B AO I , where AO  and BO  are an observable of 

system A  and B , respectively. AI  and BI  are the 

identity operator of system A  and B , respectively. 

Physically, this means that the measuring apparatus 

interacted only with the subsystem. 

 

Proposition 6. [5] A composite quantum 

system composed of two isolated quantum systems A  

and B , where the state space of system A  is m -

dimensional Hilbert space and the state space of system 

B  is n -dimensional Hilbert space, then the 

computation basis is the set  

 

{| , : 0 2 1,0 2 1}m ni j i j       . 

 

A generic state will be represented by 

2 1 2 1

0 0

| | ,

m n

ij

i j

a i j
 

 

   . 

 

Suppose we measure observable A BO I , where 

2 1

0

m

A k

k

O kP




 . 

 

The probability of obtaining value 0 2 1mk    is 

2 1
2

0

| ( ) | | |

n

k k kj

j

p P I a 




     . 

 

The set 0 2 1
{ , , }mp p


 is a probability distribution 

and therefore satisfies 

 

2 1

0

1

m

k

k

p




 . 

 

If the measurement result is k , the state immediately 

after the measurement will be 

2 1

0

1 1
( ) | | ( | )

n

k kj

jk k

P I k a j
p p






     . 

 

Proposition 7. For an arbitrary 2-qubit state, 

the order of the partial measurement only affects the 

probability of obtaining the corresponding result of the 

measurement. 

 

Proof. Suppose an arbitrary state is 

| | 0,0 | 0,1 |1,0 |1,1a b c d        ， 

 

Where , , ,a b c d  are constants. Using Pauli Z  matrix 

for a partial measurement. 

  

For observable 1Z , when the measurement 

result is 0 or 1, we have the probability of the 

measurement result is  
2 2

0 | | | |p a b   or 
2 2

1 | | | |p c d  ,  

The state immediately after the measurement will be 

2 2 2 2
| 0,0 | 0,1

| | | | | | | |

a b

a b a b
  

 
 or 

2 2 2 2
|1,0 |1,1

| | | | | | | |

c d

c d c d
  

 
. 

   

After measuring 1Z , we measure 2Z , when the measurement result is 00, 10, 01, 11, respectively, we have the 

probability of the measurement result is  

 
2

00 2 2

| |

| | | |

a
p

a b



, 

2

10 2 2

| |

| | | |

c
p

a d



, 

2

01 2 2

| |

| | | |

b
p

a b



, 

2

11 2 2

| |

| | | |

d
p

a d



,  

 

Respectively. The state immediately after the measurement will be 

| 0,0 , |1,0 , | 0,1 , |1,1 , respectively. 
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We reverse the order of the measurement, for observable 2Z , when the measurement result is 0 or 1,  we have 

the probability of the measurement result is 
2 2

0 | | | |p a c   or 
2 2

1 | | | |p b d  , 

The state immediately after the measurement will be 

2 2 2 2
| 0,0 |1,0

| | | | | | | |

a c

a c a c
  

 
 or 

2 2 2 2
| 0,1 |1,1

| | | | | | | |

b d

b d b d
  

 
. 

   

After measuring 2Z , we measure 1Z , when the measurement result is 00, 10, 01, 11, respectively, we have the 

probability of the measurement result is 

 
2

00 2 2

| |

| | | |

a
p

a c



, 

2

10 2 2

| |

| | | |

c
p

a c



, 

2

01 2 2

| |

| | | |

b
p

b d



, 

2

11 2 2

| |

| | | |

d
p

b d



, 

 

Respectively. The state immediately after the measurement will be 

| 0,0 , |1,0 , | 0,1 , |1,1 , respectively. 

 

We found that after reversing the order of the 

partial measurement, the measurement results are 

consistent. However, the probability of obtaining the 

same measurement results is inconsistent. 

 

CONCLUSIONS 
In this article, we have obtained some 

properties about quantum measurement by postulates of 

quantum mechanics. The main result is that the order of 

the partial measurement in computational basis only 

affects the probability of obtaining the measurement 

results. 
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