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Abstract  Review Article 
 

In this paper, the longtime behavior of nonclassical diffusion equations with memory decay and white noise is 

considered. It is proved that the initial value problem has a solution and a random attractor. 
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INTRODUCTION 
In this paper, we study the long time dynamical behavior of solutions for the following nonclassical diffusion 

equations with fading memory and white noise:  
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While is a bounded domain in  3nRn
. with respect to the stochastic term



m

j

jjdh
1

 ,  

We do the UO change for the stochastic term. For the nonlinearity, we presume that f is a Lipschitz 

continuous function and satisfies: 

 

.
)(

suplim
1


 s

sf
s

                                                                                                (1.2)  

)1()( 2

4

 nsCsf  , .Rs                                                                               (1.3) 

)1()(
p

sCsf  . Rs .
















.0

,5,
4

4

p

n
n

p                                                     (1.4) 

 

Where 1 is the first eigenvalue of - in )(1

0
H . and 

we assume 0)0( f . 

 

He effects of fading memory in this equation 

are shown through the linear time convolution of the 

function )(u and the memory kernel )(k . We assume

)()( 2  RCk , 0)( sk , and 0)(  sk ,
 Rs . 

Beside, we also assume that the function

)()( sks  and satisfies 
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)()( 11   RLRC , 0)( s , 0)(  s , , Rs                                (1.5) 

0)()(  ss  , 0s .                                                                                (1.6) 

 

Where is a positive constant? Obviously, it 

follows the exponential decay of the kernel )(sk  and
)(s zero. This behavior shows the fading memory of 

the distant past in the model we will be talking about. 

 

In 1980. Aifantis in [1] point out the classical 

reaction-diffusion equation 

 

gufuu
t

 )(                                                                                             (1.7) 

 

It does not cover every aspect of reaction-

diffusion problems. It ignores the viscosity, elasticity 

and pressure of the intermediates in the solid diffusion 

process. In addition, diffuse solid Aifantis was also 

found. For example, the energy structure equation is 

different when the conducting medium is under 

pressure. Viscoelastic (memory loss). He built up a 

mathematical model with some concrete examples.It 

contains the viscosity, elasticity and pressure of the 

medium, namely, the non-classical diffusion equation: 

 

gufuuu
tt

 )(                                                                                 (1.8) 

 

In 2010, Xuan Wang in [13] consider 

viscoelasticity of the conductive medium, that is, the 

author add fading memory term to Eq(1.8), the equation 

is the nonclassical diffusion equation with fading 

memory that is the equation: 

 

)()()()(
0

xgufdsstskuuu
tt

 


                                      (1.9) 

 

 The speed of energy dissipation for Eq (1.9) is 

faster than for usual nonclassical equation. The 

conduction of energy is not only affected by present 

external forces but also by historic external forces. 

 

This equation appear as extension of usual 

nonclassical diffusion equation in fluid mechanics, solid 

mechanics and heat conduction theory (see [1, 5, 6]). 

 

Since Eq (1.9) contains the term tu
, it is 

different from the usual reaction diffusion equations 

with fading memory almost, usually has a fading 

memory of reaction diffusion equations with high 

regularity, but for the equation (1.9), if the initial data 

only belongs to the weak topological space, then the 

solution is always in the weak topology space, no 

higher regularity, because of tu , therefore, for 

autonomy, cannot use compact Sobolev embedding to 

verify the key to the solution of semigroup asymptotic 

compactness. 

 

The long-time behavior of the solution of Eq 

(1.8) has been studied for the autonomous case in [8, 9, 

11, 12]. In Y.Xiao [12]. The author has proved the 

existence of global attractors in
)(1

0
H

, when 

nonlinearity is subcritical and )()( 2 Lxg , In C.Sun, 

M. Yang [8]. The author have testified the existence of 

global attractor when nonlinearity is critical and
)()( 1  Hxg . and then Xuan Wang in [23] prove the 

existence of global attractors in the weak topological 

space 
))(;()( 1

0

21

0
  HRLH

 and the strong topological 

space
))(;()( 2   DRLD

 . 

 

Now, if we consider adding a random term of 

white noise to Eq (1.9), then the equation is a non-

classical diffusion equation with memory decay and 

white noise that we will study. Eq (1.1) has not been 

considered before, and this paper first studies it as a 

new model to prove the existence of random 

attractors.Since Eq(1.1) contains memory terms, we 

first construct a relatively complex solution space, and 

do norm inner product in this space. The UO
transformation is applied to the random term. 

 

Attractor is an important concept in the study 

of asymptotic behavior of deterministic dynamical 

systems. Crauel, Debussche and Flandoli [15] proposed 

a general theory for the study of random attractors by 

defining the attractor set as the attractor of any set of 

orbitals starting from minus infinity. The random 

attractor is a compact invariant set, which is dependent 

on chance and moves with time. The existence of 

random attractors for two-dimensional random Navier-

Stokes equations is proved by using the theory. In this 

paper, another method is used to prove the existence of 

random attractors for the long time behavior of 

nonclassical diffusion equations with memory decay in 

white noise. By using the method of operator 

decomposition (see [19]), the asymptotic compactness 

of the solution of the system (1.1) is established, which 

is a key step to obtain the random attractor. 
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The arrangement of this article is as follows. 

The second part gives the relevant concepts and 

theories. In Section 3, we introduce the Ornstein-

Ohlenbeck procedure and some properties, and provide 

some basic Settings for (1.1). In section 4, we prove the 

existence of a unique random attractor for a stochastic 

dynamical system generated by (1.1). 

 

Notation and preliminaries 

In this section, we recall some basic notions of 

the theory of random dynamical system (RDS) (see [14, 

15, 17, 20, 21]) and Kuratowski of non-compactness 

(see [18]), which is a useful tool to study the attractor 

(see [19, 22]). 

 

Let
),(




be a separable Banach space with 

Borel ebraa lg )( and
))(,,(

Rtt
PF


 

 be the 

ergodic metric dynamical system. 

 

Defintion 2.1 [23] A continous random dynamical 

system over
))(,,(

Rtt
PF


 

is a )())((  BFRB ,
)(XB measurable maping. 

 

S : ).,,(),,( xtSxtXXR    

 

Satisfying the following properties 

(1) xxS ),,0(  for  and Xx ; 

(2) ),,(),,(),,(  


StStS  for , 0 ,and  ; 

(3) S is continous with respect to x for 0t and  . 

 

A set-vauled map B :
X2 is called a random closed set if )(B is a nonempty closed set and

))(,(  Bxd is measurable for Xx . A random set )(B is called tempered if for ..- saP  and all

0  
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Let D be the collection of all tempered random subsets in X and    DK 
 . Then   

K is called a 

random absorbing set for S in D if for DB )( and ..- eaP  , there exist   0
B

t such that 

 

)())(,,(  KBtS
tt




 for all )(
B

tt  . 

 

Definition 2.2 [23] A random set  D )( is random attractor (or pullback attractor) for a RDS S if the 

following conditions are satisfied, for ..- saP  , 

(i)  A is a random compact set. ))(,(..  Axdei  is measurable for every Xx and )(A is compact; 

(ii)  )(A is strictly invariant, .,ei  

)())(,,( 
t

AAtS   for all 0t ; 

(iii)  )(A attracts every set in D , .i .e for all    DBB   , 

;0))(),()),(,((lim 



 ABtd

ttH
t  

Where
H

d is the Hausdorff semi-distance. 

 

Let B be a bounded set is a Banach space X .The Kuratowski measure of non-compactness )(B of B is 

defined by 

inf)( B { 0d : B admits a finite cover by sets of diameter d }. 

We define )(B , if B is unbounded, see [8]. 

 

Definition 2.3. [19] A random dynamical system S on a Polish space ),( dX is almost surely gcontractinD  if 

0)))(,,((lim 





tt
t

AtS  for DA . 
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Lemma 2.4.  For a random dynamical system ),( tS on a separabal Banach space ),(
X

X  , if almost surely the 

following hold: 

(1) ),(),(),(
21

 tStStS  ; 

(2) For any tempered random variable 0a , there exist )(ar )0(  r , ..sa such that for the closed ball
a

B

with radius a in X , ))(,,(
1


tat

BtS


is precompact in X for all  art  . 

(3) 
Xt

utS ),,(
2




 ),,( atK
t



, 0t , )(

a
Bu and ),,( atK  is a measurable function

with respect to ),,( xt  which satisfies  

0),,(lim 



atK

t
t

  

 

Then ),( tS is almost surely gcontractinD  ( see ]91[ ). 

 

Lemma 2.5.  Let ),( tS be a random dynamical system on a Polish space ),(
X

X  . 

Assume that 

(1) ),( tS has an absorbing set DB )( ; 

(2) ),( tS is almost surely gcontractinD  . 

 

Then ),( tS possesses a global random attractor in X . 

 

The basic setting 

Now, we consider the one-dimensional Ornstein-Uhlenbeck equation 

)(tddtzdz
jjj

                                                                                                     (3.1) 

So 
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Putting )()()(
1

1 jtjj

m

jt
zhIz 



  , where  is the Laplacian with domain ),0(21

0
lHH  , By (3.1) we 

have 



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m

j

jj
dhdtzzzddz

1

)()(                                                                   (3.2) 

 

Lemma 3.1. [23] For 0 , there exist a tempered random variable
1

 : R such that 

)()(
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 for Rt and  , 

Where 0 and )(
1
 ,  satisfies: 
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  for .Rt  

 

Corollary 3.2. [23] For 0 , there exists a tempered random variable
2

 : R such that  

for 0 or 1, 

).()()(
21

2
1

2 
t

tt
ezAzA

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For Rt and  , where
1
 is the first eigenvalue of - .  

 

As in [3], we introduce a new variable which reflect the past history of the Eq (1.1), that is, 

    

s

t drrtxusx
0

,, , 0s ,                                                                              (3.3) 
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Then 

     sxtxusx t

s

t

t ,,,   , 0s .                                                                  (3.4) 

 

In view of assumption about memory kernel )( , let );(2

r
HRL 


be the family of Hilbert space of function

r
HR ： , 30  r , endowed with the inner product and norm, respectively 
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21,21
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Now we introduce the family of Hilbert spaces 
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And endowed norm 
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,

2
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M
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In order to estimate conveniently, we first show the preliminary result as follows (cf. [2,4,7]). 

 

Lemma 3.3. [13] Setting, Let memory kernel satisfy, then for any, there exist a constant, such that: 

 

.
2

,
2

,, rr H

t

H

t

s

t





                                                                                            (3.5)                     

 

 

We also need the following results to prove the asymptotic compactness about memory term as well as the 

existence of global attractors. 

 

Lemma 3.4. (See [2,4,7]) Assuming that      RLRC 11 is a nonnegative function, and satisfies: if the exist

Rs
0

, such that   0
0
s , then   0s for all

0
ss  holds.  

 

Moreover, Let
210

,, BBB be Banach 

space, here
10

, BB are reflexive and satisfy 

 

 

 

Where the embedding
10

BB  is compact, let  
1

2 ; BRLC 
  satisfy 

(i) C in    
2

1

0

2 ;; BRHBRL  
 ; 

(ii)    ss
BC




2

1

sup 


,
 Rs ,    ;1  RLs


  

Then C is relatively compact in  .;
1

2 BRL 

  

 

Lemma 3.5. (See [17]) Let H be a complete metric space,   
0t

tS be a semigroup in and has a bounded absorbing set
0

B

in
0

H . If for every 0t , the operator  tS allows the decomposition       tStStS
21

 , and satisfies: 

(i)  The semigroup   
01 t

tS is uniformly compact,as t is increasing sufficiently; 

(ii) The operator   HHtS :
2

is continuous, and for any bounded set HB ，as t  

    0sup
2




H
B

B
tStr 



 

 

Then -limit set of absorbing set is global attractors of    .
0t

tS
 

.210 BBB 
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Let )(),(),( 
t

ztutv  . Then setting    sks  and using assumption   0k , Eq (1.1) can be 

transfored into the following system: 

            
ttttt

zzzvfdsssvvv  


2

0
1 ,      (3.6) 

  0, txv x , 0t ,                                                                                                     (3.7) 

   xvxv 00,  , x ,                                                                                                          (3.8)
 

  0, sxt ,    Rsx, , 0t ,                                                                                  (3.9) 

 

We set ),0(21

00
lLHE  , ),0(21

0

1

0

2

1
lLHHHE  . Then

01
EE  with compact imbedding. 

 

By a Galerkin method as in [10], it can be proved that under assumptions (1.4), for  ..eaP and for every 

0

0

0
),( Ev  , problem(3.6)-(3.9) have a unique solution ),(

0
ERCv  and the solution )(v is continuous with respect 

to . Hence, the solution mapping generates a RDS. It is called stochastic flow associated with the nonlinear strain wave 

equation with additive noise. 

 

Uniform time a priori estimates and random attractors 

Let ),0(21

00
lLHE  endowed with the inner product and norm

t

LHE
vYY 21

00
),(

21


 , 

21
00 


L

t

HE
vY  , ),( t

jj
vY  , ),( 0

00
vY  . We define the following unifor estimates in

0
E . 

 

Lemma 4.1.  Suppose that f satisfies (1.2)-(1.4). Then for DBB 


)}({  )(),( 0

00
 BvY  , and for

 ..eaP , there exists 0),(  BTT , such that 

)())(,,(
0

0
 RYtY

Ett



 for Tt  , 

 

Where ))()(1()( 2

2

22

1
  pcR is a positive random function. 

 

Proof. Taking the inner product of (3.8) with v and using )( 
t

zuv  , we have 

,0),(),(
00

  tHt
dt

d
                                                                                         (4.1) 

 

Where  

),(
2

1
),(

2

,

22

0
0E

tvvt


                                                                      (4.2) 

vzvfssvtH
tE

t

s

t )),(()(),(),(
0,

2

0
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
  

.),(),()1( 2 vzvz
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                                                                      (4.3) 

  

 In condition of (1.2)-(1.4), we have 

cvwzvvzvf
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
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By arguments similar to (4.7), we can get derive that 
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Replacing by 
t- with 0t in (4.17), implies that the result hold. 
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And the result holds. 

 

We are now in a position to present our main result: 

 Theorem 4.4 Assume (1.4) hold. Then the 

random dynamic system ),( tS has a unique 

random attractor in .
0

E  

 Proof. By Lemma 2.4, Lemma 4.2 and Lemma 

4.3, the stochastic dynamical system ),( tS

of the nonlinear is almost surely

gcontractinD -- . This together with 

Lemma2.5 implies that the existence of a 

unique D random attractor for ),( tS . 
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