

Evaluation of Laterality, Tumor Stage and Management Modalities in Retinoblastoma Patients

Dr. A.K.M. Mamunur Rahman^{1*}, Prof. Dr. A. H. M. Enayet Hussain², Dr. Kripadhan Chakroborty³, Dr. Dewan Fazle Ghani⁴, Dr. Rafia Islam Jui⁵

¹Associate Professor, Department of Ophthalmology, Jahurul Islam Medical College, Kishoreganj, Bangladesh

²Professor and Head, Department of Pediatric Ophthalmology and Strabismus, National Institute of Ophthalmology & Hospital, Dhaka, Bangladesh

³Associate Professor, Department of Ophthalmology, Kumuduni Women's Medical College, Mirzapur, Tangail, Bangladesh

⁴Junior Consultant, Department of Ophthalmology, Ispahani Islamia Eye Institute and Hospital, Dhaka, Bangladesh

⁵Student, Department of Ophthalmology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh

DOI: [10.36347/sasjs.2021.v07i12.012](https://doi.org/10.36347/sasjs.2021.v07i12.012)

| Received: 15.11.2021 | Accepted: 18.12.2021 | Published: 30.12.2021

*Corresponding author: Dr. A.K.M. Mamunur Rahman

Abstract

Original Research Article

Background: Retinoblastoma is the most common primary intraocular malignancy of childhood and remains a major cause of ocular morbidity and mortality in developing countries due to delayed presentation and limited access to specialized care. Early recognition of clinical features and appropriate treatment strategies are crucial for improving survival and ocular outcomes. **Methods:** This hospital-based descriptive study was conducted in the Department of Ophthalmology, National Institute of Ophthalmology and Hospital, Dhaka, Bangladesh, from April 2011 to March 2013. A total of 46 children clinically diagnosed with retinoblastoma were included. Patients with other ocular diseases or incomplete medical records were excluded. Data regarding demographic characteristics, clinical presentation, tumor stage, laterality and treatment modalities were collected and analyzed using descriptive statistics. **Results:** The majority of patients presented between 1 and 3 years of age (56.5%), with a slight male predominance (56.5%). Leukocoria was the most common presenting feature, observed in 69.6% of cases, followed by leukocoria with proptosis (15.2%). Most patients were diagnosed at Stage II (60.9%), while Stage I and Stage III accounted for 19.6% each; no Stage IV disease was identified. Unilateral involvement was more frequent (71.7%) than bilateral disease (28.3%). Enucleation combined with radiotherapy was the most commonly employed treatment (26.1%), followed by enucleation alone (21.7%) and chemotherapy (19.6%). A small proportion of patients (6.5%) were lost to follow-up. **Conclusion:** Retinoblastoma in this cohort predominantly presented in early childhood with leukocoria and unilateral disease. Most patients were diagnosed at a moderately advanced intraocular stage, necessitating combined treatment approaches. Strengthening early detection and referral systems may further improve outcomes.

Key words: Retinoblastoma, Leukocoria, Enucleation, Pediatric ocular tumor.

Copyright © 2021 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

Retinoblastoma (RB) is the most common primary intraocular malignancy of childhood and a significant cause of pediatric ocular morbidity [1]. It arises from the retinal cells due to mutations in the RB1 gene and may present as unilateral or bilateral disease. Early diagnosis is crucial, as tumors confined to the globe are potentially curable, whereas extraocular spread is associated with poor prognosis [2]. In developing countries, delayed presentation is common, often resulting in advanced stages at diagnosis and necessitating more aggressive treatment [3].

Children with retinoblastoma usually present with leukocoria (white reflex), strabismus, proptosis, or less commonly, hyphema, pseudohypopyon, redness, pain, or defective vision [4]. Tumor laterality has important implications for prognosis, management and family counseling. Bilateral tumors are more likely to be hereditary and appear at a younger age, whereas unilateral tumors are usually sporadic. Family history, consanguinity and other genetic factors may influence disease occurrence [5,6].

Accurate staging of retinoblastoma helps

Citation: A.K.M. Mamunur Rahman, A. H. M. Enayet Hussain, Kripadhan Chakroborty, Dewan Fazle Ghani, Dr. Rafia Islam Jui. Evaluation of Laterality, Tumor Stage and Management Modalities in Retinoblastoma Patients. SAS J Surg, 2021 Dec 7(12): 798-802.

798

determine treatment strategies and predict outcomes [7]. Management may include enucleation, external beam radiotherapy, cryotherapy, or chemotherapy, used alone or in combination depending on tumor size, location and severity [8]. Early-stage tumors may be treated conservatively to preserve the eye, while advanced cases often require enucleation to prevent progression and metastasis [9].

Despite available treatment options, late presentation and limited awareness remain significant challenges in many settings [10]. Hospital-based studies provide valuable insight into the patterns of laterality, tumor stage, clinical features and treatment modalities, which can guide early diagnosis, patient counseling and optimal management [11].

The present study was conducted to evaluate the laterality, tumor stage, clinical features and management approaches among children diagnosed with retinoblastoma at a tertiary ophthalmology center.

METHODOLOGY & MATERIALS

This hospital-based descriptive study was conducted in the Department of Ophthalmology, National Institute of Ophthalmology and Hospital, Dhaka, from April 2011 to March 2013. A total of 46 children suspected to have retinoblastoma, including those referred from other hospitals, were included.

RESULTS

Table 1: Age and Sex Distribution of Patients (n = 46)

Age	Males	Females	Total	Percentage (%)
<1 year	5	3	8	17.4
1–3 years	14	12	26	56.5
3–5 years	4	3	7	15.2
>5 years	3	2	5	10.9
Total	26	20	46	100

Table 1 shows the age and sex distribution of the 46 patients included in the study. The majority of cases (56.5%) presented between 1 and 3 years of age, followed by 15.2% between 3 and 5 years, 17.4% under

1 year and 10.9% over 5 years. Male patients (26/46, 56.5%) were slightly more than female patients (20/46, 43.5%) across all age groups.

Patients with ocular conditions other than retinoblastoma or incomplete medical records were excluded. Detailed history regarding presenting symptoms such as white reflex in the pupil, watering, pain, redness, protrusion of the eyeball, squint, hyphema and defective vision was obtained. Information on laterality, duration and progression of the disease was recorded. Family history, including consanguinity between parents and the health status of siblings and other relatives, was noted. All patients underwent thorough ocular examination, which included assessment of visual acuity, pupillary reaction, anterior and posterior segment evaluation, intraocular pressure and corneal diameter. Investigations included X-ray of the orbit and skull, computed tomography (CT) scan of the orbit and brain, B-scan ultrasonography and measurement of aqueous lactate dehydrogenase. Enucleated eyes were subjected to histopathological examination. Treatment modalities included enucleation, radiotherapy (referred to the Radiology Department), cryotherapy and chemotherapy, depending on the stage and severity of the tumor. All patients were followed up regularly, with careful examination of the empty socket and the apparently normal eye at each visit to monitor for recurrence or involvement. Data were entered and analyzed using Microsoft Excel. Descriptive statistics, including frequency, percentage, mean and standard deviation, were calculated to summarize the patients' demographic profile, clinical features, tumor stage, laterality and treatment modalities.

Table 2: Clinical Presentation of Retinoblastoma (n = 46)

Presentation	Number of Cases	Percentage (%)
White reflex in the pupil	32	69.6
White reflex with proptosis	7	15.2
Pseudohypopyon	5	10.9
Hyphema	2	4.3
Total	46	100

Table 2 presents the clinical presentations of retinoblastoma among the 46 patients. The most common presenting feature was white reflex in the pupil (leukocoria), observed in 32 patients (69.6%), followed

by white reflex with proptosis in 7 patients (15.2%). Pseudohypopyon was seen in 5 patients (10.9%) and hyphema was the least common, occurring in 2 patients (4.3%).

Table 3: Distribution of Retinoblastoma Stage at Presentation (n = 46)

Stage	Number of Cases	Percentage (%)
I	9	19.6
II	28	60.9
III	9	19.6
Total	46	100

Table 3 illustrates the distribution of retinoblastoma stages at presentation among the 46 patients. The majority of cases, 28 patients (60.9%),

presented at Stage II, followed by 9 patients (19.6%) at Stage I and 9 patients (19.6%) at Stage III. No patients were observed in Stage IV.

Table 4: Treatment Modalities Applied (n = 46)

Mode of Treatment	Number of Cases	Percentage (%)
Enucleation	10	21.7
Enucleation + Radiotherapy	12	26.1
Radiotherapy alone	8	17.4
Enucleation + Cryotherapy	4	8.7
Chemotherapy	9	19.6
Lost to Follow-up	3	6.5
Total	46	100

Table 4 shows the treatment modalities applied to the 46 patients with retinoblastoma. The most commonly used treatment was enucleation combined with radiotherapy (12 patients, 26.1%), followed by enucleation alone in 10 patients (21.7%) and

chemotherapy in 9 patients (19.6%). Radiotherapy alone was administered to 8 patients (17.4%), while enucleation with cryotherapy was used in 4 patients (8.7%). Three patients (6.5%) were lost to follow-up.

Table 5: Laterality of Retinoblastoma (n = 46)

Laterality	Number of Cases	Percentage (%)
Unilateral	33	71.7
Bilateral	13	28.3
Total	46	100

Table 5 presents the laterality of retinoblastoma among the 46 patients. Unilateral disease was observed in 33 patients (71.7%), while bilateral involvement was seen in 13 patients (28.3%).

DISCUSSION

Retinoblastoma remains the most common primary intraocular malignancy of childhood, with its clinical behavior strongly influenced by age at presentation, tumor laterality, stage and available treatment modalities. In the present study, the majority of patients (56.5%) presented between 1 and 3 years of age. The slight male predominance observed in our study (56.5%) has also been noted in studies from Korea, Turkey and the Middle East, although gender differences are generally considered minimal in retinoblastoma epidemiology [12, 13, 14].

Leukocoria was the most common presenting feature in our cohort, occurring in 69.6% of cases, followed by leukocoria with proptosis (15.2%). This finding is comparable to reports from Central America and South Africa, where leukocoria remains the dominant early sign, while proptosis reflects more advanced disease at presentation [15, 16]. The presence of pseudohypopyon (10.9%) and hyphema (4.3%) in our study indicates delayed presentation in a subset of

patients, a pattern commonly reported in developing countries where awareness and early screening are limited.

Tumor staging analysis revealed that most patients presented with Stage II disease (60.9%), while Stage I and Stage III accounted for 19.6% each. The absence of Stage IV disease suggests that although presentation was often delayed, most tumors remained confined to the globe. Similar stage distributions have been reported by Ozdemir *et al.* and Al-Nawaiseh *et al.*, who noted a predominance of intraocular disease at diagnosis in tertiary referral centers [13, 17]. Yan *et al.* emphasized the importance of tumor size and extent of histological involvement in determining management, supporting the rationale for aggressive treatment in Stage II and III cases to prevent progression [18].

Laterality analysis showed that unilateral retinoblastoma was more common (71.7%) than bilateral disease (28.3%), which aligns with global data indicating unilateral involvement in approximately two-thirds of cases [19,20]. Bilateral cases are more often associated with germline mutations and earlier onset, as described by Ali *et al.*, although genetic testing was not routinely available in our setting during the study period [21].

Management strategies in our study reflected disease stage and resource availability. Combined enucleation and radiotherapy was the most frequently used modality (26.1%), followed by enucleation alone (21.7%) and chemotherapy (19.6%). These findings are consistent with recommendations from Chantada *et al.*, who proposed graduated-intensity treatment protocols for developing countries, where eye salvage therapies may be limited by late presentation and infrastructure constraints [22].

While newer eye-salvaging techniques such as intra-arterial chemotherapy have shown promising results in specialized centers, such modalities were not widely available during the period of this study [23, 24]. Chemotherapy-based approaches, as described by Kim *et al.* and Varan *et al.*, were selectively used in our cohort, reflecting evolving treatment practices [25, 26]. Loss to follow-up in 6.5% of patients highlights ongoing challenges in long-term care adherence, a problem also noted by Aziz *et al.* in their evaluation of treatment burden and socioeconomic impact [27].

Limitations of the study

This study has several limitations that should be considered while interpreting the findings. It was a hospital-based descriptive study conducted at a single tertiary care center, which may limit the generalizability of the results to the wider population. The sample size was relatively small and advanced genetic testing and newer imaging or treatment modalities were not routinely available during the study period. Additionally, long-term visual and survival outcomes could not be fully assessed due to loss to follow-up in a small proportion of patients. Despite these limitations, the study provides valuable insight into the clinical presentation, staging, laterality and management practices of retinoblastoma in a resource-limited setting.

CONCLUSION

Retinoblastoma in this cohort predominantly affected children in early childhood, with leukocoria being the most common presenting sign and unilateral involvement occurring more frequently than bilateral disease. Most patients presented with moderately advanced intraocular tumors, requiring a combination of surgical and adjunctive treatment modalities, with enucleation remaining a commonly employed approach. The findings highlight the importance of early detection, prompt referral and appropriate staging to improve eye salvage and patient outcomes. Strengthening public awareness and improving access to specialized ophthalmic care may contribute to earlier diagnosis and better management of retinoblastoma in similar settings.

Financial support and sponsorship: No funding sources.

Conflicts of interest: There are no conflicts of interest.

REFERENCES

1. Meel R, Radhakrishnan V, Bakhshi S. Current therapy and recent advances in the management of retinoblastoma. Indian Journal of Medical and Paediatric Oncology. 2012 Apr;33(02):80-8.
2. Islam F, Zafar SN, Siddiqui SN, Khan A. Clinical course of retinoblastoma. J Coll Physicians Surg Pak. 2013 Aug 1;23(8):566-9.
3. Rodriguez-Galindo C, Chantada GL, Haik BG, Wilson MW. Treatment of retinoblastoma: current status and future perspectives. Current Treatment Options in Neurology. 2007 Jul;9(4):294-307.
4. de Graaf P, Göricker S, Rodjan F, Galluzzi P, Maeder P, Castelijns JA, Brisse HJ, European Retinoblastoma Imaging Collaboration (ERIC). Guidelines for imaging retinoblastoma: imaging principles and MRI standardization. Pediatric radiology. 2012 Jan;42(1):2-14.
5. Ramírez-Ortiz MA, Ponce-Castañeda MV, Cabrera-Muñoz ML, Medina-Sansón A, Liu X, Orjuela MA. Diagnostic delay and sociodemographic predictors of stage at diagnosis and mortality in unilateral and bilateral retinoblastoma. Cancer epidemiology, biomarkers & prevention. 2014 May 1;23(5):784-92.
6. Chawla B, Jain A, Azad R. Conservative treatment modalities in retinoblastoma. Indian Journal of Ophthalmology. 2013 Sep 1;61(9):479-85.
7. Shields CL, Fulco EM, Arias JD, Alarcon C, Pellegrini M, Rishi P, Kaliki S, Bianciotto CG, Shields JA. Retinoblastoma frontiers with intravenous, intra-arterial, periocular and intravitreal chemotherapy. Eye. 2013 Feb;27(2):253-64.
8. Lim FP, Soh SY, Iyer JV, Tan AM, Swati H, Quah BL. Clinical profile, management and outcome of retinoblastoma in Singapore. Journal of Pediatric Ophthalmology & Strabismus. 2013 Mar 1;50(2):106-12.
9. Kiss S, Leiderman YI, Mukai S. Diagnosis, classification and treatment of retinoblastoma. International ophthalmology clinics. 2008 Apr 1;48(2):135-47.
10. Pandey AN. Retinoblastoma: an overview. Saudi journal of ophthalmology. 2014 Oct 1;28(4):310-5.
11. Eagle Jr RC. High-risk features and tumor differentiation in retinoblastoma: a retrospective histopathologic study. Archives of pathology & laboratory medicine. 2009 Aug 1;133(8):1203-9.
12. Chung SE, Sa HS, Koo HH, Yoo KH, Sung KW, Ham DI. Clinical manifestations and treatment of retinoblastoma in Korea. British journal of ophthalmology. 2008 Sep 1;92(9):1180-4.
13. Ozdemir H, Tacyildiz N, Unal E, Yavuz G, Ugur H, Gunduz K. Clinical and epidemiological characteristics of retinoblastoma: correlation with prognosis in a Turkish pediatric oncology center. Pediatric hematology and oncology. 2007 Jan 1;24(3):221-31.
14. Othman IS. Retinoblastoma major review with updates on Middle East management protocols.

Saudi Journal of Ophthalmology. 2012 Apr 1;26(2):163-75.

15. Luna-Fineman S, Barnoya M, Bonilla M, Fu L, Baez F, Rodríguez-Galindo C. Retinoblastoma in central America: report from the central American association of pediatric hematology oncology (AHOPCA). Pediatric blood & cancer. 2012 Apr;58(4):545-50.

16. Goolam S. RETINOBLASTOMA IN SOUTH AFRICA A 20-Year Retrospective Study at Two Tertiary Academic Hospitals in Johannesburg. University of the Witwatersrand, Johannesburg (South Africa); 2014.

17. Al-Nawaiseh I, Jammal HM, Khader YS, Jaradat I, Barham R. Retinoblastoma in Jordan, 2003–2013: ocular survival and associated factors. Ophthalmic epidemiology. 2014 Dec 1;21(6):406-11.

18. Yan J, Zhang H, Li Y. Establishment of the relationship between tumor size and range of histological involvement to evaluate the rationality of current retinoblastoma management. PLoS one. 2013 Nov 28;8(11):e80484.

19. Soin K andreoli M, Chau F, Leiderman YI. Retinoblastoma: A Review of 1,452 Cases. Investigative Ophthalmology & Visual Science. 2014 Apr 30;55(13):4473-.

20. Ghassemi F, Chams H, Sabour S, Karkhaneh R, Farzbod F, Khodaparast M, Vosough P. Characteristics of germline and non-germline retinoblastomas. Journal of Ophthalmic & Vision Research. 2014 Apr;9(2):188.

21. Ali MJ, Parsam VL, Honavar SG, Kannabiran C, Vemuganti GK, Reddy VA. RB1 gene mutations in retinoblastoma and its clinical correlation. Saudi Journal of Ophthalmology. 2010 Oct 1;24(4):119-23.

22. Chantada G, Luna-Fineman S, Sitorus RS, Kruger M, Israels T, Leal-Leal C, Bakhshi S, Qaddoumi I, Abramson DH, Doz F, SIOP-PODC Graduated-Intensity Retinoblastoma Guidelines Writing Committee. SIOP-PODC recommendations for graduated-intensity treatment of retinoblastoma in developing countries. Pediatric Blood & Cancer. 2013 May;60(5):719-27.

23. Abramson DH, Dunkel IJ, Brodie SE, Kim JW, Gobin YP. A phase I/II study of direct intraarterial (ophthalmic artery) chemotherapy with melphalan for intraocular retinoblastoma: initial results. Ophthalmology. 2008 Aug 1;115(8):1398-404.

24. Suzuki S, Yamane T, Mohri M, Kaneko A. Selective ophthalmic arterial injection therapy for intraocular retinoblastoma: the long-term prognosis. Ophthalmology. 2011 Oct 1;118(10):2081-7.

25. Kim H, Lee JW, Kang HJ, Park HJ, Kim YY, Shin HY, Yu YS, Kim IH, Ahn HS. Clinical results of chemotherapy based treatment in retinoblastoma patients: a single center experience. Cancer Research and Treatment: Official Journal of Korean Cancer Association. 2008 Dec 31;40(4):164-71.

26. Varan A, Kiratli H, Aydin B, Tarlan B, Poyraz CB, Akyüz C, Büyükpamukçu M. The treatment of retinoblastoma with four-drug regimen including cisplatin, etoposide, vincristine and cyclophosphamide. Pediatric hematology and oncology. 2012 Aug 21;29(6):529-37.

27. Aziz HA, LaSenna CE, Vigoda M, Fernandes C, Feuer W, Aziz-Sultan MA, Murray TG. Retinoblastoma treatment burden and economic cost: impact of age at diagnosis and selection of primary therapy. Clinical Ophthalmology. 2012 Oct 4:1601-6.