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Abstract  Original Research Article 
 

The paper aims to assess the existence of cross product in 3 dimensional, 7 dimensional and further explore the 

reasons for non existence of cross product does in other dimensions. The major focus of the research is on existence of 

cross product in n- dimension through casual and descriptive research design. Aside from this, applications of cross 

product in engineering mathematics, physics and computer science has been highlighted for empirical solution to 

several problems. 
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INTRODUCTION 
The vector product has gained attention of 

scholars from different fields. In this respect casual and 

descriptive research will highlight the application for 

empirical solution to multidisciplinary problems. The 

main goal of this article is to show when, or for which  

n  there is a vector  product on R
n
. Except on R

3
, it is 

less known that the vector product R
0
, R

1
 and R

7
. In this 

article we will provide constructive proof of this result 

and a similar approach used in a 1967 article in The 

American Mathematical Monthly. In general the first to 

prove the vector product exists on R
n
, only if n= 0,1,3 

and 7, was is Beno Eckmann, using an algebraic 

topology, he proved the claim with his weaker one of 

the vector product, i.e. requiring product continuity, 

rather than bilinearity. Later, this result was extended to 

non degenerate symmetric bilinear forms over 

characteristic fields other than two, and a close 

relationship was established vector product on R
n
.  

 

RESEARCH METHODOLGY 
Vector Product of R

3
 

Before answering the question about existence 

of a vector product on R
n
. let’s define a vector product 

on R
3
, and state its properties. The standard scalar 

product on R
n
 is mapping: R

n
×R

n
→R, defined by the 

following formula: 

 

x.y = ∑     
 
    , x = (x1,x2,……..,xn) , y = (y1,y2,……,yn)   ……………………………………. (1.1) 

 

Let us state the properties of the scalar product on R
n 

(i) x.x ≥ 0,  x   Rn
 

(ii) x.x=0   x=0 , x   Rn
 ; 

(iii) (α x ).y = α (x . y ), α  R  x ,y   R
n
 

(iv) (x + y) .z = x.z + y.z,  x, y, z R
n
 

(v) x.y = y.x        x, y   R
n
 

From properties (iii), (iv) and (v) follows the linearilty 

of the scalar product in the second variable. We 

conclude that the scalar product on R
n
 is symmetric, 

bilinear mapping. For vectors x, y R
n 

 we say that they 

are vertical or orthogonal, in the notation x  y, if x.y=0 

Let us also define the norm on the vector space R
n. 

 

The standard (Euclidean) norm on the vector space R
n
 

is the function‖ ‖     , x   Rn
 is valid: 

‖ ‖  √    √∑  
 

 

   

 

 

For the norm at R
n
, it holds  

(i) ‖ ‖          
(ii) ‖ ‖                        
(iii) ‖  ‖  | |‖ ‖             
(iv) ‖   ‖  ‖ ‖  ‖ ‖     x,y    
 

https://saspublishers.com/sjpms/
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Thus, in addition to the standard norm defned above, R
n
 

is normalized space. For the vector      we say that 

it is unique or normalized if ‖ ‖    
That is equivalent to x.x=1 

 

In the case of vector space R
n
, the norm is 

actually the length of the vector, so we use the notion 

| |, instead of ‖ ‖. Then it is   

x.y=| || |Cos  …………..……….. (1.2) 

 

Where   is the angle between the vectors x and y 

 

Let us now define the vector product on the vector 

space R
3
 

 

Definition 1.1 

The vector product is the binary operation ×: 

R
3
×R

3
→R

3
. For vectors a= (a1,a2,a3) and b=(b1,b2,b3) 

from R
3
 we define their vector product in the following 

way: 

    |

      
      
      

|  (         )   (         )   (         )   

 

Where the set {e1,e2,e3} is the canonical base for R
3 

 

Note 1.2 

For the vectors e1,e2 and e3 the following holds: 
                                                     
 

From definition 1.1 we see that, unlike a scalar product, 

a vector product of two vectors is  

vector, not a scalar. Take two vectors a,b  R
3
 and let R

3
 

  c=     their vector product. Thus, a vector that has 

its own: 

(1) Length; the length of the vector c is equal to the 

area of the parallelogram determined by the 

vectors a and b  

| |  |    |  | || |      
Where   is the angle between the vectors a and 

b 

(2) Direction; the vector product of the two vectors 

is perpendicular to both vectors. In our example 

c is perpendicular to a and b, i.e. to the plane in 

which a and b are located. Using scalar product, 

this can be written as: 

c. a =0 and c.b =0 

(3) Orientation; orientation vector c is determined 

by the right-handed rule. More precisely, by 

setting index finger in the direction of vector a 

and middle finger in the direction of vector b, 

orientation of vector c will show us a thumb. 

Replacement of vector order when calculating 

vector of the product results in the opposite 

orientation of the product, which tells us that it 

is vector anti commutative product. 

 

Let us now state the properties of the vector product. 

 

Theorem 1.3   

Let a, b, c and d     ,       and     . Then it holds: 
(i)   (   )          (   )    , (verticality) 

(ii) (   )  (   )  (   )  (   )(   ),    
(Pythagorean property) 

(iii) (     )  (     )    (   )  
  (   )    (   )    (   ). (Bilinearity) 

 

We have already listed property (i) in the 

definition of a vector product, and we will call it 

verticality of the vector product, and the property (iii) 

the bilinearity of the vector product. Notice that the 

property (ii) derives from: 

    | || |       and 

 |    |  | || |      
 

And we shall call it the property of Pythagoras. 

All three properties are easily proved using a definition 

vector product at R
3
. The vector product at R

3
 is also 

anti commutative i.e. for each a,b    is valid: 

         , what pulls       
 

Note that this property can be derived from 

properties (i), (ii) and (iii) from Theorem 1.3. we will 

analyze this further more. 

 

Vector Product of R
n
 

In the previous, we defined the vector product 

on R
3
, and listed its properties. Now the goal is to show 

whether there exists, and if so, what the vector product 

looks like on R
n
, for n>3. In fact, we want to extend the 

vector product to R
n
 so that it retains the properties of 

(i), (ii) and (iii) of the theorem 1.3. So we are interested 

in how to define such a function, if it is that at all 

possible. At R
3
, it is defined by the determinant of a 

3×3 matrix. However, can we extend the vector product 

using the determinant? Let’s see what our determinant 

in R
4
 would look like 

|

      
      
      

    

  
  
  

        

| 

 

Although, for example, the perpendicular 

property is valid, a vector product defined in this way is 

not binary operation, because the third vector in the 

matrix also appeared. Because the determinant is a 

function over square matrices, this problem is difficult 

to avoid R
n
, for n>3. 

 

Although perhaps surprisingly, a vector 

product with properties of verticality, bilinearity and 

Pythogorean property except for R
3
 can be defined on 

R
n
 only for 0,1 and 7. The idea of proving that result is 

to show that if for some n there exists a vector product 

on R
n
, then we can find an orthonormal base {e1, e2, 

.....en} such that for i≠j there exits a k for which 
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          where a=1 or -1. Where does the idea 

come from? 

 

Namely, to define a vector product on R
3
 with 

all required properties, due to bilinearity is actually 

sufficient to define a vector multiplication table for 

ortho vectors standardized base. From Note 1.2 and the 

anti commutativity of the vector product we see how 

that table looks at R
3
 

 

           
   0        
       0    
          0 

 

Using the table and bilinearity, we can reconstruct the vector product of two arbitrary vectors a=(a1,a2,a3) and b=(b1,b2,b3) 

    (              )  (              ) 
     (     )      (     )      (     )      (     )      (     )      (     )

     (     )      (     )      (     ) 
                                           
 (         )   (         )  +(         )   

 |

      
      
      

| 

 

In the proof we want to show how and when, 

in general on R
n
, we can construct a table multiplication 

of the orthonormal base, provided that the vector 

product thus defined has all the properties we require. 

Let us first generalize the definition of the vector 

product.  

 

Definition 2.1 

The vector product on R
n
 is a binary operation 

×: R
n
×R

n
→R

n
 which satisfies the properties of 

verticality, bilinearity and pytharorean property: 
(i)   (   )          (   )    , (verticality) 

(ii) (   )  (   )  (   )  (   )(   ),    
(Pythagorean property) 

(iii) (     )  (     )    (   )  
  (   )    (   )    (   ) (Bilinearity) 

 

The following properties follow from the definition of 

the vector product  at R
n
. 

 

Lemma 2.2 

Let a, b and c be vectors from R
n
. If the vector 

product on R
n 
exists, then they are valid the following 

properties: 

(2.1)   (   )     (   )  
(2.2)                                
    

(2.3)   (   )  (   )  (   )   

(2.4)   (   )   ((   )   )  (   )  
(   )   (   )  

 

Proof : 

 (2.1)  From the perpendicularity of the vector product 

we conclude: 

    (   )  ((   )   ) 

  (   )  (       ) 
   (   )    (   )    (   )   

 (   ) 

    (   )     (   ) 
   (   )     (   )  

 

(   ) We use the Pythagorean property of the vector 

product for the vector a:  

(   )  (   )  (   )  (   )    
So it follows that       . To prove the 

anticommutativity of the vector modulus we 

use bilinearity  

  (   )  (   ) 
                 
         

 

So we get          
(2.3) we now use the Pythagorean property for the 

vectors (b+c) and a; 
((   )   )  ((   )   )

 ((   )  (   ))(   )  ((   )   )  

 

Let’s use bilinearity: 

((   )  (   ))(   )  ((   )   )  (   )(   )   (   )(   )  (   )(   )  (   )  

 (   )(   )  (   )  ………………………………………………………………………….….…. (1) 

 

In addition to the bilinearity of the vector and scalar product, and the Pythagorean property, we have: 

((   )   )  ((   )   )  (       )  (       ) 

 (   )  (   )   (   )  (   )  (   )  (   ) 
 (   )(   )  (   )   (   )  (   )  (   )(   )  (   )  …………………………. (2) 
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We equate (1) and (2) and then use (2.1) and (2.2). Then for all c is valid: 

  (  (   ))   (   )  (   ) 

 (   )(   )  (   )(   ) 
   ((   )  (   ) ) 

 

It follows that   (   )  (   )  (   )  
(2.4) To prove the latter property, we again use the bilinearity of the vector product and properties (2.2) and (2.3) 

(   )  ((   )  (   ))  (   )  (               )    (   )    (   )  

  (   )    (   )    (   )    (   )    (   )    (   )     (   )    
(   )  (   )  (   )  (   )  (   )  (   )  (   )  (   )  (   )  ………… (3) 

 

We now apply (2.3) to the vectors (a+c) and (b+c): 

(   )  ((   )  (   ))  ((   )  (   ))(   )  ((   )  (   ))(   )  (        

       )  (               )  (            ) …………………………………. (4) 

 

Finally, by equating (3) and (4) we obtain   (   )   ((   )   )  (   )  (   )   (   )  
 

Corollary 2.3  

Let a, b and c be orthogonal unit vectors from R
n
. if the vector posses on R

n
 exists, then it must have the 

following properties: 

(2.5)   (   )      
(2.6)   (   )   ((   )   ) 

 

Proof: The proof follows from the previous lemma. 

(2.5)   (   )  (   )  (   )     
(2.6)   (   )   ((   )    (   )  (   )   (   )   ((   )   ) 

 

In both cases we used the orthogonality of the vector, i.e. a b=a c=b c=0 

 

We have now defined all the basic properties of the vector product we are looking for. Next the step is to 

construct a vector multiplication table for the orthornormal base at R
n
. We denote the unit vector in R

n
. we notice that in 

R
3
 we have {e1,e2,e3}={e1,e2, e1×e2}. Let’s see how we can generalize that idea. Let’s define a series of sets Sk with: 

 

S0={u0} 

Sk= Sk-1 ∪ {uk} ∪ (Sk-1× uk ) , where uk  Sk-1 , that is , it is valid: 

        for all u∊ Sk-1 

 

Consider the sets S0, S1, S2 and S3; 

S0={u0}, 

     ∪ *  ) ∪ (     )  *           +  
     ∪ *  ) ∪ (     )  *                           (      )    +  
     ∪ *  ) ∪ (     )

 *                           (      )                    (      )
          (      )     (      )     ((      )    )    + 

 

Note that S1 structurally corresponds to the set {e1,e2, e1×e2}. Let us also define the vector product of the sets Sk 

      (              }  

 

And expensive  

      ∪ (   )  
 

With the next two lemma we will show that the sets Sn are othonormal and closed with respect to the vector product. 

 

Lemma 2.4. 

   *           + is an orthonormal set. Further,           
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Proof: Orthogonality follows from the definition of the vector product and the definition of the set   : 
   (     )     
   (     )   , 
         

 

And the standardization from the definition of S1 and properties (2.1),(2.2),(2.3): 

               
(     )  (     )=   (   (     ))          

 

We also show that          . By (2.2) and (2.5) we have: 

   (     )          
   (     )           

 

Lemma 2.5 

Sk is an orthonormal set. Further,           and |  |   
      

 

Proof: We prove by induction. For k=1, the statement holds for the pervious lemma. Assumption we see that Sk-1 is an 

orthonormal set, and that                 and |    |   
   . We show that the statement holds for Sk. let b1, b2 

     . By definition, each element from Sk form b1, uk or b1×uk. From (2.1),(2.2) and (2.5) it follows: 

   (     )     (     )                                  

And (     )  (     )     ((     )    )      (   (     ))     
 

So we conclude that Sk is an orthorgonal set. Assuming induction, all element from Sk-1 are standardized, uk is 

standardized by definition and by (2.1) and (2.5) for b1×uk is valid: 

(     )  (     )     (   (     ))          
 

Thus, it is true that Sk  is also normalized. To prove that           is valid, let us remember that Sk=Sk-1 

∪ *  + ∪ (       ) and       ∪ (   ). By the assumption of induction           is     ∪ (     )       , 
by definition it is              ,    (     )              . It remains to show the following: 

   (     )   ((     )    )       and    (     )          , 
(     )  (     )      (   (     ))                

 

It follows that Sk is an orthonormal set,           and 2|    |     ( 
   )           

 

Lemma 2.5 shows us how to construct a multiplication table for a vector product. Thus due to bilinearity, a vector 

product can be defined on R
n
 only if its Sk base is for some k. it is now clear that in this case n=|  | is valid  i.e. 

n=       
 

For k = 1, we observe R
3
. The multiplication table corresponds to the construction explained in lemma 2.5, with 

e1=u0, e2=u1 and e3=u0×u1. Let’s see what the table for k=2 would look like, with the corresponding base {e1, e2,…,e7} for 

R
7
. With the help of lemma 2.5, we generate a database: 

                                                                                                           
                                                        (     )     
 

And then using properties (2.2), (2.5) and (2.6) we calculate the elements of the vector multiplication table: 

                 
                 
         (     )            
                
         (     )           
         (     )   (      )          

         ((     )    )   (   (     ))               

         (     )         
               ; 
         (     )= (     )         
         (     )            

         ((     )    )   (   (     ))                 

      (      )         
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      (     )  (     )   ((     )    )                 

      (     )  (     )   ((     )    )               

      (     )  ((     )    )           

         (     )=        
         (     )          
         ((     )    )             

      (     )  (     )      (   (     ))              

      (     )  ((     )    )  ((     )  (     ))     (     )             

      (     )  ((     )    )   ((     )  (     ))     (     )              
 

For elements below the diagonal, we use property (2.2) i.e the anticommutativity vector product. Thus, the 

multiplication table for R
7
 is as follows: 

                       
   0                      
  =     0                  
          0               
               0          
                 0        
                    0     
                        0 

 

Using the table and bilinearity of the vector product, we can express an explicit formulae for calculating the 

vector product in R
7
. For vectors a=(a1,a2,a3,a4,a5,a6,a7) and b=(b1,b2,b3,b4,b5,b6,b7) their vector product is equal to:  

    (                              )   (                          
    )   (                              )   (                          
    )   (                              )   (                          
    )   (                              )   …………………………………… (2.1) 

 

Theorem 2.6 

Formula (2.1) defines the vector product on R
7
.  

 

Proof: It is proved by direct verification of properties 

(i), (ii) and (iii) and in definition 2.1) we skip the detail 

of the evidence due to technical complexity. 

 

 

 

 

Note 2.7 

The vector product on R
7
 doesn not satisfy 

jacobi’s identiy, which is easy check from definition. 

 

So far we have shown that if a vector product 

on R
n
 exists then n=       and Lemma 2.5 tells us 

how to construct a multiplication table for computation 

product, while retaining all the properties from the 

definition. 

 

Lemma 2.8 

Let                           ((     )    )                              
 

Proof: We use (2.2),(2.5) and (2.6) 

    (           )  (      ((     )    )    ) 

 (     )  (     )  (     )  (((     )    )    )  (     )  (     )  (     )  (((     )    )    ) 

                           
 

For the second part of the statement, we note that                   and ((     )    )     
respectively are elements of Sk, for k>2, and by lemma 2.5 we know that they are mutually orthogonal. 

 

Lemma 2.9 

Let                          ((     )    )          (   )(   )      (   )  (   )  (   )
 . 

 

Proof: Vector                   and ((     )    )     respectively are elements of Sk, for k>2 , So they are 

also orthonormal and are valid                   , and from the pervious lemma it is valid      , what 

pulls (   )(   )      (   )  (   )  (   )  
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Theorem 2.10 

The vector product at R
n
 exists if and only if 

n=0,1,3 or 7. Furthermore, for R
3
 and R

7
 there are 

orthonormal bases S1 and S2 such that       
             

 

Proof: By lemma 2.5, we see that the vector 

product exists only on n=      . Next lemma 2.8 and 

2.9 tells us that if we define a vector product on 

  
     , Pythagoras property is not valid for k>2. It 

follows that a vector product with properties of 

verticality, bilinearity and Pythagorean property can 

exist only on R
0
, R

1
,R

3 
and R

7
. Theorem 2.6 proves the 

existence of a vector product on R
7
. Furthermore, trivial 

mapping (which maps all pairs of vectors to zero 

vector) defines the vector product of R
0
 and R

1
. The 

construction of the vector product on R
3
 is already done 

in 1. Finally, lemma 2.5 tells us how to generate 

orthonormal bases S1 and S2 for R
3
 and R

7
, such that it 

is worth                    
 

Application of Cross Product 

Cross product has many applications in 

mathematics, physics, engineering, and computer 

programming. Few conceptual applications are as 

explained. 

 

Angular Velocity 

The angular velocity at any point is equal to 

half of the curl of the linear velocity at that point of the 

body i.e. 

 ⃗⃗  
 

 
 curl   

 

And curl may be defined as follows by cross product 

Let    be a vector valued function, then curl of 

   is denoted by curl   or      and is defined by 

     (  
 

  
   

 

  
  ⃗ 

 

  
)      

 

Volume Integrals 

Any integral which is to be evaluated over a 

volume is called a volume integral. We have a use of 

cross product on volume integral as: 

 

Let S be a piece wise smooth oriented surface 

in space and the boundary of S be a piecewise smooth 

simple closed curve C. Let   (x, y, z) be a continuos 

vector valued function that has continuous first partial 

derivates in a domain in space containing S. 

Then∬(    
 

    ⃗ )   ∮      
 

, where  ⃗  is a unit 

normal vector of S and the integration around C is taken 

in anticlockwise direction with respect of  ⃗ . 
 

Orbital Angular Momentum in 3 D 

In vector notation, the orbital angular 

momentum of a point particle in motion about the 

origin is defined as: L = Iω 

 

 

Where, 

I =   m is the moment of inertia for a point 

mass 

ω= 
   

  
 is the orbital angular velocity in rad/sec 

of the particle about the origin 

r is the position vector of the particle relative 

to the origin, and 

m is the mass of the particle 

 

This by the rules of vector algebra can be rearranged as: 

L = (  m) (
   

  
) 

= m(r x v) 

= r x mv 

= r x p  

 

Which is the cross product of the position 

vector r ad the linear momentum p = mv of the particle. 

By the definition of the cross product, the L vector is 

perpendicular to both r and p. 

 

Game Programming 

Knowledge of cross product is also useful to 

any programmer interested in 3D computer graphics or 

3D computer game programming.  

 

If we say the vectors (i, j, k) (i, j, k) are the 

vectors that form the orthogonal basis for our 

coordinate space, then the cross product satisfies the 

following identities: 

i × j = k 

j × k = i 

k × i = j 

 

And if we swap the order of the vectors for the 

cross product, the result will be negated, i.e. to say the 

result vector will have opposite direction. 

j × i = − k 

k × j = − i 

i × k = − j 

 

It is also useful to note, that when switching 

from a left-handed coordinate system and a right-

handed coordinate system, one of the axes is inverted 

(traditionally the z-axis is inverted). This means that if 

in a left-handed coordinate system the result of the 

cross product on the unit basis vectors (x, y, z):  

x × y = z 

 

This means that in a left-handed coordinate 

system, the result of the cross product will point away 

from the viewer (into the screen), but in a right-handed 

coordinate system, the result of the same cross product 

will point towards the viewer (out of the screen). This is 

a by-product of the handedness of the coordinate 

system. More clearly, right-handedness signifies any 

positive axis (x, y, or z) pointing towards the viewer 

whereas; left-handedness signifies any positive axis (x, 

y, or z) pointing away from the viewer. Hence cross 

product is an essential part in graphics programming. 
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Computational Geometry 

Computational geometry is a branch of 

computer science which deals with the study of 

algorithms that aims at solving problems about 

geometric objects. Its application areas include 

computer graphics, computer-aided design and 

geographic information systems, robotics, and so on.  

 

The cross product appears in the calculation of 

the distance of two skew lines which are not in the same 

plane from each other in 3D space. The cross product is 

also extensively used to calculate the normal for a 

triangle or polygon which is an operation often used 

in computer graphics. For example, the winding of a 

polygon either clockwise or anticlockwise about a point 

within the polygon can be calculated by triangulating 

the polygon (like spokes of a wheel) and summing the 

angles between the spokes by using the cross product to 

keep a pathway of the sign of each angle. Besides, the 

cross product is used in calculating the volume of 

a polyhedron such as a tetrahedron or parallelepiped. 

 

CONCLUSION 
Given the properties of bilinearity, 

orthogonality and magnitude, a nonzero cross product 

exists only in three and seven dimensions. This can be 

shown by postulating the properties required for the 

cross product, then deducing an equation which is only 

satisfied when the dimension is 0,1,3 or 7. In zero 

dimensions there is only zero vector, while in one 

dimension all vectors are parallel, So in both these cases 

the product must be identically zero. Moreover, we 

have shown the existence of cross product on R
n
 

starting from the definition and properties of cross 

product. 
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