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Abstract  Original Research Article 
 

This investigated the flow and heat transfer of two dimensional biomagnetic fluid (blood) flow over a non-linear 

stretching sheet in the presence of magnetic dipole. It is assumed that the magnetic field is sufficiently strong enough 

to saturate the ferrofluid and variation of magnetization with temperature can be approximated by a linear function of 

temperature difference. The fluid viscosity is assumed to vary as an inverse linear function of the temperature. The 

governing boundary layer equations with boundary conditions are simplified to couple higher order equations using 

usual transformation. Numerical solutions are obtained by using bvp4c function technique in MATLAB software. The 

acquired results are shown graphically and were examined for several values of the dimensionless parameters. It is 

observed that for different values of ferromagnetic interaction parameter and variable viscosity parameter, the velocity 

distribution decreases while temperature distribution increases. The magnitude of skin friction coefficient and the rate 

of heat transfer decrease with the increasing values of radiation parameter and Prandtl number. The results are also 

compared for specific values of the parameters with others documented in literature.
 

Keywords: Biomagnetic fluid, magnetic dipole, nonlinear stretching sheet, FHD,MHD, viscosity as a function of 
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INTRODUCTION 
A biomagnetic fluid is a fluid that exists in a 

living creature and its flow is influenced by the 

presence of a magnetic field. The most common 

example of biomagnetic fluid is blood. Blood is also a 

magnetic fluid due to its complex interaction of protein, 

cell membrane and hemoglobin that’s from iron oxides. 

During the last decades extensive work has been done 

on the dynamics of biological fluids in the presence of 

magnetic field. Numerous applications have been 

proposed in bio-engineering and medical sciences, such 

as: magnetic devices development for cell separation, 

reducing bleeding during surgeries, drug delivery using 

magnetic particles for the treatment of cancer tumors, 

hyperthermia. 

 

Biomagnetic fluid dynamics (BFD) [1-4] is a 

relatively new area based on ferrohydrodynamics(FHD) 

and magnetohydrodynamics(MHD) investigating the 

fluid dynamics of biological fluids in the presence of 

magnetic fields. The BFD model was first developed by 

Haik et al., [1]. This model is based on the principle of 

FHD. Andersson and Valnes [5] extended Cranes 

problem by studing the influence of the magnetic field 

due to a magnetic dipole, on a shear driven motion of a 

viscous non-conducting ferrofluid. The fluid flow 

formulated as a five parameter problem and the 

influence of the magneto-thermo-mechanical coupling 

explored numerically. It was concluded that the primary 

effect of the magnetic field was to decelerate the fluid 

motion as compared to the hydrodynamic case. In their 

study, they also considered that magneto-thermo-

mechanical coupling is completely described by 

assuming that the applied magnetic field is sufficiently 

strong to saturate the ferrofluid and the variation of 

magnetization M with temperature T can be 

approximated by the linear equation of state 

  cT  Where Cranes [6] problem is one of the 

flow problem in the boundary layer theory that 

possesses an exact solution. In Cranes problem the 

stretching velocity is linearly proportional to distance 

from the origin. Misra et al. [7] investigated the 

biomagnetic fluid flow and heat transfer over a 

stretching sheet and considered the viscoelastic property 

of the fluid. 
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Furthermore, mathematical model have been 

developed for blood flow and many authors like 

Eldesoky [8] assumed blood as a Newtonian fluid. 

Eldesoky [8] studied the MHD blood flow of an 

unsteady parallel plate in the presence of heat source. 

Misra and Sinha [9] studied the MHD flow of blood in 

a capillary with lumen being porous and wall 

permeable. Voltairas et al., [10] and Ruuge et al., [11] 

investigated the behavior of a blood flow when exposed 

to magnetic field has its applications in the development 

of magnetic devices for cell separation, targeted 

transport of drugs using magnetic particles as drug 

carries. 

 

It is known that the physical properties of the 

fluid may change significantly with the temperature, 

especially for fluid viscosity. The temperature leads to 

the increase in the transport phenomena by reducing the 

viscosity across the momentum boundary layer and due 

to which the heat transfer rate at the wall is also 

affected. Therefore, to predict the flow and heat transfer 

rates it is necessary to take into account the temperature 

viscosity of the fluid. Salem [12] investigated variable 

viscosity and thermal conductivity effects on MHD 

flow and heat transfer in viscoelastic fluid over a 

stretching sheet. Malik et al., [13] demonstrated the 

variable viscosity of Eyring-Powell fluid over a 

stretching cylinder. They used two models Reynold’s 

and Vogel’s to deliberate the variable viscosity of the 

fluid. Singh et al., [14] studied the variable viscosity of 

Maxwell fluid with variable thermal conductivity over 

an exponential stretching sheet. They analyzed that the 

velocity of the fluid decreases with increase in variable 

viscosity parameter as related to constant fluid viscosity 

parameter. Alinjed et al., [15] discussed the two 

dimensional flow of a viscous fluid over a non-linear 

stretching sheet. They found that for small prandtl 

number the velocity boundary layer is minimum than 

the thermal boundary layer whereas for large prandtl 

number the temperature increases negative value after 

reaching zero. 

 

The main purpose of the present study is the 

biomagnetic fluid flow and heat transfer over a 

nonlinear stretching sheet within the influence of an 

applied magnetic field generated by a magnetic dipole. 

The fluid viscosity is assumed to vary linearly with the 

temperature. It is hoped that the present study provides 

some insight of a basic biomagnetic fluid flow 

configuration for a particularly predicted range of the 

parameters and this analysis will be used in bio-medical 

and bio-engineering sciences. 

 

MODEL ANALYSIS 
A steady two dimensional flow of an laminar, 

incompressible, viscous and electrically non conducting 

fluids past a nonlinear stretching sheet. The flow is 

caused by the action of two equal and opposite forces 

along the horizontal direction which is taken as the X -

axis, and the direction normal to the flow as the Y -

axis. The sheet is stretched is a velocity cxu  , which 

is proportional to the distance of the origin. A magnetic 

dipole generated a magnetic field of strength which is 

located below the sheet at a distance d . The 

temperature of the sheet wT  is kept fixed and T  is far 

away from the sheet, whereas 
 TTw
  

 

 
Fig-1: Physical model and co-ordinate system of the problem 

The equations governing the problem are given by: 
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With appropriate boundary conditions: 
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Where u  and v  are the velocity components 

along X  and Y  directions respectively,   is the fluid 

density,   the dynamic viscosity,



   the kinematic 

viscosity,  thermal conductivity of fluid. T  and
T  

are fluid temperature within the boundary layer and 

fluid temperature in the free stream . 
pc is the specific 

at constant pressure, rq  is the radiative heat flux,   the 

magnetization,   the magnetic field of the fluid, 0

the magnetic permeability, wT is the temperature of the 

surface, c  is a constant. 

 

The term 
x


0

in equation (2) denote the 

component of magnetic force per unit volume and 

depend on the presence of magnetic gradient. When the 

magnetic gradient is absent this force vanish. The 

second term, on the left hand side of the thermal energy 

equation (3) accounts for heating due to adiabatic 

magnetization. We consider that the components 
xH

and 
yH of the magnetic field ),( yx HHH  , due to a 

magnetic dipole, are given by [16]. 
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Where, 
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Is a scalar potential of the magnetic dipole,    and 

 is a dimensionless distance defined as 

d
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Thus the magnetic 


, of the magnetic field 

intensity, is given by 
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And the gradients given by,  
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When the applied magnetic field H  is 

sufficiently strong to saturate the biomagnetic fluid, the 

magnetization   is generally, determined by the fluid 

temperature. Anderson and Valnes [5] considered that 

the variation of magnetization M with temperature T 

can be approximated, by the linear equation,  

  T , where   is a constant. 

Lai and Kulacki [17] has assumed the fluid viscosity is an inverse linear function of temperature 
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  is constant, 


is the dynamic viscosity at infinity, 
is the kinematic viscosity at infinity, 

rT is the reference 

temperature, 
T  is the temperature at infinity, a  is constant which in general is positive for liquids and negative for 

gases. 

 

In the case of an optically thin gray fluid the local radiant absorption is expressed as [18-20],  
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Where, a
*  is the absorption coefficient and 

* is the Stefan-Boltzman constant. We assume that the temperature 

differences within the flow are sufficiently small such that 
4  may be expressed as a linear function of the temperature. 

This is accomplished by expanding in a Taylor series about and 

 neglecting higher-order terms, thus  
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Equation (8) through (9) takes the form:  
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In mathematic analysis, the following non dimensional variables are introduced, 
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Where  is the dimensionless similarity variable and Prime denotes the differentiation with respect to  . 

 

Using the similarity variable and dimensionless temperature, the governing equations reduced to the following 

ordinary differential equations: 
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The transformed dimensionless boundary conditions are: 

 
 

The seven parameters, which appears explicitly in the transformed problem, are the prandtl number r , viscous 

dissipation parameter  , the dimensionless Curie temperature  , the ferromagnetic interaction parameter  , radiation 

parameter S , viscosity variation parameter r  and the dimensionless distance  from the origin to the centre of the 

magnetic pole, defined respectively as: 
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The local skin friction co-efficientC f
, which is a dimensionless form of the shear stress  w

 at the sheet is given 

by, 
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The local heat flux as the local Nusselt number as follows: 
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RESULTS AND DISCUSSION 
The system of equations (12) and (13) subject 

to the boundary conditions (13) has been solved by 

using bvp4c function technique in MATLAB software. 

 

The effect of different physical parameters 

such as prandtl number, ferromagnetic interaction 

parameter, radiation parameter, viscosity variation 

parameter on velocity and temperature distributions, as 

well as skin friction co-efficient and the rate of heat 

transfer co-efficient are illustrated through the graph. 

 

The accuracy of the numerical scheme is 

justified with those tabulated by IOAN POP [21] for the 

values of 10r  while viscosity parameter r  ranging 

from -10 to 10 and the results are in very good 

agreement. 

 

Table-1: Values of          and    
(0) for 10r  

 r
 Present results IOAN POP [21] 

)0(''f   )0('  )0(''f  )0('  

-10 -.506411 -1.671852 -.5067231 -1.6815592 

-8 -.515606 -1.670456 -.5157982 -1.6731001 

-6 -.530751 -1.668148 -.5310019 -1.6706682 

-4 -.560385 -1.663601 -.5607505 -1.6658760 

-2 -.644386 -1.650402 -.6450530 -1.6520581 

-1 -.793261 -1.626345 -.7955242 -1.6330620 

2 -.258093 -1.708198 -.2570983 -1.7128251 

4 -.368489 -1.692353 -.3680423 -1.696152 

6 -.402973 -1.687303 -.4026855 -1.6908461 

8 -.419812 -1.684819 -.4196006 -1.6882310 

10 -.429791 -1.683341 -.4296234 -1.6866740 

 

The values of governing parameters are chosen 

to be physically representative of the actual blood 

fluids. In figures 1 to 30, the following data are utilize: 

1. Ferromagnetic interaction parameter 

10,5,1,0 as in [7, 22-24]. Noted that 0
corresponds to hydrodynamic flow. 

2. Values of dimensionless distance 1  as in [22] 

3. Viscosity variation parameter 2.,4.,6.  r
 as 

in [25] 

4. Prandtl number 25,23,21r as in [5] 

5. Radiation parameter 3,2,1S as in [5] 

 

As the fluid is blood, we consider a human 

body temperature c
w 37

0


, where as the body curie 

temperature is c41
0


according to Loukopoulos and 

Tzizrtzilakis [26]. For these values of temperature, the 

dimensionless temperature is 5.78 and viscous 

dissipation parameter 10
14

4.6


 . Also we assume 

that smm kgkg
1333

102.3,1050


  , according 

to Tzizrtzilakis [16]. The specific heat under a constant 

pressure 
C p

and thermal conductivity   of any fluid 

are temperature dependent. For the temperature range, 

consider this problem 

ksmkkgC jj
p

111311

102.2,65.14


  according to 

Tzizrtzilakis and Xenos [27] and hence 21r . 

 

Fig 1 and 2 show that the effect of 

ferromagnetic parameter on velocity and temperature 

profiles. It can be observed that velocity of the fluid 

decreases with an increase of magnetic number, where 

as temperature distribution increases in this case. The 

main fact is that the ferromagnetic number is directly 

related to Kelvin force, which is also known as drug 

force. 

 

Fig 3 and 4 depict the effect of Prandtl number 

on velocity and temperature profiles. It can be seen 

from these figures that r  have more pronounced 

effect on the temperature profiles rather that on 

velocity. This is readily to be understood since Pr is the 

ratio of momentum diffusivity to thermal diffusivity in 

the convection boundary layer region. 
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Fig-1: Velocity Profile for )(' f  for various values of   

 

 
Fig-2: Temperature Profile for )( for various values of 

  

 
Fig-3: Velocity Profile for )(' f  for various values of r  

 

 
Fig-4: Temperature Profile for )( for various values of r  

 

 

 

 

Figure 5 and 6 indicate that with increase in 

the values r
, the velocity decreases and enhances the 

temperature profile. This is because the increase  r
 

results in an increase in the thermal boundary layer 

thickness, which results in a decrease in the velocity 

and increase in the temperature. 

 

 
Fig-5: Velocity Profile for )(' f  for various values of  r
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Fig-6: Temperature Profile for )( for various values of  r

 

 

Figure 7 and 8 shows that the effect of 

radiation parameter on velocity and temperature 

profiles. The presence and increase of thermal radiation 

parameter augment the temperature values in the 

thermal boundary layer. According to the definition of 

radiation parameter, increase of S , implies decrement 

of absorption coefficient. So that, the rate of energy 

transport to the fluid and the values of temperature 

distribution increases. 

 

 
Fig-7: Velocity Profile for )(' f  for various values of S  

 

 
Fig-8: Temperature Profile for )( for various values of S  

 

Figures 9 to 30 demonstrate the variation of 

the skin friction coefficient )0(''f and rate of heat 

transfer )0('  with the ferromagnetic parameter, 

viscosity parameter, radiation parameter and Prandtl 

number. 

 

Figures 9 & 10 display the effect of  r
on 

)0(''f and )0(' . According to the figures )0(''f  

decreases with increasing values of  r
whereas )0('

increases. 

 

 
Fig-9: Skin friction coefficient )0(''f with   for different 

values of  r
 

 

 
Fig-10: Local Nusselt number )0('  with   for different 

values of  r  

 

Figures 11-12 depict the rate of heat transfer 

)0(' with respect to the   for different values of the 

r and S .It is observed that the rate of heat transfer

)0(' decreases in both cases. 
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Fig-11: Local Nusselt number )0('  with   for 

different values of r  

 

 
Fig-12: Local Nusselt number )0('  with   for different 

values of S  

Figures 13-18 display the effect of different 

values of 
r

S,,  on )0(''f and )0('
 
regard to r

.According to the figures )0(''f decrease with 

increasing value of 
r

, whereas )0(' increases. It is 

noted the effect of S on both )0(''f and )0(' are 

decrease with increasing value of S . 

 

 
Fig-13: Skin friction coefficient )0(''f with r  for different 

values of   

 

 
Fig-14: Local Nusselt number )0('  with r  for different 

values of   

 

 
Fig-15: Skin friction coefficient )0(''f with r  for different 

values of S  

 

Figures 19-24 display the effect of different 

values of 
r

r,,  on )0(''f and )0('
 
regards to S

. It is observed that )0(''f decreases with the 

increment of 
r

, .whereas )0(' increases. It is also 

noted that both )0(''f  and )0(' decreases for the 

increment of .r
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Fig-16: Local Nusselt number )0('  with r  for different 

values of S  

 

 
Fig-17: Skin friction coefficient )0(''f with r  for different 

values of  r
 

 

 
Fig-18: Local Nusselt number )0('  with r  for different 

values of  r  

 

 

Fig-19: Skin friction coefficient )0(''f with S  for different 

values of 
 

 

 

Fig-20: Local Nusselt number )0('  with S  for different 

values of 
 

 

Fig-21: Skin friction coefficient )0(''f with S  for different 

values of r
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Fig-22: Local Nusselt number )0('  with S  for different 

values of r
  

 

Fig-23: Skin friction coefficient )0(''f with S  for different 

values of  r  

 

Figures 25-30 depict the )0(''f and )0('

with respect to  r
for different values of Sr ,, 

.According to the figures )0(''f decreases with 

increasing value of  whereas )0(' increases. It is 

clearly noted that both )0(''f and )0(' are decreases 

with increasing values of r and .S  

 

 

Fig-24: Local Nusselt number )0('  with S  for different 

values of  r  

 

 
Fig-25: Skin friction coefficient )0(''f with  r

 for different 

values of 
 

 

 
Fig-26: Local Nusselt number )0('  with  r

 for different 

values of 
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Fig-27: Skin friction coefficient )0(''f with  r

 for different 

values of r
  

 
Fig-28: Local Nusselt number )0('  with  r

 for different 

values of r
  

 
Fig-29: Skin friction coefficient )0(''f with  r

 for different 

values of S
 

 

 
Fig-30: Local Nusselt number )0('  with  r

 for different 

values of S
 

CONCLUSION
 

This research investigated the characteristics of 

biomagnetic fluid specially for blood over a non linear 

stretching sheet and heat transfer from the sheet to the 

fluid: also the effects of the presence and intensity of 

ferromagnetic, radiation, variable viscosity and Prandtl 

number are considered. To obtain more exact solution, 

viscosity are supposed temperature dependent. From the 

present investigation the following conclusions were 

made: 

 The velocity profile decreases with increasing 

values of ferromagnetic interaction parameter 

and variable viscosity parameter whereas 

temperature profile increases in all cases. 

 The velocity profile increases with increasing 

values of Prandtl number and radiation 

parameter whereas temperature profile 

decreases in all cases. 

 Skin friction coefficient decreases due to 

ferromagnetic interaction parameter and 

variable viscosity parameter whereas the rate 

of heat transfer increased in all cases. 

 Both Skin friction coefficient and the rate of 

heat transfer decreases for radiation parameter 

and Prandtl number. 
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