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systems related to equations. 

Keywords: Nonlinear plate equations, thermal memory, stochastic dynamic system, random attractor, additive noise. 
Copyright @ 2020: This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted 

use, distribution, and reproduction in any medium for non-commercial use (NonCommercial, or CC-BY-NC) provided the original author and source 
are credited. 

 

INTRODUCTION 
In this paper, the research methods in the 

literature [4-6] consider the nonlinear Plate equation 

with thermal memory effect caused by the non-Fourier 

heat flow law with additive noise and has a random 

attractor in the stochastic dynamic system. The study 

equation is as follows 
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Among them, 
1 1

m m
j j

j j

j j

dw w dt 
 

  .U is an 

appropriate smooth boundary in
2R , ( , )u u t x is a 

real-valued function on [0, )U   , is the 

temperature change of the self-balanced reference 

value, u is the vertical displacement of the plate, and 

function : R U R  is called the initial history of 

temperature, assuming the memory kernel function

:k R R
.It is a positive bounded convex function 

and disappears at infinity. For random terms

2 3

0( ) ( ) ( )j x H U H U  ( 1,2, , )j m , 1{ }m

j j  is 

an independent bilateral real-valued Wiener process on 

probability space ( , , )F P . Among them, 
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1 2,{ ( , , ) ( , ) : (0) 0}m

m C R R        . 

Given a tight open topology, F is a P-complete Borel -algebra on . 

There is a lot of research work on the 

thermoelastic plate equation in the literature. The Plate 

equation is derived from the elastic vibration equation 

established by Woinowsky-Krieger ([12]) and Berger 

([13]). For the Plate equation, the latest study of the 

attenuation estimation and asymptotic curve of the Plate 

equation with memory (cf[20]); in [23], the quasi-

stability properties of the system are established, and 

the existence of global attractors and exponential 

attractors with finite fractal dimensions is obtained; 

studied the precise controllability of the thermoelastic 

plate equation with memory (cf[21]);obtained the 

general stability results of the viscoelastic plate 

equation with past history and general kernel (cf[22]), 

etc. In these studies, we have noticed that in recent 

decades, the long-term behavior of the deterministic 

Plate equation or the solution of a single Plate equation 

has been studied by many scholars. Such as, the author 

of the literature [14] in 2005 considered the following 

evolution problem in the two-dimensional theory of 

linear genetic thermoelasticity, 

 

0

( ) ( ( ) ( )) 0

( ) ( )[ ( ) ( )] ( ) 0

tt

t t

u t u t t

t k s c t s t s ds u t



  


    



      
                 (1.2) 

which simulates Kirchhoff thermoelastic thin plate with 

heat conduction memory effect. The exponential 

stability of the solution of the equation is considered. 

In 2008, a nonlinear Plate equation with 

thermal memory effect was considered in [7]. 
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The existence and uniqueness of the global 

solution and the existence of the global attractor are 

proved. 

However, in real life, many systems will 

inevitably be affected by random factors. Therefore, 

this paper studies the existence of random attractors of 

stochastic Plate equations in stochastic dynamic 

systems based on [7]. This article is organized as 

follows. In the next section, we will review some basic 

concepts and properties of general stochastic dynamic 

systems. In Section 3, we provide some basic settings 

related to formula (1.1) and show that it generates a 

stochastic dynamic system in the appropriate function 

space. Section 4 is devoted to proving the existence of 

the unique random attractor of the stochastic dynamic 

system.

 

BASIC DEFINITION THEOREM 

Definition 2.1 ([8]) The random dynamic system
t( , , , )t RF P   （ ） is called RDS . 

T X X  ：  

         ( , , ) ( , )t x t x   , 

where identity map (0, ) id   on X ,and has the following relationship 

( , ) ( , ) ( , )st s t s       ,                   （2.1） 

among them ,t s T , , represent combinations. A cluster of maps ( , )t  satisfying (2.1) is called a cocycle, and 

(2.1) is also the nature of cocycle. The inverse of ( , )t  is 1( , ) ( , )tt t      . 

 

Definition 2.2 ([8]) Random set A attracts another random set B .if 

( ( , ) ( ), ( )) 0t t n
d t B A       

 , 

then call A as an attractive set. 

 

Definition 2.3 ([8]) Random set K attracts another random set B, if
Bt （ ）exists, for all t Bt  （ ）there is 

( , ) ( ) ( )t tt B K        , 

Bt （ ）is called absorption time. Then K is called absorption set. 
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Theorem 2.1 ([8] [9]) Let be the measurable power system
t( , , , )t RF P   （ ） and a continuous random power 

system in space X. If there is a random compact set ( )K  , such that for any nonrandom bounded set B X , 

there is 

lim ( ( , ) , ( )) 0, ,td t B K t      

then has a random attractor 
_____________

{ ( )} ( )B

B X

A  



    , 

where B is taken through the bounded subset of X, ( )B  is the -limit set of B, ie 

___________________

0

( ) ( , ) .B t

s t s

t B  
 

    

Theorem 2.2 ([15] ) Suppose 0X , 1X , X are three Banach spaces, of which 0X , X are reflexive and satisfy 

0 1X X X     (Embed), 

here embedding 0X X is tight. If
2 ( , )Y L R X

 meets the following conditions: 

(i) Y is bounded in
2 1

0 1( , ) ( , )L R X H R X 

 
; 

(ii) For s R  , there is 0 0K  , so that
2

0sup ( )Y X
s K   ; 

then Y is relatively tight in
2 ( , )L R X


. 

Lemma 2.1（[19]）Let X be a Banach space and ([0, ), )Z C X  .Let :E X R be a function bounded from below 

such that ( (0))E Z M for Z X .If 

2
( ( )) ( ) ,

X

d
E Z t Z t

dt
    

for some 0, 0   independent of Z, then for all 1 0 0 10, ( , ) 0t t M    , such that 
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BASIC SETTINGS 

Assume that the memory kernel function ( )s and the nonlinear term ( )f u satisfy the following 

conditions: 

(1) For any s R , there is 1

1

23 3
0

6( 2)

D

D



 


, such that 

1 1 '( ) ( ) ( ), ( ) 0, ( ) ( ) 0.s C R L R s s s                      (3.1) 
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(2) Assuming that k is zero at infinity, in addition, 

define ( ) '( )s k s   .In recent years, various 

development equations under the non-Fourier 

heat flow law have aroused the interest of many 

mathematicians. Let q be the heat flow vector. 

According to Gurtin-Pinkin theory (cf.[16]), the 

linear constitutive equation of q is given by 

0
( ) ( ) ( )q t k s t s ds



    , 

where k is the thermal conductivity relaxation 

kernel, and the existence of the convolution term in the 

above formula means the finite propagation velocity of 

thermal disturbance, so in this case, the corresponding 

equation is hyperbolic. It is easy to see that if k is the 

Dirac mass at zero, the above formula can be simplified 

to the classic Fourier's law  q   . In addition, 

1
( ) , 0

s

k s e  




                             (3.2) 

among them, 0
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min{4, ,8 }

3 2 4 4
k

D D D

 
      .  

(within the limited range of each parameter,
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   and

1

10
8

D
 are less than

2

3
). 

(3) The nonlinear function ( )f u satisfies: 

0(0)=0 '( ) (1 | |), ,f f s C s s R   ，                   (3.3) 

3
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is a normal number, in this article the constant C changes, 

each row or even the same row of C is not equal.
UC  is the best constant that depends only onU , then 

      2 2

2 2

( ) ( )UL U L U
u C u                          (3.7)                            

Consider the positive operator on 2 ( )L U , defined as 2A    and bounded by 2 1

0( ) ( ) ( )D H U H U  . 

For , consider Hilbert space /2( )r rv D  , define the inner    product 

/2 /2

1 2 1 2 1 2( , ) ( , ), ,r

r r ru u u u u u


     ， 

2 /2 /2( , ),r r r

r
u A u A u u   , 

2 0( , ), ,u u u u    

where ( , )  and  represent the inner product and norm in 0 2 ( )L U  . Use
2

(( , )),   to denote the inner product and 

norm of 2 2

0 ( )H U  , respectively. For
1 2r r , embedding 1 2r r

v v is tight. 

We introduce a weighted Hilbert memory space
1 2 ( ; ),r rL R v

   , of which r R . Define the inner product as 

follows 
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Here we notice that for
1 2r r , embedding 1 2r r

   are continuous but not compact (cf.[17,18]).  

Finally, we define the inner product Hilbert space 
2 1 ,r r r r rV r R        . 

For all
1 2 3 4( , , , )T rz z z z z V  , there is norm 

1

2 2 22 2(2 )/2 /2 /2

1 2 3 4r r

r r r

V
z z z z z 




       , 

when r = 0, there is
0 2 0 0 1V v v v    . 

 

THE EXISTENCE OF RANDOM ATTRACTORS 

It is convenient to work in the history space setting by introducing the so-called summed past history of which is 

defined as follows (cf.[7])  

0
( ) ( ) ,

s
t s t y dy     ( , ) [0, )t s R   , 

the variable t (formally) satisfies the linear equation 

( ) ( ) ( )t t

t ss s t    ，in，( , )t s R R   , 

boundaries and initial conditions 

(0) 0t  ，in， 0t  ，  

0

0
0

( ) ( ) ( ) ,
s

s s y dy      in，s R . 

the linear operator T introduced in
1 is defined as 

, ( )sT D T     , 

its boundary is 
1 1( ) { | , (0) 0}sD T       . 

here and above
s is the distribution derivative of with respect to the internal variable s. 

We note that the time-segment integration of the convolution that occurs in the equation results in 
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import the vector 

( ) ( ( ), ( ), ( ), )t Tb t u t v t t  , 

define the initial value by 
0

0 0 0 0 0( , , , )Tb u v V   , 

we can transform the studied equation into 
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. 

The existence and uniqueness of the solution 

Next, explain the existence, uniqueness, and continuous dependence of the solution on the initial value of 

the problem (4.2), and show that the solution generates a continuous random dynamic system on probability 

space
t( , , ,( ) )t RF P   . For this, we consider the one-dimensional Ornstein-Uhlenbeck equation 

+ ( ), 1,2,..., ,j j jdz z dt d t j m   

its solution is the Ornstein-Uhlenbeck process 

0

( ) ( )( ) , .s

j t j t jz e s ds t R 


    

It is known from the literature [2] that the random variable ( )j jz  is harmonic, and there is a
t -measure 

invariant set of all measures, so that for all and j = 1,2, ..., m, ( )j t jt z  are continuous with respect 

to time t . Therefore, it is known from the proposition 4.3.3 in [2] that there is a harmonic function ( )r  >0 such 

that 

2 4 6

1

( ( ) ( ) ( ) ( ) ) ( )
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j j j j j j j j
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among them, ( )r  satisfies P-a.e.   
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known from (4.4) and (4.5), for P-a.e.  
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j

z z x z   


   

This is a solution to the following equationon 

1

,
m

j j

j

dz zdt d 


                              (4.7) 

Theorem 4.1 ([10]) Variables ， ( ) 1
: , ,1

2
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| | | | | |
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Simplify (4.2) to the first-order evolution equation. 

let 

( ), ( , , , )t T

t tu u z u          , 

Choose  such that 1 2 30 min{ , , }     , 

The problem (4.2) is equivalent to the following deterministic dynamic system with random parameters: 

( ) ( , , ),tH F t      
0 0 1 0 0 0( ) ( , ( ), , ) , 0,Tu u u z t                  (4.8) 
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It is known from the literature [3] that the operator L in (4.3) is the infinitesimal generator of the compressed
0C

semigroup{ }Lte in space
0V ,because

1H T LT 

  and L are isomorphic operators in
0V , So operator H also 

generates a compressed
0C semigroup{ }Hte in

0V . 

 

From the conditions satisfied by the nonlinear function ( )f u and the embedding relationship 2 4

0 ( ) ( )H U L U , it is 

known that function ( , , )tF t  is locally Lipschitz continuous with respect to and . Moreover, the time t is 

bounded on a finite interval, so ( , , )tF t  is continuous with respect to ( , )t and F is measurable with respect to , and 

the uniqueness of the solution of the differential equation is considered by the classic operator semigroup theory (cf.[3]), 

We have the following theorem. 

 

Theorem 4.2 If conditions (1)-(4) hold, then for any of and 0

0 V  , there is T>0, so that when the initial value 

meets
0 0(0, , )    , the problem (4.8) has a unique mild solution 0

0( , , ) ([0, ); )t C T V    and
0( , , )t   satisfies 

( )

0 0 0
0

( , , ) ( ) ( , , ( , , )) ,
t

Ht H t s

st e e F s s ds               

further,
0( , , )t   is continuous with respect to t and

0 and measurable with respect to . 

Knowing from Theorem 4.2 and the following Theorem 4.3, for any [0, )t  , the solution
0( , , )   of equation 

(4.8) exists globally, therefore, 0

0( , , ) ([0, ); )C V     defines a continuous random dynamic system from R to

t( , , ,( ) )t RF P   : 

0 0
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( ) ( , ) .
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In order to prove that the solution of stochastic partial differential equation (1.1) and the solution of partial 

differential equation (4.8) are conjugated, homeomorphic mapping is introduced 
0
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1

1 2 1 3 4( ) ( , ( ), , ) ,T

t tR y y y y z y y       
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then the partial differential equation (1.1) can be written as 
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so 
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 . 

This also determines a continuous random dynamic system ( , ( , ))S t 


. Therefore, ( , )S t 


and ( , )t  are 

equivalent. 

 

Next, the existence of the random attractor of the stochastic dynamic system ( , )t  will be studied according to 

Theorem 2.1. 

 

Theorem 4.3 Assuming that conditions (1)-(4) hold, there is a closed sphere (centered on 0, 
0 ( )r  is radius), so that for 

any non-random set { ( )}B B D   , there is a
0( ( )) 0B rT   , so that for any

0 ( ) ( )t tB      , the solution

0( , , ) ( ( ), ( ), ( ), )t T

tt u t t t        of equation (4.8) satisfies P-a.e. , has 

0
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0 0( , , ( )) ( )t t V
t r         . 
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We multiply the second expression in (1.1) by
2u and add (4.9), then 
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substitute ( )t tu u z     into the right side of equation (4.10) ,the inner product term on the left uses Lemma 2.2, 

taking the appropriate has 

0

2
2 2 2 2 22 2 2

12

22 1/2 t 2 2

0

1
( ( ) ) ( )
2 2 2

1
( ) ( ) ( )

2 2

(( ( ), )) ( ( ), ) ( ( ), ( )) ( ( ), ) ( ( ) ( ), )

tV U U

U U

t t t t t

d
u uu dx u F u dx u D

dt

s A s ds Audx uf u dx

z u f u u f u z Az Az z

 
    


     

       



       

   

      

 

      (4.11) 

To estimate the right side of (4.11), from Lemma 2.2(1), take
1
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  and have the following inequality: 
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2 2 8 2

1 1 1
( ) ( ) ( ) ( ) ( ) ( )

2 8 2 4 2 2

6 ( ) ( ) ( ) 2 ( ) (| |, )

tV U U

U

t t t tL

d
u uu dx u F u dx u

dt

D s A s ds C F u dx

Az C z C U z z C U f N

   
    

  
     

       




       

        

      

 

    (4.12) 

Let
0

( ) ( ) ( ), ( ) ,tJ t s t s ds  


  then 0

1
2

2

0
| ( ) | ( ) ( ) ( ), ( ) .t t

V
J t t s s s ds C    



   

0 0

0 0 0

2

0
0 0 0 0

( ) ( ) ( ), ( ) ( ) ( ), ( )

( ) , ( ) ( ) , ( ) ( ) ( ), ( )

( ) ( ) ( ) , ( ) ( ) ( ), ( ) ( ) ( ), ( )

t t

t t

t t t

t

t t t t

t s

d
J t s t s ds s t s ds

dt

s A s ds s Au s ds s Az s ds

s s A s ds s ds s z s ds k s t s ds

     

        

          

 

  

   

  

    

   

 

  

   

 Estimation 

of the above formula has the following inequality 

1

2

0
0 0

( ) ( ) ( ) , ( ) ,t t t

M
s s A s ds s ds k    

 

   

At the same time using Lemma 2.2 (3)(4), take the appropriate to get 

1

22 2 20 0 1 0
02

1

2 2 21/2

0 0
0

1

3 1 4 5
( ) ( )

4 4 4 4 4

1
( ) ( ) ( ) ( ) .

t

M

t

t t

d k k D k
J t u k

dt D

s A s ds k z k z
D

 
  

   



     

   

          (4.13) 

Next, add (4.13) and (4.12) to get 

0

1

3

2
2 2 2 22 2 0

1

2 2
2 22 1 0 0

1 22

2

0

1 1

2 2 3

0 0 1

1 1
( ( ) ( )) ( )
2 2 2 4 8

1 3 1
( ) ( ) ( ) ( )

8 2 4 4 2

5 1
( )
2 4 4

( ) 6 ( ) ( ) ( ) (2

tV U U

U

t

M

t t t t L

d k
u uu dx u F u dx J t D

dt

k k
u C F u dx

k
D D

k z Az C z C U z

  
   

     
    

  


     

         

  
       


    

      

 



2

0

2

1

) ( )

(| |, )

tk z

C U f N
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among them 

1

2 2 2
1/2 1/2

0 0
( ) ( ) ( ) ( ) .t t t

M
s A s ds s A s ds      

 

     

Let 

3

0

2 3 2 2

0

2
2 2 22 2

( ) ( ) ( ) ( ) ( ) ( ) ,

1
( ) ( ) ( ),

2 2

t t t t t tL

tV U U

R z z z Az z

G t u uu dx u F u dx J t

     


  

     

       
 

There is 

0 0

2 2

2( ) ( ) ( ) ( )
V V U

d d
G t G t C F u dx

dt dt
                   (4.14) 

among them, 

0 0

2

0 1 1

2 2
2 1 0 0 0

1 1 0

1 1

max{6, ,2 , },

( ) (| |, ) ,

1 1 3 1 5 1
min{ , , , }

8 2 4 2 4 8 4 2 2 4 4

t

Q C k

QR C U C U f N

k k k
D k

D D



    

          
  

 

   

   
           

(within the 

limited range of each parameter, each item in  is greater than zero). 

Let

2 2

1 1 0 0 1
1 0

1 0 1
1 1 0 1

1 0

1
2

8 1 1 1 3 5 164 16 2 4min{ , , , }.
16 8 4( 1) 2 8 2 2 4

k k
k

D k D
D k D

k

  



 




    

 
      

 

(within the limited range of each parameter, each item in 1 is greater than zero). 

By Theorem 4.1 
~ ~0 0 0

0 0 0( ) ( , ) ( , ) ,s s s

s
t t
R e ds R s e ds R s e ds    

  
       

among them, 
1~ | |

2 | | 2 | | 3 | | (1) 2 | | (1/2) 22
0( , ) ( ) ( ) ( ( )) ( ( )) ( ( )) .

t
t t t tR s e r e r e r e r e r              

By Lemma 2.1 there is 0
0

2

0 1( ( , , ( )) sup{ ( ) : }.
V

V

G t E


        


    

Use t  instead of in the above formula to get 

0
0

2

0 1( ( , , ( )) sup{ ( ) : }.t t V
V

G t E


           


    

Then 

0

2 21
0 0( , , ( ) ( ).t t V

t r
 

      


 


   

To sum up, the theorem is proved. 

 

In order to obtain the regularity results of the stochastic dynamic system ( , )t  , using a method similar to [1], the 

solution ( , , , )t Tu    of the system is decomposed into
L N    , where ( , , , )t T

L L L L Lu    and

( , , , )t T

N N N N Nu    are the solutions of the following equations  

0 1 0 0 0( ) 0, (0, ) ( , , , ) , 0T

L L LH u u u t                           (4.15) 

and 

2( ) ( ), (0, ) (0, ( ),0,0) , 0T

N N NH F z t                      (4.16) 

among them, 

2

( )

( ) ( )
( )

( ) ( )

0

t

t

t t

z

f u Az
F

z Az






 

 
 
  

 
 
 

. 

For equations (4.15) and (4.16) there are regular results as follows. 
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Theorem 4.4 Assuming conditions (1)-(4) hold, let
0B V be a non-random bounded set, then for any

0 1 0 0 0(0, ) ( , , , )T

L u u u B       , the following holds 

0 1

22 2 2 2

2 M
( , , (0, )) 0,( )t

L t L t L L L LV
t u t                , 

( , , , )t T

L L L L Lu    meet equation (4.15). 

Proof: In space
0V , use ( , , , )t T

L L L L Lu    and (4.15) as the inner product, where
L Lt Lu u   , the corresponding 

initial value is
0 1 0 0 0( , , , )Tu u u   . 

0 0

21
( ( ), ) 0

2
L L LV V

d
H

dt
    . 

among them, 0

22 2 2

1( ( ), ) ( ) .
2 2

t

L L L L L LV
H u D

 
            

Define the energy functional: 

K( ) ( ) ( )L L
U

t t u t dx  , 

( ) ( ) ( )L L
U

t t u t dx   , 

     
0

( ) ( ) ( ) ( )t

L L
U

t t s s dsdx  


    . 

Then derivate ( )t , ( ))t and ( )t with respect to time t, and use the Herder's inequality to get 

K( ) ( ) ( ) ( ) ( )Lt L L Lt
U U

d
t t u t dx t u t dx

dt
     

2
( ( ) ( ))L L L L L L L L

U U
A u A Au u dx u dx                

2 2 21

2 2
1

( 1) 1 1
(2 ) ( ) .

4 2 2
L L L

D
u C

D

 
 


       

( ) ( ) ( ) ( ) ( )Lt L L Lt
U U

d
t t u t dx t u t dx

dt
      

0
( ( ) ( ) ( ) ) ( )t

L L L L L L L
U U

A u s A s ds u dx u dx      


         

2

1 2 0
( )( ( ) )t

L L L L L L L L L
U U U U

A u dx D u s Au s dx ds dx u dx       


           

1

22 2 20 1

2 2 M
1 1

1 ( 1) 1 2
( ) .

2 2 4

t

L L L L

k D
u C

D D

 
  

  
       

Then take the derivative of ( )t , 

0
 ( ) ( ) ( ) ( )t

L L
U

d d
t t s s dsdx

dt dt
  



      

0 0
( ) ( ) ( ) ( ) ( ) ( )t t

Lt L L Lt
U U

t s s dsdx t s s dsdx     
 

       

0 0
( ) ( ) ( ) ( )t t

L L L L
U U

A s s dsdx Au s s dsdx     
 

      

0 0 0
( ) ( ) ) ( ) ( ) ( ) ( ) ( )t t

L L L Lt
U U

s A s ds s s dsdx t s s dsdx      
  

       

among them, 

1

2

0 M0 0
| ( ) ( ) ) ( ) ( ) | ,t t t

L L L
U

s A s ds s s dsdx k    
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22

0 M

( ) ( ) ( )

| ( ) |
| | ( ( ) | ( ) | ( ) | ( ) | )

( )

1
( ) ,

4

t

L Lt
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s
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s
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among them,
0 2 1/2 1/2

01/2 0
1 0

2 1
max{ ( | ( ) | ) , }.

( )

s

C s ds M
s

 
 

   

Then, 

1

22 2 2

0 1 02 M
1

1 1
( ) ( ) ( )

4 4 4

t

L L L L

d
t u k C D k

dt D

 
           . 

Let, ( ) ( ) ( ( ) ( )) ( )L t MY t t t t     , 

among them 

2

1 0 0 1 0 1 0 1 1

2

1 1 0 1 1 1 0 1

0

0
1 0

1 1 1 1

,

(4 1) 4 (4 1 2 ) ( 4 ) 4 ( )
min{ , , },

2 (8 ) 4 16 8 4 2 2 8

4( ) 1
,

4

12 1 2 1 4
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4( ) 2 2

l

D k k D k D k D C D
l

D D k D D D k D

k
M

k
C D k

D D D D



     

      

 




     


  



       


        

  
 

 
      



. 

(within the limited range of each parameter, each item in  is less than 04( ) 1

4

k  



  
) 

The inequalities obtained by integrating the results of the above three functions are 

( ) ( ) (K( ) P( )) ( )
d d d d

L t M Y t t t t
dt dt dt dt

      

       
1

22

1 1 0

1 1

1
( 3 ) ( )

4 2 2

t

L L M

M
M MD C D k

D D

   
   


           

        
2 20

02
1

2 1
( ) ( ) ,
4 2 4

L L

k M
u M k

D

    
  

 
        

let, 

0
1 1 0 1 0

1 1 1

2

1 1 0 1
2 1

1 2 1
min{ 3 , , , },

4 2 4 2 4 2 2

72 15
min{ , , }.

4 4 1

M k M
MD M k M C D k

D D D

D D k D
D

        
    






 
              

 




(within 

the limited range of each parameter, each item in 1 and 2 is greater than zero). 

Then 

1( ) ( ) 0,
d

L t Y t
dt

  ，                          (4.17) 

applying Gronwall’s lemma to the above formula 
1( , , (0, )) (0, , (0, ) ,
t

L LL t Y e
      

  

use
t 

instead of in the above formula to get 

1( , , (0, )) (0, , (0, ) ,
t

t L t t L tL t Y e
          

     

So, 

2 ( , , (0, ) 2 ( , , (0, )))t L t t L tY t CL t              

12 (0, , (0, ))
t

t L tCY e
     

   

1
1

2 2 2 2

0 1 0 0 02 M
2 ( ) 0.( ).

tCe u u u t   
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To sum up, the theorem is proved. 

Theorem 4.5 Assuming that conditions (1)-(4) hold, there is a random closed sphere { ( )}B B D   centered on 0 

and radiused
1( ) 0r   , while

_

( )B D  ,
_

0 ( ) ( )B   and 
_

1( )

0
B r

T

 exist, so that for any ( , , , )

N

t T

N N N Nu    , 

the system (4.16) satisfies P-a.e. ,there is 

1

22 2 2
/2 /2 /2 /2 2

12
( )

N

r r r r t

N N NA u A A A r   


    . 

Proof: Knowing from Theorem 4.3, Theorem 4.4 and
N L    , there is a positive random variable

3( ) 0M   , 

making 

 0 0 3max (0, , (0, )) , (0, , (0, )) ( )t t N t N tV V
M                 . 

In space
0V , use ( , , , )

N

r r r r r t T

N N N NA A u A A A    and (4.16) as the inner product 

01

2 2 2
/2 /2 /2 /

2
2

2

1
( ( ( ), )

2

(( ( ), )) ( ( ), ) ( ( ), ) ( ( ), ) ( ( ), )

)r r r r t r

N N N N N N V

r r r r r

t N N t N t N t N

M
A u A A A H A
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(4.18) 

It can be calculated by the similar theorem 4.4 

0

2 2 2 2
/2 /2 /2 /2

12
( ( ), ) ( )

2 2

r r r r r t

N N N N N NV
H A A u D A A A

 
            

Next estimate each item on the right side of (4.18), using the condition (3.6), 11
( )

U

f u u
C


  , we get 

2
2

2 /21
02

(1 )
| ( ( ), ) | ( ) ,

4

r rs
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U

C
f u A r A

C


  


    

where 0sC  is the embedding constant. 

To sum up, using Lemma 2.2, take the appropriate to get, 

0

2 2 2 2 2
/2 /2 /2 /2 /2

12
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0
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By Theorem 4.3 there 
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 (4.20) 

Combining (4.19) and (4.20) 
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2

) .
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0 1
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2
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2
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among them, 
2 2 2 2
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1 02
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t t t t tR A z A z A z A z r          

2

1
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2
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U
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4 4 8 8 4
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k
    


 

(within the limited range of each parameter, each item in 2 and 3 is greater than zero). 

For (4.21), using Gronwall's inequality 
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  , 

by Theorem 4.1,there is 
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R e ds R s e ds R s e ds    

  
      , 

among there, 
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_
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n
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To sum up, the theorem is proved. 

Consider the space
1 r corresponding to variable

t , refer to [9], note that for any 0,t   , there are 

0 0

0

0

( , , ( )) ( , , ( )),
( , , ( ), )

( , , ( )), .

N t t N s t s tt

N t t t

N t t

u t u t s s t
t s

t s t

         
     

     

   

 

 

  
 


    (4.22) 

0
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u t s s t
t s

s t

    
     

 

 

 
 


                       (4.23) 

Define collection

_______________________________________________________________
_

0 0

0

( ) ( ) ( , ( ), )( ,)
N

t

t t t t

t

B t sB               



  , 

where ( , , , )t Tu    is the solution of equation (4.8).Then theorem 4.5, (4.22) and (4.23) can be obtained 

 1 3

2 2
2

0 0 1max ( , , ( ), ) , ( , , ( ), ) 2 ( ), 0
r rNs N

t t

t t t tt s t s r s            
    

 
   , 

so ( )B  in
1 2 1M ( ; )r rL R    is bounded. 

Know by Theorem 4.3 and Theorem 4.5 
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Therefore, for any ( )t B  ,there is 

1

2
2 2

2 1
1 2M 2 0

0

1 2 ( )
( ) ( ) ( ) 2 ( ) .

s

t t r
s s s ds r e ds


   

 




     

That is, 
2 2 1

0( ) ( ; ( )) ( )B L R H U H U   is a bounded subset. 

According to Theorem 2.2, ( )B  is tight in
2 2 1

0( ; ( )) ( )L R H U H U


. 

The following proves that the random power system ( , )t  has a random attractor. 

 

Theorem 4.6 Assuming conditions (1)-(4) hold, for 

any , the random dynamic system ( , )t 

generated by equation (4.8) has a compact random 

attractor set 0( ) V  , and has a random attractor

0( ) ( ) ( )B    . 

Proof: Any , by theorem 4.5, let
2( ) r r r

rB v v v    be a random closed ball with a 

radius of
1( )r  , Definition )( ) ) ((r BB     , 

then 0( ) ( )D V  , because 

2 2 2 2

0 ( ) ( ) ( )r r rv v v H U L U L U      （Embed） 

2 2 2

0( ) ( ) ( ) ( )rB H U L U L U    （Embed）, 

using theorem 2.2 again, ( )B  is compact in
1 , so ( ) is compact in

0V . Next, prove the attractiveness of set ( ) . 

For any 0( ) ( )B D V   

lim ( ( , ) ( ), ( )) 0H t t
t

d t B     


   . 

From Theorem 4.5 

0 0 0(0, , (0, )) (0, , (0, )) (0, , (0, )) ( )N L               , 

Combined with Theorem 4.4 there is 

1
1

2 2 2 22

0 1 0 0 02 M
d( ( , ) ( ), ( )) ( )

t

t tt B e u u u       

        . 

Therefore, the random dynamic system ( , )t  generated by equation (4.8) has a random attractor

0( ) ( ) ( )B    . 

To sum up, the theorem is proved. 
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