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INTRODUCTION

In this paper, the research methods in the heat flow law with additive noise and has a random
literature [4-6] consider the nonlinear Plate equation attractor in the stochastic dynamic system. The study
with thermal memory effect caused by the non-Fourier equation is as follows

0, - Au, +Tk(s)[—A¢9(t —s)]ds = igsjdwj

u, —AU, +A(Au+6)+ f(u)=0

teR",xeU @.1)

Boundary condition

u)=Au(t)=0 t=0,xel’

ot)=0 teR,xel
Initial value condition

u(0) =u, xeu

U, (0) =V xeU

6(0) = 6, xeU

0(-s)=¥(s) (x,5)eUxR"

m moo . temperature, assuming the memory kernel function
Among them, Z;éjdwj =Z¢‘W‘dt Uisan
j=1

= k:R" > R.It is a positive bounded convex function

and disappears at infinity. For random terms
¢J (X) € Hg(U)ﬂ Hs(U) (J =1|2!'”1m) i{a)J}T=]_IS
an independent bilateral real-valued Wiener process on
probability space (€2, F, P) . Among them,

appropriate smooth boundary Tin R?,u=u(t,x)is a
real-valued  function  onU x[0,+0),0is  the

temperature change of the self-balanced reference
value, U is the vertical displacement of the plate, and

function W : R" xU > Riis called the initial history of
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Q={o=(®,, -, a,)C(R,R"): »(0) =0}.
Given a tight open topology, F is a P-complete Borel o -algebra on Q.

There is a lot of research work on the
thermoelastic plate equation in the literature. The Plate
equation is derived from the elastic vibration equation
established by Woinowsky-Krieger ([12]) and Berger
([13]). For the Plate equation, the latest study of the
attenuation estimation and asymptotic curve of the Plate
equation with memory (cf[20]); in [23], the quasi-
stability properties of the system are established, and
the existence of global attractors and exponential
attractors with finite fractal dimensions is obtained:;
studied the precise controllability of the thermoelastic

plate equation with memory (cf[21]);obtained the
general stability results of the viscoelastic plate
equation with past history and general kernel (cf[22]),
etc. In these studies, we have noticed that in recent
decades, the long-term behavior of the deterministic
Plate equation or the solution of a single Plate equation
has been studied by many scholars. Such as, the author
of the literature [14] in 2005 considered the following
evolution problem in the two-dimensional theory of
linear genetic thermoelasticity,

U, () + A(AU(L) + (1)) = 0

5O+ [ k(S)[cI(t—3) - AS(t—5)]ds - Au,(t) =0

which simulates Kirchhoff thermoelastic thin plate with
heat conduction memory effect. The exponential
stability of the solution of the equation is considered.

The existence and uniqueness of the global
solution and the existence of the global attractor are
proved.

However, in real life, many systems will
inevitably be affected by random factors. Therefore,
this paper studies the existence of random attractors of
stochastic Plate equations in stochastic dynamic
systems based on [7]. This article is organized as

BAsic DEFINITION THEOREM

3 — Au, + J:k(s)[—AS(t —s)]ds =0
U, —Au, + A(Au+3) + f(u) =0

(1.2)

In 2008, a nonlinear Plate equation with
thermal memory effect was considered in [7].

(1.3)

follows. In the next section, we will review some basic
concepts and properties of general stochastic dynamic
systems. In Section 3, we provide some basic settings
related to formula (1.1) and show that it generates a
stochastic dynamic system in the appropriate function
space. Section 4 is devoted to proving the existence of
the unique random attractor of the stochastic dynamic
system.

Definition 2.1 ([8]) The random dynamic system (Q2, F, P, (%), _) is called RDS @ .

o TxXxQ—>X
(t, X, @) = o(t, )X,
where identity map ¢(0, @) =id on X ,and has the following relationship

o(t+5s,0) =p(t,$w) o p(s,w), @.1)

among themt,S€T , w e Q, o represent combinations. A cluster of maps ¢(t, @) satisfying (2.1) is called a cocycle, and
(2.1) is also the nature of cocycle. The inverse of p(t, @) is p(t, w) ™ = p(—t, Gw) .

Definition 2.2 ([8]) Random set A attracts another random set B .if
d(e(t,4_ 0)B($, ®), A®))———0,

then call A as an attractive set.

Definition 2.3 ([8]) Random set K attracts another random set B, if t,( «) exists, for all t > t,( @) there is
o(t, $,0)B($,0) c K(w),
tyC ) is called absorption time. Then K is called absorption set.
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Theorem 2.1 ([8] [9]) Let @ be the measurable power system (Q2, F, P,(.$),_z) and a continuous random power

system in space X. If there is a random compact set K(w) , such that for any nonrandom bounded set B = X ,
there is

limd(®o(t, ¢,0)B, K(w)) =0,t — 40,
then @ has a random attractor

A={A®)},c0 = | A (@),

BcX
where B is taken through the bounded subset of X, A; (@) is the @ -limit set of B, ie

Ag(@)=J@(t 4, »)B.

>0 t>s

Theorem 2.2 ([15] ) Suppose X, X, , X are three Banach spaces, of which X, X are reflexive and satisfy
Xo = X = X; (Embed),
here embedding X, — X is tight. IfY — Lf,(R*, X) meets the following conditions:

(i) Y is bounded in L, (R*, X,) NTH: (R, X)) ;
(ii) ForVseR", there is K, >0, so thatsup, , ||77(s)||i <K,;
then Y is relatively tight in L2 (R", X) .

Lemma 2.1 (19]) Let X be a Banach space and Z € C([0,0), X) .Let E : X — R be a function bounded from below
such that E(Z(0)) <M forZ € X .If

d 2
p EEZ®)+o|Z@), <.
for some o >0, y > 0 independent of Z, then for all &, > 0,t, =t,(M, &) >0, such that
2
E(Z(t)) gs;uE{E(é):c;"f"X < y+e}hvt>t,.

Lemma22Form<e<l,g=0,1VB, eV%i=12 then

aE a

@) —&(Au,B) > —T”U”; ‘;”Blnz ’
iz L2

(2)_J'U BIAUdXZ_Z"Bl” —;”U”z’

(3)|£(A%B,,B,) < |A%B)[[1B,] < é”Ag B[ +%||Bz||2,

4|+ j:gy(s) < AB,,7'(s) > ds|< %‘%HAQ/ZBJF +

2
ML’

9,D9/2 “
1

BAsSIC SETTINGS

Assume that the memory kernel function ££(S) and the nonlinear term f (u) satisfy the following
conditions:
23D, +3

(1) ForanyseR", thereisd >
6(D,-2)

>0, such that

1(s) e CH(R)NL(RY), 44(8) > 0, 14 (s) + Su(s) < 0. (3.1)
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(2) Assuming that k is zero at infinity, in addition, mathematicians. Let q be the heat flow vector.
define ££(S) =—Kk'(S).In recent years, various According to Gurtin-Pinkin theory (cf.[16]), the

development equations under the non-Fourier linear constitutive equation of q is given by
heat flow law have aroused the interest of many

q(t) = —j:’k(s)ve(t —s)ds,

where k is the thermal conductivity relaxation equation is hyperbolic. It is easy to see that if k is the
kernel, and the existence of the convolution term in the Dirac mass at zero, the above formula can be simplified
above formula means the finite propagation velocity of to the classic Fourier's law q =—V#. In addition,
thermal disturbance, so in this case, the corresponding
1 -2
k(s)=—e “,0>0 (3.2)
(o2
among them, 2 <k, < min{4,§—£—§—i,8—g}.
3 2 D 4 4D, D,
1 1
(within the limited range of each parameter, é —i — § ———and8— —O are less than E ).
D, 4 4D D, 3
(3) The nonlinear function f (U) satisfies:
f(0)=0,|f '(S)| <Cy(1+]s]), VseR, (3.3)
F(s)=[ f(Ndr=C,(sf-DvseR, (3.4)
.. Sf(s)-C,F(s
|ImlnfMZO,VSE R. (3.5)
S|—00 S
Iiminfﬁ>—i. (3.6)
>t S Cy

2Cu*+C, uf
2C,(uP -1
each row or even the same row of C is not equal. C; is the best constant that depends only onU , then
Jullz v, =CollAulz, @7
Consider the positive operator A on L*(U), defined as A = —A = V? and bounded by D(A) = H*(U)NH; ().
For r =K, consider Hilbert space v = D(A"?), define the inner  product
(U, U,) , = (A"u, A",), YU, u, eV

among them,0<C, < ,C, >0(i=0,1,---) is a normal number, in this article the constant C changes,

||u||f =(A"?u,A"u),uev",
lul* = (u,u),uev?’,
where (,-) and"-" represent the inner product and normin° = L2(U). Use (())||||2 to denote the inner product and
norm of 2 = H2(U) , respectively. For r, > r,, embedding vV* — V" is tight.

We introduce a weighted Hilbert memory space MM = Li(R+;Vr), , of which r € R. Define the inner product as
follows

(1112 ) e = [ () (A", (8), A", (5)) sy, €M

7l = [ @) )], ds, ¥ n(s) eM™,
0

Il = [ 4S) (). ds. ¥ (s) € M
0
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Here we notice that for r, > 1, , embedding M" — M?" are continuous but not compact (cf.[17,18]).
Finally, we define the inner product Hilbert space

V' =v# xv'sx' xM* reR.
Forallz=(z,,2,,2,,2,)" €V", there is norm

||Z||\2/r _ ||A(2+r)/zzl||2 +||Ar/222||2 +||Ar/223||2 +||Z4||2

M 1

whenr =0, there isV° =v? x Vv xv° x M* .

THE EXISTENCE OF RANDOM ATTRACTORS

It is convenient to work in the history space setting by introducing the so-called summed past history of & which is

defined as follows (cf.[7])
7'(s) = 6t-y)dy. (t.s)e[0.0)xR",
the variable »' (formally) satisfies the linear equation
7 (s)+7(s)=06(t), inQ, (t,5)eR*xR",
boundaries and initial conditions
7'(0)=0, inq, 120,

n°(8)=m(s) = [ w(Ndy, ino, seR".

the linear operator T introduced in Mis defined as

Tn=-n,neD(T),
its boundary is
D(T) ={neM" |, eM",7(0) =0} .
here and above 7, is the distribution derivative of »; with respect to the internal variable s.
We note that the time-segment integration of the convolution that occurs in the equation & results in

6, - Au, — j: #(8)An'(s)ds = ¢,do,
j=1

@.1)
U, —Au, +A(Au+6)+ f(u)=0
import the vector
b(t) = (u(t),v(t),0(t),7")"
define the initial value by
b, = (uovVOvHoJ?o)T ev?,
we can transform the studied equation into
b,=Lb+G(b,t,®), 4.2)
b(0) = by, = (Uy, Uy, 6, 77,)
among them, G(b,t, ) = (0,—f (u), Y #,dw;,0)" letu, =v
j=1
v
u
—Av—A(Au-6)
v
Lb=L = . 4.3
0 || ~Av=[ u(s)Ar' (s)ds 43
77 0
0+Tn
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Vv, Au—6 e v?
0eM'
D(L)=1beV°|[s .

[ ()7’ (s)ds e v
0

neD(T)

The existence and uniqueness of the solution
Next, explain the existence, uniqueness, and continuous dependence of the solution on the initial value of
the problem (4.2), and show that the solution generates a continuous random dynamic system on probability

space (€2, F, P, (8),.z) - For this, we consider the one-dimensional Ornstein-Uhlenbeck equation
dzj+zjdt=da)j t),j=12,..,m,

its solution is the Ornstein-Uhlenbeck process
0
Z,(So,) = j e*(Yw,)(s)ds,teR.
It is known from the literature [2] that the random variable |zj (@ )| is harmonic, and there is a4 -measure

invariant set of all measures, so that forallwe Qand j=1,2, ..., m i ZJ- (19ta)J ) are continuous with respect

to time t . Therefore, it is known from the proposition 4.3.3 in [2] that there is a harmonic function r(@)>0 such

that
u 2 4 6
> (zi(@)]+[z; (@) +|z;(@)] +|z;(@)] ) <1 (0) (4.4)
j=1
among them, r () satisfies P-a.e. @ € Q
1
=t
r(9w)<e?’r(w)teR, 5)
known from (4.4) and (4.5), for P-a.e. w € Q
i 2 4 6 i
22,8 +[z,80)] +[2,(%0)] +[z,(3e)[) et r@)teR  @e)
j=L
let
2(§) = 2(x,%0) =D $;2;(%;),
j=1
This is a solution to the following equationon
dz+zdt =) ¢,do;, (4.7)
j=1
. 1
Theorem 4.1 ([10]) Variables p, p" : Qs R*,I= E,l,for alteR,we
|2(30)|| < e™r(w),e "r (@) < r(Sw) <e™r(w),
|AY2(40)| <e'r® (@),e " (@) < 1V (Go) <e”r(w),
OFPRR all 0]
among them, r*’ (@) = Zj:lrj (a)j)"A h; ||
Simplify (4.2) to the first-order evolution equation.
let
w=U+eu—-2(%w),p=U,0,0,7")",
Choose ¢ such that 0 < e <min{p,, p,, P},
The problem (4.2) is equivalent to the following deterministic dynamic system with random parameters:
0
o+ H(p)=F(p,90,1), ¢,(0)=(,,u,+eu, —2(®),6,,1,)" ,t >0, (4.8)
| © 2020 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India 177
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among them,

®-¢u

—A(w—e&u)— A(Au-0) .

O a- - sy |
0+Tn

2(%0)
| ) -Az(Sw)
Fo.fe)= ~Az($0)+2(Sw) |

0
It is known from the literature [3] that the operator L in (4.3) is the infinitesimal generator of the compressed C,
semigroup{e*'}in spaceV ° because —H =TgLTg’1 and L are isomorphic operators inV °, So operator —H also

generates a compressed C, semigroup{e " }inV 0.

From the conditions satisfied by the nonlinear function f (u) and the embedding relationship HZ (U) — L*(U) , it is
known that function F (¢, 3, t) is locally Lipschitz continuous with respect to @ and e € Q2. Moreover, the time t is

bounded on a finite interval, so F (¢, %@, t) is continuous with respect to (¢,t) and F is measurable with respect to , and

the uniqueness of the solution of the differential equation is considered by the classic operator semigroup theory (cf.[3]),
We have the following theorem.

Theorem 4.2 If conditions (1)-(4) hold, then for any of w € Qand ¢, €V °, there is T>0, so that when the initial value
meets ¢(0, w, @,) = @, , the problem (4.8) has a unique mild solution ¢(t, @, ¢,) € C([0,T);V °) and ¢(t, , ¢, ) satisfies

ot o,00) =€ gy (@) + [ e IR (s, G0, 0(5,0, ),
further, o(t, », ¢,) is continuous with respect to t and ¢, and measurable with respect to @ .

Knowing from Theorem 4.2 and the following Theorem 4.3, for any t € [0, 0), the solution ¢ (-, @, ¢,) of equation
(4.8) exists globally, therefore, ¢(-,®,¢,) € C([0,+00);V °) defines a continuous random dynamic system from R to
(QF, P, (Fher) :

O(t,w):V° > V°

@, (@) = o(t, ©)p,.

In order to prove that the solution of stochastic partial differential equation (1.1) and the solution of partial

differential equation (4.8) are conjugated, homeomorphic mapping is introduced
R(G@)Y =Yy, Y, + &Y —2(80), Y5, ¥a) Y = (Y1, Yz, Yar Vo) €V,
its inverse mapping is
R‘l(,gta))y = (Yp Y, =&Y, — Z('gta))i Ya» y4)T )
then
D(t,w) = R(Gw)S(t, )R (Gw) .
This also determines a continuous random dynamic system.
On the other hand, if

a, =u(t).a, =u,(t).a,=0(t),a, =7,

and
0
; Q)
a=| ’|,G(aw)=| & :
Z¢jdwj
a, = 0

| © 2020 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India | 178




Xia Li & Xianyun Du., Sch J Phys Math Stat, August, 2020; 7(8): 172-187

then the partial differential equation (1.1) can be written as

0

a+H(a) =G(a,w),G(a,w) = (Uy,U;,6,,7,)",
IEtTy = (y11 Y21 Y3 y4)T Y= (y11 Y21 Y3 y4)T eV’ , its inverse map is

T_ly = (yla Y21 Y y4)Ta
S0

S(t, @) =TS(t, w)T .
This also determines a continuous random dynamic system (.4, é(t, )) . Therefore, é(t, ) and O(t, w) are

equivalent.

Next, the existence of the random attractor of the stochastic dynamic system d(t, @) will be studied according to
Theorem 2.1.

Theorem 4.3 Assuming that conditions (1)-(4) hold, there is a closed sphere (centered on 0, ry(w) is radius), so that for
any non-random set B ={B(®)},., € D, there is aTB(ro(w» >0, so that for any ?, (9, 0) € B( ,w), the solution
o(t, 3, .@,¢,) = (U(t), w(t),d(t),n")" of equation (4.8) satisfies P-a.e. w € Q, has

lott. 9. @.00(3 @Ds <15 (@).
Proof: Use g(t) = (u(t), o(t), O(t), )" and equation (4.8) to make the inner product inV°,
d, 1 1=,
TGl + el Vel —e(Au @)~ s(Au0) -2 [ (A% o) os
= ((2(@),u)) + (- (U) - AZ(0), @) + (~AZ(0) + 2(S),0) + O

(4.9)

among them,
2

[ w@aer ©f as= .

17 -+/65
—

[Vol > ,fleff ,2< D, =A<
We multiply the second expression in (1.1) by £?u and add (4.9), then

d 1 gl
a(gllcﬂllio +7||VU||2 +8 [ uud) =& Ju [ + (s + &)l + [Vl

—e(Au, @) - (Au,0) —% j: //(s)||A”2nf(s)||2 ds+ &2 ju uf (u)dx — &2 ju OAudx  (4.10)

= ((2(30),u)) + (- f (1) - Az(80), ) + (-Az(I ) + (4 ), 0)
substitute @ = U, + eU — Z(G®) into the right side of equation (4.10) ,the inner product term on the left uses Lemma 2.2,
taking the appropriate & has

d 1 g £
& Lol 100l 2ol + ], F00 7l + (O, Dol
1 =
—§||¢9||2 _EIO u'(S)”A“Zf]‘(S)”2 ds _EZL OAudx + EZL uf (u)dx (4.11)

< ((2(4@),u) & (f (U),u) + (T (u), 2(40)) — (Az(40), 0) + (-Az(40) + 2(90),0)
To estimate the right side of (4.11), from Lemma 2.2(1), take @ = % and have the following inequality:

1, 2 2
(z(e)u) < Z|ul; +2Jz(3),

(fU),2(%@) <C,f @+uf)|z(S@)fdx

<Gy, |2(Ge)ebe+ o[l 2 [2(5 )
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<C, ju|z(saw)|dx+cocl5[3(sl<jU(F(u)+cl)dx>5)3+i3||z(9ta))||i3

<Cylz(g)|+ [ Fu)dx+xC U]+ [2(30);

2 3

among them, k' = %COQ el r=—5.

L3!

3
2

Knowing from the condition (3.5), if N, > Oexists, then

(fW)2C,[ F(u)dx—%"u”i N,

Use (3.6) to know that there is 0 < 9, < % I =1(8,) >0and get f(s)s> —% s®,V|s|> N. Then
(V]

2
ju f (uyudx > —(1-a,)|ul; +CqU |, f)
among them, C(|U |, f) U [miny_, F(5).
Synthesizing the above inequalities and using Lemma 2.2, take the appropriate « to get

i(%"(pmoﬁ_”wnhg [l uudx—g?ulf + [ F(u)dx) + (2%, - 21'”1——)” ull
+(D, —2 8)|| o (‘Z% ‘%)||9|| ——j HE|A G| ds+(eC, ~K)[ Fuydx (412)

<6|Az(40)| +C, |2(40)|+ kC V| +z|2(G)s + 2|2(d0)|| —£*CU |, T)+eN,
Let 3(t) =~ () {6(t). 7' ())ds, then| I [< |0 [ () (' (3), 7 (s>>% ds <Clg|
%J ) =], 1(8)(6.0.7'(9))ds~ [ u(s) (0. 7i(9) s
=], () {~Awn' ($))ds [ () (eAu.r7'(s))ds + [ " u(s) (Az(S). 77! (5) ds Estimation

+ f:u(s)<I:/J(S)Af7‘(s)d8,f7t(8)>ds [ 1(s) (28 ), ' (8))ds = ko 6] + [ pa() (0, 7 (5) )ds

of the above formula has the following inequality

J; () [, oy ). (9)) ds <k [,

At the same time using Lemma 2.2 (3)(4), take the appropriate ato get

d 3Ky koDy
930+ Zapof <Sspof +

1+ 4g
|| I;+

+k —)||;7

(4.13)

1 o

[, kA" (s)||2ds +ky [V2(0)[ +k, ||z(L9tw)|| .
1

Next, add (4.13) and (4.12) to get

2 2 e ke 1 2
_( ||¢|| ||Vu|| +ng uu,dx — & |ul| +f F(u)dx+J(t))+(D1—E—%—§)||a)||
+(3251—%—5—— =) Jul + 3k 1 ede )||9|| +(2C, - K)[ F(u)dx
o O 5 1
RS

2 D, 4 4D,
<k, [Vz(8)| +6|Az(3)| +C, |2(4@)|+ kC U |+ z|2(S0)[}s + (2 + ko) |2(S@)|
-£’C(|U |, f)+eN,
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among them
f, w @A @ do = of, u A @) o5 =l .
Let
Ro(8@) = [V2(30)[ +|2(30)|+[2(8)[}: +|Az( o) +[2(S) .
2
G(t) = %”(0”\2/0 +%||Vu||2 +& ju uu,dx — &2 |uf + ju F(u)dx+J(t),
There is
d d
+CO+ Blol. < GO+ Bloly +(C,—0)f Fuydx<y  (414)
among them,
Q=max{6,C,,2+k,,7},
2 =0QR,(Jw)+«C,U|-£’C(IU |, f)+&N,, (within the
B =min{s?5, _/11€+1_g_2_ﬁ D & ke 1 3k0—1_g+52 o o+¢ 5 1 Kk}
- Y8 2 4’7t 2 4 8 4 2 '2 D 4 4D, °

limited range of each parameter, each item in £ is greater than zero).

2 2
/11_’_2'(0_ i_ﬁ.M_ﬁ.é‘l 1

Let p, = min{ 64 16 2 4 8D-1 1, FJr%,ng—&—SDﬁl—koDl}.
166, -8 4k, +1) 2 \N8 2 2 4
(within the limited range of each parameter, each item in p, is greater than zero).
By Theorem 4.1

[* (S ds <[ Ry(s.0)e”ds < [ Ry(s,w)e*ds < +o0,
among them,
R, (5, @) =22 (w) + e%mr(a)) +(€7r (@) + (€7r D ())? + (e7r Y2 ().
By Lemma 2.1 there is G(p(t, @, ¢, (@)) < Sl{,e{E(f) ; ,6’||§||\2/0 <y+e}.
Use & @ instead of @ in the above formula io get
G(p(t 8,0, 90(9.) <SUR{E(): IS, < 1+

Then

"(p(t, 9.,0,¢, (lg_ta))"\zlo <

To sum up, the theorem is proved.

X ;51 =12(®).

In order to obtain the regularity results of the stochastic dynamic system @(t, w) , using a method similar to [1], the
solution ¢ = (u, @, O,77")" of the system is decomposed into @ = ¢, + ¢, , Where p, = (u_,®_,6,_,7;)" and
oy = Uy, o, 6,,m,)" are the solutions of the following equations

0
o, +H(p)=0,¢ (0,w) = (U, U, +su,, 6’0,770)T >0 (4.15)
and
u}
on+ H(py) = F, (@), 9, (0,0) =(0,-2(«),0,0)" ,t 20 (4.16)
among them,
2( o)

—f(u)-Az(Sw)
Fz (a)) = .
2(§) - Az(3,0)
0
For equations (4.15) and (4.16) there are regular results as follows.
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Theorem 4.4 Assuming conditions (1)-(4) hold, let B —V % be a non-random bounded set, then for any
o, (0,w) = (u,,u, +&u,,6,,17,)" € B, the following holds

RN () P T o e A s v
o, =(u_,o_,6,,n )" meetequation (4.15).

—0,(t >x),

Proof: In spaceV °, use o, =, ,o,,6_,n )" and (4.15) as the inner product, where &_=u,, +&u, , the corresponding
initial value is (U, u, + gUy, 6y, 77,)" -

2 dt ”(DL"v0 +(H (¢L) (DL)VO =0.

0
among them, (H ((pL),goL)VO > g”uL”2 +(D,-¢) ||a)L||2 —(9||0L||2 +E”T7£H2
Define the energy functional:

K(t) = ju w, (t)u, (t)dx,
P(t) = ju 6, (t)u, (t)dx,
W(t)=—[, 6.0 (s (s)dsox.
Then derivate K (t) , P(t)) and W (t) with respect to time t, and use the Herder's inequality to get
d
KO =, o Ou Odx+ [ o u, @)X

= [ (CA(@ —2u) - A(AU_ —O))u dx +o | — [ @ dx

R

07 Dl + ||'9L||2 +C.

<@-Dla ] +(
Sp(0)= [, 0,00, 00+ [ 6, v, 00K

= [ (Al — ) = [ u(s) Al (S)ds)u dx+ [ 6, (0 — )

<[, Ao dx+ D u [ - [ () ju Au, 71 (s)dx)ds + ju 0.0 dx—&| 6. dx
<Jaff + (1+2|<0 g(D +1)
Then take the derivative of \P(t)
S =S [ 6,0 uoy (s
=—[, 6.0 st (s)dsdx—[ 6. (1)] " w(s)n,(s)dsclx
= |, Aav ], wts)n (S)dsdx—s [, Au [ p(s)n; (s)dsax

+[, |, () A (s)ds) [ ()t (s)dsx— | 6, (1) " (s)n,, (s)dsx

among them,

||, [ 2(s) A (s)ds) | pu(s)ai (s)dslx [< kg |t ;

2+g

= lal +

ol + 5 il +
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-[, 6.0 u(s)nl (s)dstx

kM9H+IW|q””“ﬂy“@nm@nm+Mjﬂ@nm@n$mX

S%%—ZWQW+C%EW,
NG

amongthemC—Im {—— e (j | 1£(s) |2 ds)“2, M 122}

Then,

d & 2 1 1 2 & 2
radOE Z||uL||2 +Z”“’L||2 — (k, —Z)||9L|| +(C+D, +51+ ko)l

Let, L(t) = MY (t) + »(K(t) + P(D) + ¥(1),

among them
y <,
| = ming D, (4k, —1) — 4k,& D, (4k, —1—2¢) eD, (5 —4k,) — 45(5+DC+D)}
—2&> +£(8+D,)+4D, '16¢ +8k,D, + 4D, + ¢D, ' 2&+2k,0D, —85¢ ’
<M < 4k, —y)—1- &
de
c=max{f 2 20 p i+ L L, 4y, Ty
4D,—¢g) 'S D12D2D &

Aky—y)-1-¢y )
&
The inequalities obtained by integrating the results of the above three functions are

d d d d
o L(t)=M aY(t) + ;/a(K(t) +P(t)) +E\P(t)

(within the limited range of each parameter, each item in g is less than

<(sM —MD1+3y+1_4gy)||a)L||2+(i—%+C+D TN +k )||77L
e 2ey yk,—eM 2 7/5+1
+HE+ 2 u [, + (r + M —ky + )6, ||
4 D 2
let,
B =min{MD, —sM —3y 1= EM 2 2oy rky (2L OM o p 7 gy,
4 2 4 D 2 4 2 D 2D, (within
. 72+D] -15D, k6D,
=min{D,,
P, =ming YL
the limited range of each parameter, each item in /3, and p, is greater than zero).
Then
d
aL(t)+,BlY(t) <0,, (4.17)

applying Gronwall’s lemma to the above formula
L(t,», ¢, (0,®)) <Y (0,w, p (0, w)e ™,
use ¢, instead of win the above formula to get
L(t, ¢ ,@,9_(0,%,)<Y(0,%,0,¢_ (0,9 ,w)e ™,
So,
2Y (t,8,0,¢, (0,8 ,0) <2CL(t, 3,0, ¢, (0,3 ,0)))
<2CY (0,4 ,0,¢. (0,9 w))e ™

<2Ce A (Jug [ +u, + U + |7 + ol ) —> 0.t > o0).
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To sum up, the theorem is proved.
Theorem 4.5 Assuming that conditions (1)-(4) hold, there is a random closed sphere B ={B(w)},_, € D centered on 0

and radiused r, (@) > 0, while B(w) € D, ¢, (w) e B(w)and T > Qexist, so that for any ¢, = (u,,, @, 6y /o

B (1)
the system (4.16) satisfies P-a.e. w € 2 ,there is
ATy [+ Ao | Ae [ | AT, <6 (@)
Proof: Knowing from Theorem 4.3, Theorem 4.4 and ¢, = @ — ¢, there is a positive random variable M, (@) >0,
making

max {[¢(0,9.@,0(0,% )|+ .|ox (0,90, (0, % @) | <My () .
In spaceV °, use A’(pN =(A'uy,A'w,, A6, A’y )" and (4.16) as the inner product
) APy )0

= ((2(d), A'uy)) = (f (U), A'wy) — (Az(Go), A%)—(Az(&w» A'0,) +(2(0), A'6,)
It can be calculated by the similar theorem 4.4

Ar/2

A9, || +

=(lA"u || +

A%, " + (4.18)

r r 2 r 2 r 2 5 r 2
(H(pu), A0y, 0 zg A"y + (D, - &)| A"y || - | A0, +2 NG
Next estimate each item on the right side of (4.18), using the condition (3.6), f (u) > 1= u, we get
U
; 1-9,)°C, .
-(f(),A N)|<% 2(o)+|A"0, [
where C_ > 0 is the embedding constant.
To sum up, using Lemma 2.2, take the appropriate & to get,
d r/2 1 Ar/2u H2+(2D 2 5) Ar/Z Hz (2 +1) Ar/Zg H2+5 Ar/2 t 2
at N \TeET Wy| —\eet N 77NH
(4.19)
2|A"22(9 )” +% 2w )+6\A<'+2>’2z(9w)\\ +4 A”zz(.9a))H
Let AfJN(t)z—j () A" (6,173, (5))ds, then
1
| A @< A0 [ 1A (1 ()., () ds <C, | A0, |
By Theorem 4.3 there
EAF\] (t) Arlze || Ar/2 ||2 k ‘9 Ar/2 "z (1+4‘9+45+k0+§) Ar/zn:\‘ ;1
dt 4D, 4 (4.20)
k| AC ’22(19ta))|| +k, ArZ(Sta))HZ .
Combining (4.19) and (4.20)
:(A”Z(/)N 3, @0)+ (e _E_kg A, +(2D, - 2g—g—k Dy a2 o|f
1 1+4g+45
() r/2 ri2__t
+(T_25_§) A 9N|| +(5- D, —ko—z) A nNII
. 2 (1-0,)°C, AU+ r r
<2 A/ZZ(Sta))”2+( 20)2 1, () + 6] A 2>’Zz(lszw)|| +(k, +4) A’Zz(Sw)|| +k [A >’2z(3a>)||
Let X (1) = | A", [, = AT2u, [ + | A | +|A260, [ +| AT
There is
- C)—X(t)+ﬂzx(t)<—(A”2(/>N W)+ LX) <PR(Jw), (421)
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among them,
R(%) = A 2(ge)] + A" 2(g), +[ AT 290 +]

2
P = max aglél9%%+4,
2C

A”zz(!9ta))||2 +r2(w),

2

U

B, :min{g_l_ﬁ,z[)l_zg_E_@,?’_ko_zg_lyg_w_ko_E},
2 4 2 4 4 2 4D, 4

Py = min{—2 D _5_kbD ,gkO —1}.

4-k," " 4 8 '8° 4
(within the limited range of each parameter, each item in S, and p;, is greater than zero).

For (4.21), using Gronwall's inequality
B
X(t, 0,p,(w)) <e

P

t
" X (0, w, +
O.og@)+

ﬁa@@@Mﬁ$,

use 4 ,w instead of win the above formula to get
_ Py
X(t, 4 ,0,0,(%,w)) <e > X(0,9 0,0, @)+

P
1-C,

0
[ R(80)e*ds,
by Theorem 4.1,there is
ji R, (Y w)eds < J-,Ot R,(s, w)e”ds < j ° R(s, w)e"ds <+,
among there,

R, (5, @) = 2(e”r® (A"w))? + (e7r¥? (A2 ))? + (™ (A" w))? + 17 (@).

Because of ¢, (9 , @) € B($ ,w), s0 there isT >0,sothatforallt>T , there is
B(1 (o) B(n (@)
B, _
e " X(0,%,m,¢,(9,0)) < 4Pa-C,) r(A"%w).
2
So,
r/2 2 r/2 2 r/2 2 r/2_t 2
X () =|A"uy | +[ Aoy |+ |A0 + A7,
4PA-C,) a2 P o5 By 2
<—— "V r(Aw)+ s,w)e’”ds =" (w).
5 T(AT) 1_anoR1( ) 7 (@)

To sum up, the theorem is proved.
Consider the space M™" corresponding to variable 77‘ , refer to [9], note that for any 1 >0, € Q| there are

t uN (t7 1g—ta)’ ¢0 (g—ta))) - uN (t - S’ I9S—ta)’ ¢o (lgs—ta)))’ S St
ny (t,3,o,0,(9 w),S)={ 4.22
WO Pl 7 (4.9,0,0,(3,)), 5>t 422
Uy (t=5, 9 @,0,(8_w)),s<t
77:\15(1:,19_10)7(00(1940))15):{ i ‘0;‘35 @) (4.23)

Define collection B(w) = J ¢, (%, @) €B($, @) 7' (t, 9,0,0,(9,®),5) .

t=0

where ¢ = (u,w,8,n")" is the solution of equation (4.8).Then theorem 4.5, (4.22) and (4.23) can be obtained
1., (t,9,0,0,(9,0),5)

2

max{HHtN t, 3.2 0,(4,0),s) ;3” } <21’ (w),Vs >0,

M1+r
50 B(w)inM™ =L (R";¥"™) is bounded.
Know by Theorem 4.3 and Theorem 4.5
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sup
n'eB(w),s20

HEf=sup sup |n! L0080 )], <25 (@) .
=0

T ®m (‘97ta’)€§'(‘940’)

Therefore, for any n' € B(w) there is
t
7' (s)

Thatis, B(w) < Li(R*; H?(U)) "H:(U) is a bounded subset.
According to Theorem 2.2, B(w) s tight in Li(Rﬂ H2U)NH V).

The following proves that the random power system @(t, @) has a random attractor.

. AT
= ! u(®)|n' )], ds <257 ()] %e =ds =—2r16(“’).

Theorem 4.6 Assuming conditions (1)-(4) hold, for Proof: Anywe, by theorem 45, Ilet
anyweQ, the random dynamic system @(t, ) B, (w) =Vv"?xV" xV" be a random closed ball with a
generated by equation (4.8) has a compact random radius  ofr,(w), Definition A(a)):Br(a))xé(a)),
attractor set A(w) €V°, and has a random attractor

h %) b
A(w) = Aw)NBy(w) . then A(w) € D(V°) , because

VT xv xvt > HZ(U)x L2U)x L*(U) Embed)
B, (w) > HZ(U)xL*(U)xL*(U) Embed) ,
using theorem 2.2 again, B(w) is compact in M", so A(@) is compact inV ° . Next, prove the attractiveness of set A(w) .
For any B(w) € D(V?)
!LrgdH (D(t,$,0)B(,w), A(w)) =0.
From Theorem 4.5

@ (0,0, (0, @)) = (0, 0,9, (0, @)) — ¢, (0, @, 9, (0, w)) € A(w) ,
Combined with Theorem 4.4 there is

= 2 2 2 2
d(@(t, $,0)B(I.,@), A(@)) <& (Jug|[, +[uy + &ty [+ 6] + 5 ) -
Therefore, the random dynamic system d(t, @) generated by equation (4.8) has a random attractor
A(w) < A(w) By (w).
To sum up, the theorem is proved.

7. Hao Wu,Long-time behavior for a nonlinear plate
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