

Coronary Microvascular Dysfunction and Normoglycemic Insulin Resistance: The Invisible Threat

Ilyas Mammadyarov¹, Babak Bahrami^{2*}, Saime Buse GÜVEN³

¹Professor at the Nakhchivan State University, Faculty of Medicine, Department of Clinical Sciences and Cardiovascular Surgeon at the Cardiovascular Surgery Department of Nakhchivan Health Center Hospital

²Intern Doctor at the Nakhchivan State University Faculty of Medicine, and Cardiovascular Surgeon Assistant at the Cardiovascular Surgery Department of Nakhchivan Health Center Hospital

³Intern Doctor at the Nakhchivan State University Faculty of Medicine

DOI: <https://doi.org/10.36347/sjmc.2026.v14i02.013>

| Received: 18.12.2025 | Accepted: 03.02.2026 | Published: 10.02.2026

***Corresponding author:** Babak Bahrami

Intern Doctor at the Nakhchivan State University Faculty of Medicine, and Cardiovascular Surgeon Assistant at the Cardiovascular Surgery Department of Nakhchivan Health Center Hospital

Abstract**Original Research Article**

This study aims to investigate the presence and associated factors of Coronary Microvascular Dysfunction [CMD] in young women who presented to the hospital with dyspnea, chest pain, and hypertension, and who were non-diabetic but exhibited insulin resistance. Our findings reveal that insulin resistance is a significant risk factor for CMD in young women, even when their blood sugar levels are normal [normoglycemic]. Notably, the increased epicardial fat thickness observed in these patients suggests that it may play a critical role in the pathophysiology of CMD. These results emphasize the need to consider metabolic parameters for the early diagnosis and treatment of CMD in young and normoglycemic individuals.

Keywords: Coronary Microvascular Dysfunction, insulin resistance, normoglycemic, metabolic syndrome, Homeostatic Model Assessment of Insulin Resistance, Leptin/Adiponectin, Transthoracic ECHO, Endothelial Function.

Copyright © 2026 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

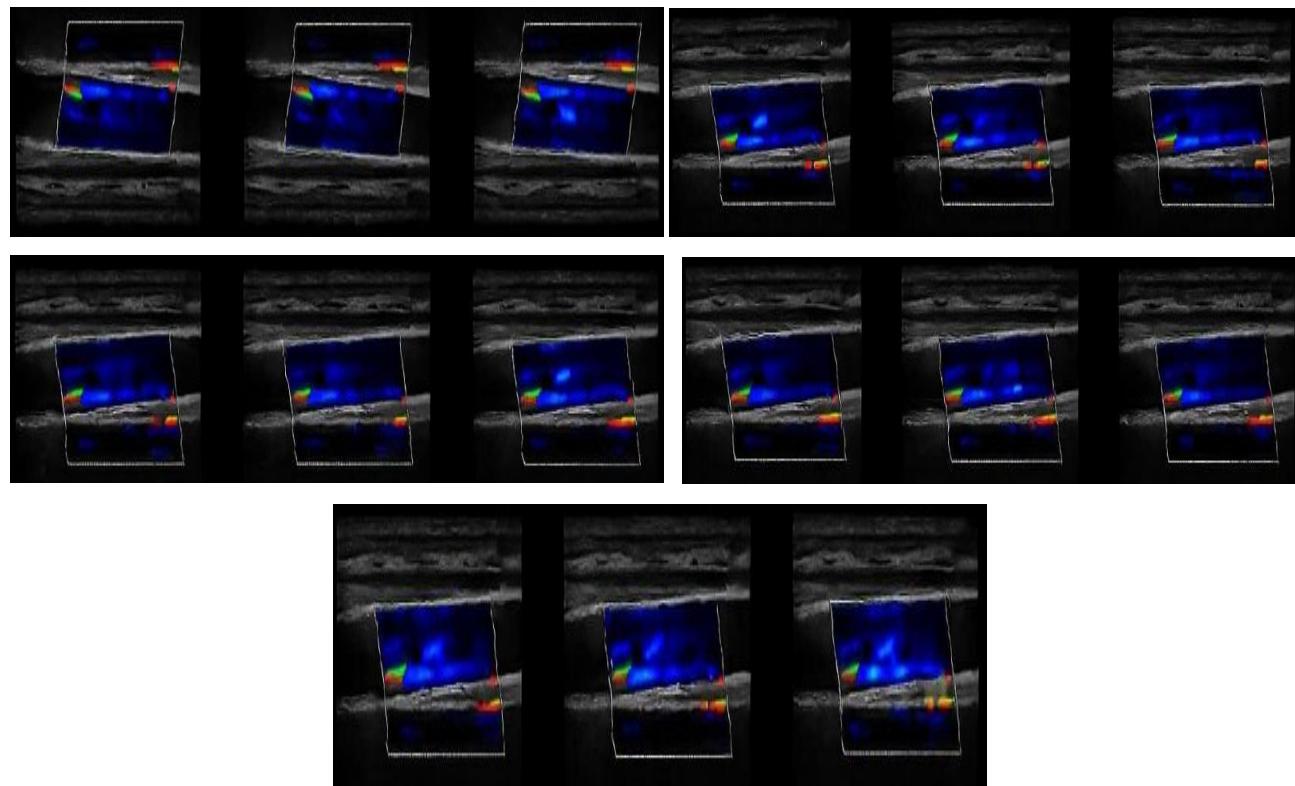
INTRODUCTION

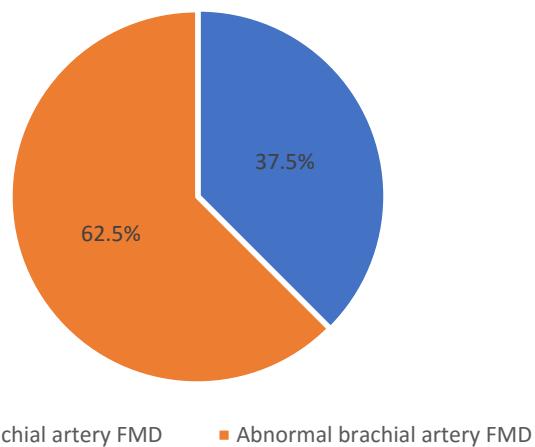
Coronary Microvascular Dysfunction [CMD] is strongly associated with components of the metabolic syndrome, such as diabetes and obesity, and is a significant predictor of increased cardiovascular risk in these diseases [1,2,3,4,5]. However, less information is available regarding the prevalence and underlying pathophysiological mechanisms of CMD in young women who have normal blood sugar levels [normoglycemia] but exhibit insulin resistance. It has been shown that insulin resistance can trigger endothelial dysfunction and initiate the process of subclinical atherosclerosis even before glucose levels become impaired [6,7,8,9,10,11]. It is hypothesized that in this population, insulin resistance poses an invisible threat, leading to damage at the microvascular level. In this study, we aimed to shed light on this important issue in normoglycemic young women by evaluating the Homeostatic Model Assessment of Insulin Resistance [HOMA-IR], the leptin-to-adiponectin ratio, epicardial

fat thickness, and coronary flow reserve [CFR]. The leptin/adiponectin ratio has been suggested as a powerful marker of insulin resistance and associated cardiovascular risk [12,13,14]. Furthermore, we tested the hypothesis that an increase in epicardial fat tissue thickness may directly affect the coronary microvascular bed through local inflammation and vascular dysfunction [15,16,17,18,19]. A reduction in coronary flow reserve is accepted as an early and important indicator of microvascular dysfunction [20,21,22].

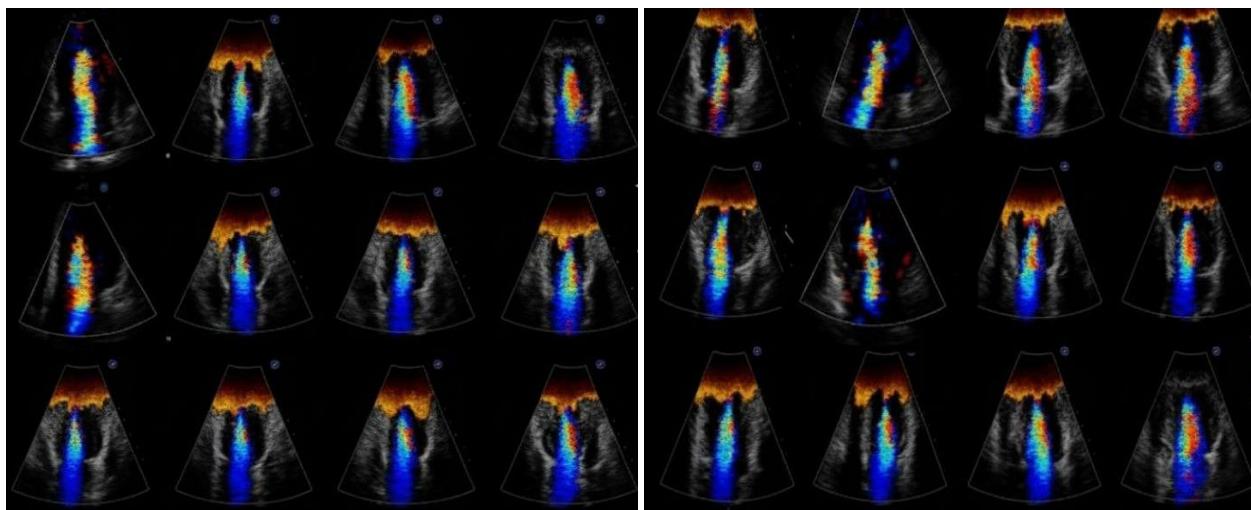
METHODS

The study included a total of 24 young female patients with an abnormal Coronary Flow Reserve [CFR] who were also normoglycemic. Measurements for all patients were recorded, including age, BMI, leptin/adiponectin ratio, endothelial function of the brachial artery [FMD], and epicardial adipose tissue [EAT] thickness.

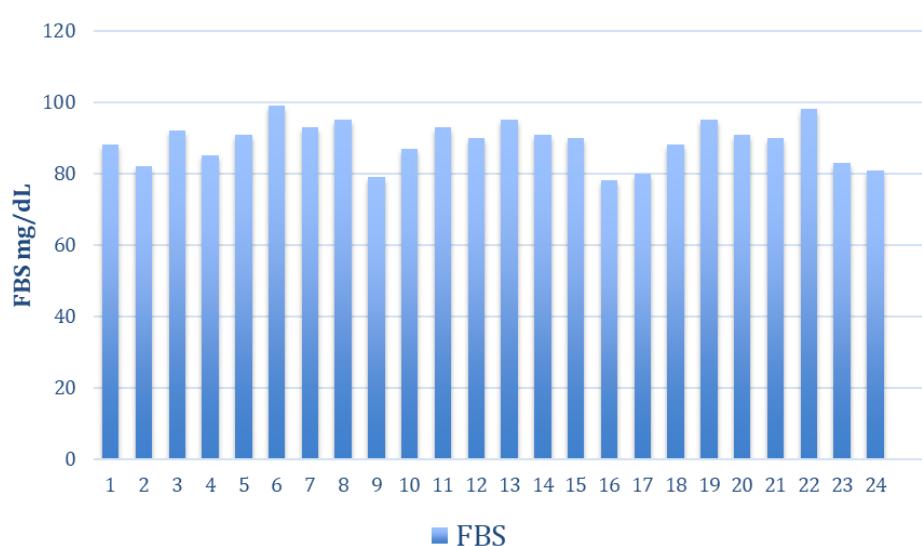

Table 1: Measurement Protocols

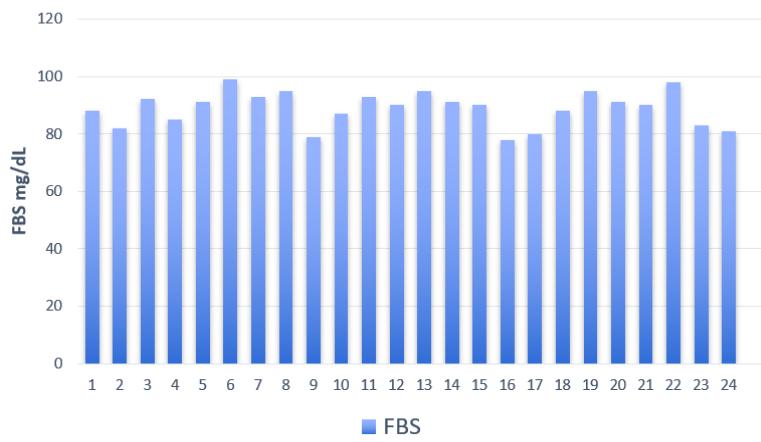

Parameter	Method
Insulin Resistance	HOMA-IR [Formula: [Glucose [mg/dL] x Insulin [μ IU/mL]] / 405]
CFR [Coronary Flow Reserve]	Adenosine-stress echocardiography [LAD end-diastolic flow velocity]
Epicardial Fat	Transthoracic ECHO [Right ventricle free wall, end-diastole]
Endothelial Function	Brachial artery FMD [Flow-Mediated Dilation]
Biomarkers	ELISA [Leptin, Adiponectin, hs-CRP]

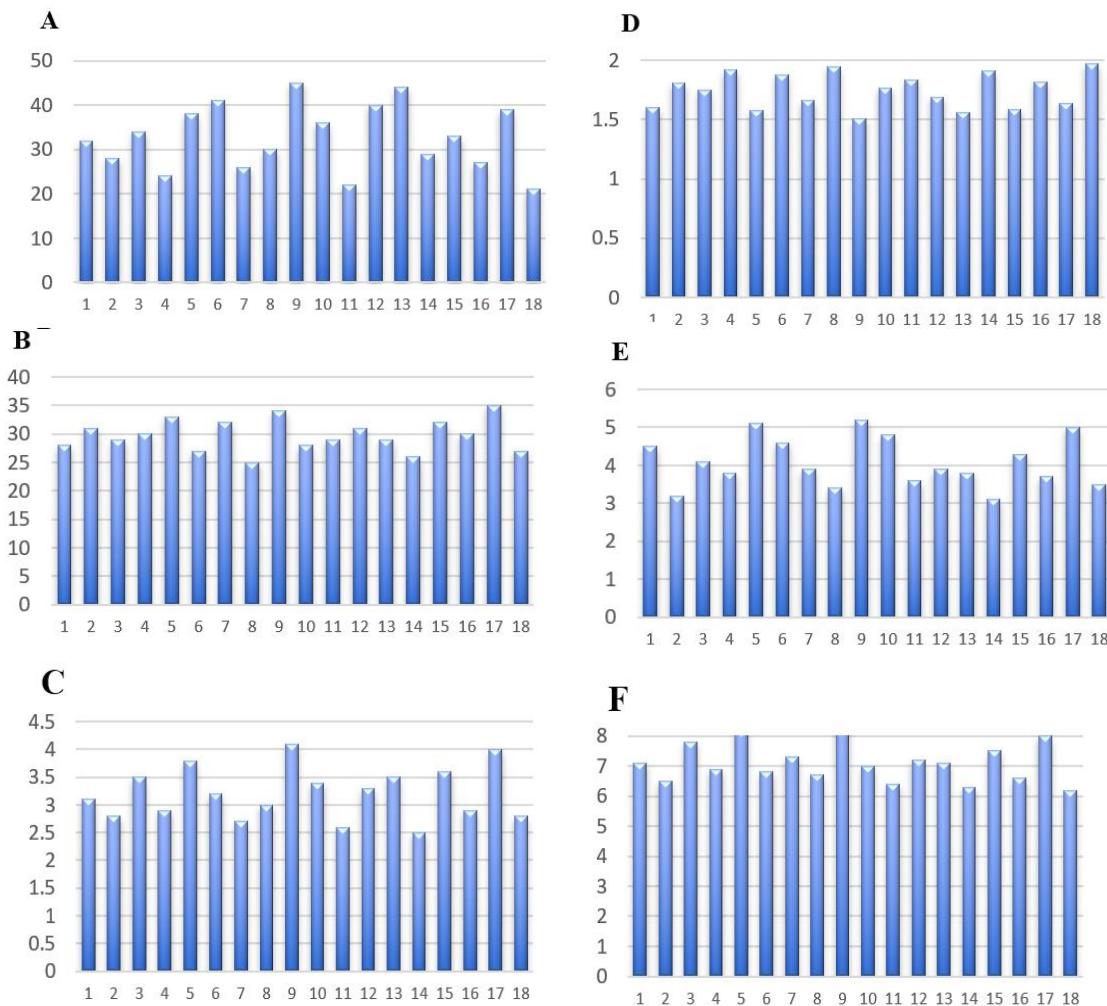
FINDINGS

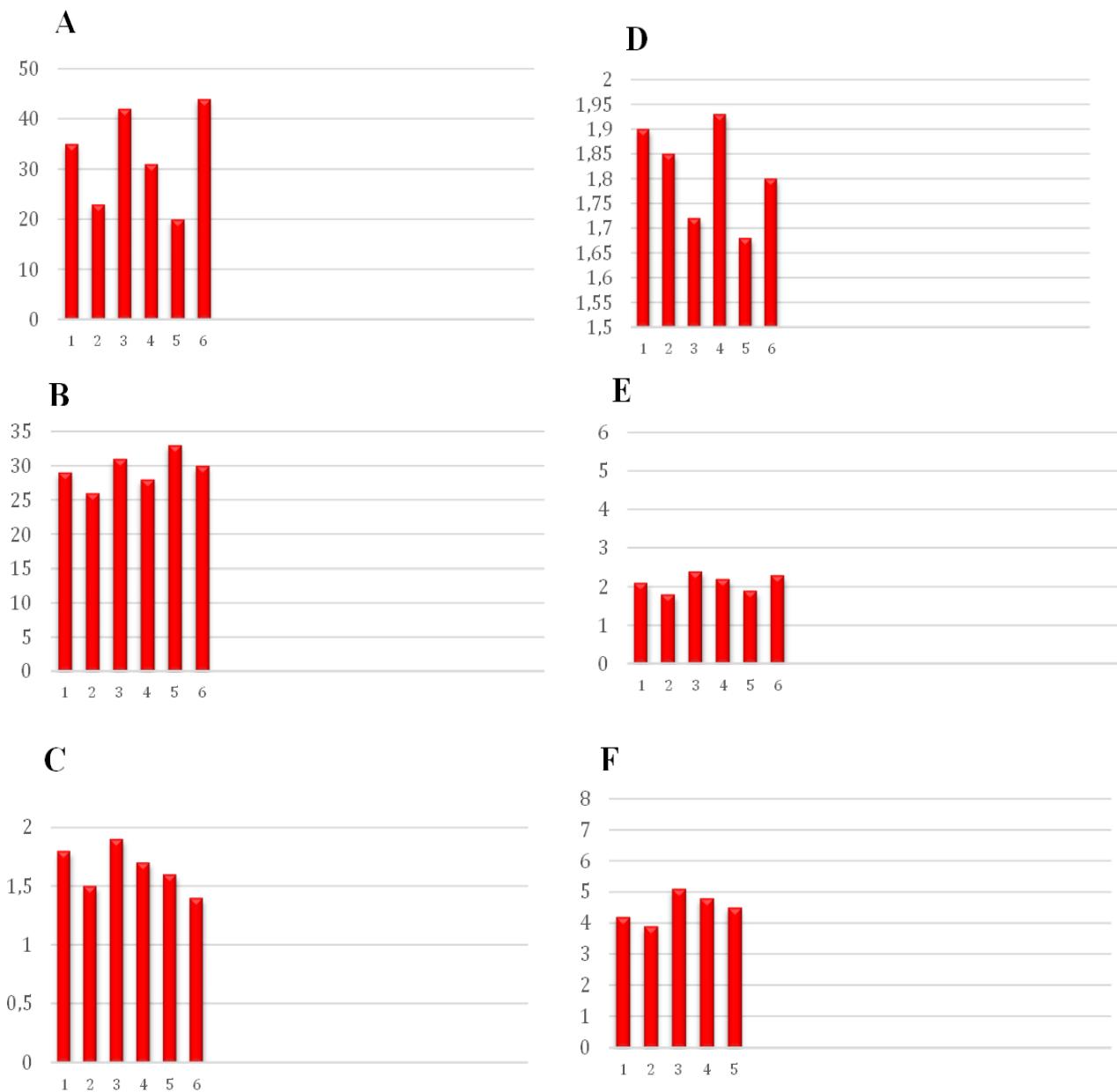

Out of the 24 patients, both the CFR [Coronary Flow Reserve] and HOMA-IR values were abnormal in 18 patients. In 15 of these patients, the brachial artery Flow-Mediated Dilation [FMD] was defined as below 7% [Figure 1], while in 9 patients, it was between 10-15%. The 15 individuals with FMD below 7% were found to have a CFR below 2 and a HOMA-IR value above 2. Thus, in 15 of the 18 patients with abnormal CFR and HOMA-IR, the brachial artery Flow-Mediated

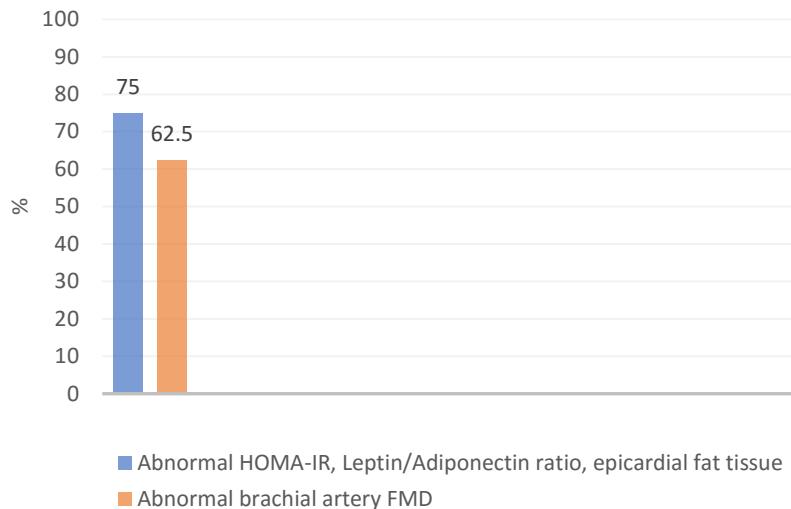
Dilation was also detected as abnormal. In all 24 patients, the leptin/adiponectin ratio was abnormal and the Epicardial Adipose Tissue [EAT] thickness was increased. The average BMI was found to be 29.8. In 6 patients, the CFR was abnormal despite having normal HOMA-IR values. However, the leptin/adiponectin ratio was also abnormal and the EAT thickness was increased in most of these patients. This suggests that microvascular dysfunction may be associated not only with insulin resistance but also with other metabolic factors.


Figure-1


Graph 1. Of 24 patients, 15 [62.5%] exhibited abnormal brachial artery FMD, and 9 exhibited normal brachial artery FMD.


Figure 2: An example of a color Doppler echocardiography image used in the assessment of coronary flow reserve [CFR]. The flow pattern in the left ventricular outflow tract suggests the presence of microvascular dysfunction.


Graph-2. The amount of FBS in 24 patients.


Graph-3. The 3-month HbA1c levels of 24 patients.

Graph-4. A. This graph shows the age distribution of 18 patients -B. This graph shows the BMI [Body Mass Index] distribution of 18 patients. The threshold for a normal BMI value is 25. All patients have a BMI above 25. -C. This graph shows the HOMA-IR distribution of 18 patients. The threshold for a normal HOMA-IR value is 2, and it should be below 2. All patients have a HOMA-IR above 2. -D. This graph shows the CFR [Coronary Flow Reserve] distribution of 18 patients. The threshold for a normal CFR value is 2, and it should be above 2. All patients have a CFR below 2. -E. This graph shows the distribution of the Leptin/Adiponectin ratio for 18 patients. The threshold for a normal Leptin/Adiponectin ratio is 3, and it should be below 3. All patients have a Leptin/Adiponectin ratio above 3. -F. This graph shows the epicardial fat tissue [EFT] distribution of 18 patients. The threshold for a normal epicardial fat tissue value is 6 mm, and it should be below 6 mm. The epicardial fat tissue value of the patients is above 6 mm.

Graph-5. A. This graph shows the age distribution of 6 patients. -B. This graph shows the BMI [Body Mass Index] distribution of 6 patients. The threshold for a normal BMI value is 25. All patients have a BMI above 25. -C. This graph shows the HOMA-IR distribution of 6 patients. The threshold for a normal HOMA-IR value is 2, and it should be below 2. All 6 patients have a HOMA-IR below 2. -D. This graph shows the CFR [Coronary Flow Reserve] distribution of 6 patients. The threshold for a normal CFR value is 2, and it should be above 2. All patients have a CFR below 2. -E. This graph shows the distribution of the Leptin/Adiponectin ratio for 6 patients. The threshold for a normal Leptin/Adiponectin ratio is 3, and it should be below 3. In all 6 patients, the Leptin/Adiponectin ratio is below 3. -F. This graph shows the epicardial fat tissue [EFT] distribution of 6 patients. The threshold for a normal epicardial fat tissue value is 6 mm, and it should be below 6 mm. The epicardial fat tissue value of all 6 patients is below 6 mm.

Graph-6. The distribution of abnormal HOMA-IR, Leptin/Adiponectin ratio, epicardial fat tissue, and brachial artery FMD, shown as percentages, in 24 patients with abnormal CFR and BMI.

DISCUSSION

The findings obtained support that coronary microvascular dysfunction [CMD] is a significant problem even in young women with normoglycemic insulin resistance. The co-existence of insulin resistance in all 18 patients and the presence of endothelial dysfunction and CMD in 15 of these 18 patients suggest a close interaction between these two conditions. It is thought that insulin resistance impairs vascular dilation by disrupting endothelial nitric oxide synthase [eNOS] activity, thereby setting the stage for microvascular dysfunction [23, 24, 25, 26, 27]. Furthermore, the increased epicardial fat thickness observed in the 18 patients suggests that this fat tissue around the heart is metabolically active and may contribute to microvascular dysfunction through the release of pro-inflammatory cytokines. Adipokines secreted from epicardial fat tissue have been shown to increase local oxidative stress and trigger endothelial dysfunction in the coronary microvasculature [28, 29, 30, 31, 32]. These findings support the hypothesis that CMD may not only be a structural problem but also a cardiovascular reflection of a systemic metabolic disorder. It is suggested that each component of the metabolic syndrome has direct negative effects on microvascular structures, which independently increases the risk of cardiovascular events [33,34,35,36,37,38].

CONCLUSION

In 15 of the 24 patients [62.5%], CFR, BMI, brachial artery FMD, HOMA-IR, Leptin/Adiponectin ratio, and epicardial fat tissue were found to be abnormal. This study revealed a high prevalence of coronary microvascular dysfunction [CMD] in young women who presented to the hospital with dyspnea, chest pain, and hypertension, despite having normal blood sugar but insulin resistance. Our findings emphasize that the treatment of CMD should not only target cardiac symptoms but also address the underlying metabolic

disorders. We suggest that CMD represents an "invisible threat" in this population and that metabolic parameters should be scrutinized more carefully during routine check-ups. Future studies should be conducted in larger patient populations to confirm these findings and evaluate the clinical outcomes of treatments targeting metabolic parameters in these patients.

REFERENCES

1. Camici, P. G., d'Amati, G., & Rimoldi, O. [2015]. Coronary microvascular dysfunction: mechanisms and functional assessment. *Nature Reviews Cardiology*, 12[1], 48–62.
2. Taqueti, V. R., & Di Carli, M. F. [2018]. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options: JACC State-of-the-Art Review. *Journal of the American College of Cardiology*, 72[21], 2625-2641.
3. Jia, G., Hill, M. A., & Sowers, J. R. [2018]. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. *Circulation Research*, 122[4], 624–638.
4. Lernfelt, G., & Agewall, S. [2022]. Coronary microvascular dysfunction in patients with insulin resistance. *Frontiers in Cardiovascular Medicine*, 9, 949784.
5. Sara JD, *et al*. Coronary microvascular dysfunction: an update. *Eur Heart J*. 2014;35[17]:1101-1111.
6. Steinberg, H. O., Chaker, H., Leaming, R., Johnson, A., Brechtel, G., & Baron, A. D. [1996]. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. *The Journal of Clinical Investigation*, 97[11], 2601–2610.
7. Balletshofer, B. M., Rittig, K., Enderle, M. D., Volk, A., Maerker, E., Jacob, S., Matthaei, S., Rett, K., & Häring, H. U. [2000]. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in

association with insulin resistance. *Circulation*, 101[15], 1780–1784.

8. Quinaglia, T., Mancusi, C., & de Simone, G. [2021]. Early Coronary Microvascular Dysfunction in Metabolic Disease. *Frontiers in Cardiovascular Medicine*, 8, 715100.
9. Tabák, A. G., Herder, C., Rathmann, W., Brunner, E. J., & Kivimäki, M. [2012]. Prediabetes: a high-risk state for diabetes development. *The Lancet*, 379[9833], 2279–2290.
10. Okyay, K., Güdücü, N., Yiğitoğlu, B. R., Kaplan, M., & Saatli, B. [2021]. Assessment of coronary microvascular dysfunction in polycystic ovary syndrome patients by using TIMI frame count. *Turkish Journal of Obstetrics and Gynecology*, 18[1], 23–29.
11. Frühbeck G, et al. The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. *Am J Physiol Endocrinol Metab*. 2001;280[6]:E827-E847.
12. Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. *Nat Rev Endocrinol*. 2015;11[6]:363-371.
13. Frühbeck, G., Catalán, V., Rodríguez, A., Ramírez, B., Becerril, S., Salvador, J., Portincasa, P., Colina, I., & Gómez-Ambrosi, J. [2019]. Adiponectin-Leptin Ratio: A Promising Index to Estimate Adipose Tissue Dysfunction. Relation with Obesity-Associated Cardiometabolic Risk. *Adipocyte*, 8[1], 57–62.
14. Murthy, V. L., Naya, M., Taqueti, V. R., Foster, C. R., Gaber, M., Hainer, J., Dorbala, S., Blankstein, R., Rimoldi, O., Camici, P. G., & Di Carli, M. F. [2014]. Effects of Sex on Coronary Microvascular Dysfunction and Cardiac Outcomes. *Circulation*, 129[24], 2518–2527.
15. Iacobellis, G., & Bianco, A. C. [2011]. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. *Nature Reviews Endocrinology*, 7[6], 363–371.
16. Mazurek, T., Zhang, L., Zalewski, A., Mannion, J. D., Diehl, J. T., Arafat, H., Sarov-Blat, L., O'Brien, S., Keiper, E. A., Johnson, A. G., Martin, J., Goldstein, B. J., & Shi, Y. [2003]. Human epicardial adipose tissue is a source of inflammatory mediators. *Circulation*, 108[20], 2460–2466.
17. Wang, T. D., Lee, W. J., Shih, F. Y., Huang, C. H., Chang, Y. C., Chen, W. J., & Lee, Y. T. [2008]. Relations of epicardial adipose tissue measured by multidetector computed tomography to coronary artery disease. *Journal of the American College of Cardiology*, 51[2], 241–242.
18. Natali, A., Nesti, L., Tricò, D., & Ferrannini, E. [2021]. Effects of glucose-lowering interventions on visceral and epicardial adipose tissue: a narrative review. *Nutrition, Metabolism and Cardiovascular Diseases*, 31[4], 1007–1017.
19. Çimen, T., Doğan, M., Efe, T. H., Akyel, A., Aydin, S., Özcan, S., Yeter, E., & Eren, M. [2016]. Epicardial adipose tissue thickness and its association with endothelial dysfunction, carotid intima-media thickness in patients with non-dipper hypertension. *Blood Pressure Monitoring*, 21[5], 277–282.
20. Zimmerman, R. F., Ezeanu, L. V., & Pitcher, A. [2022]. Coronary Flow Reserve as an Independent Predictor of Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. *Journal of the American Heart Association*, 11[15], e025207.
21. Knudtson, M. L., & Anderson, T. J. [2020]. Coronary Microvascular Dysfunction: A Review of the Pathophysiological Mechanisms and Assessment Methods. *Canadian Journal of Cardiology*, 36[2], 177-188.
22. Escaned, J., & Davies, J. E. [2021]. Clinical Quantification of Coronary Flow Reserve: A Consensus Document from the European Association of Percutaneous Cardiovascular Interventions. *EuroIntervention*, 17[4], e317-e328.
23. Kim, J. A., Montagnani, M., Koh, K. K., & Quon, M. J. [2006]. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. *Circulation*, 113[15], 1888-1904.
24. Muniyappa, R., & Sowers, J. R. [2013]. Role of insulin resistance in endothelial dysfunction. *Reviews in Endocrine and Metabolic Disorders*, 14[1], 5-12.
25. Hamblin, M., Friedman, D. B., Hill, S., Caprioli, R. M., Smith, H. M., & Hill, M. F. [2007]. Alterations in the circulating proteome of patients with metabolic syndrome. *Journal of Proteome Research*, 6[2], 438-445.
26. Duncan, E. R., Walker, S. J., Ezzat, V. A., Wheatcroft, S. B., Li, J. M., Shah, A. M., & Kearney, M. T. [2008]. Accelerated endothelial dysfunction in mild prediabetic insulin resistance: the early role of reactive oxygen species. *American Journal of Physiology-Endocrinology and Metabolism*, 295[4], E877-E884.
27. Potenza, M. A., Gagliardi, S., Nacci, C., Carratu, M. R., & Montagnani, M. [2009]. Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. *Current Medicinal Chemistry*, 16[1], 94-112.
28. Mazurek, T., Zhang, L., Zalewski, A., Mannion, J. D., Diehl, J. T., Arafat, H., Sarov-Blat, L., O'Brien, S., Keiper, E. A., Johnson, A. G., Martin, J., Goldstein, B. J., & Shi, Y. [2003]. Human epicardial adipose tissue is a source of inflammatory mediators. *Circulation*, 108[20], 2460–2466.
29. Verma, S., Li, S. H., Wang, C. H., Fedak, P. W., Li, R. K., Weisel, R. D., & Mickle, D. A. [2003]. Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. *Circulation*, 108[6], 736-740.
30. Iacobellis, G., & Bianco, A. C. [2011]. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. *Nature Reviews Endocrinology*, 7[6], 363–371.

31. Förstermann, U., & Münz, T. [2006]. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. *Circulation*, 113[13], 1708-1714.

32. Sade, L. E., Eroglu, S., Bozbaş, H., Özbiçer, S., Hayran, M., Haberal, M., & Müderrisoğlu, H. [2009]. Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries. *Atherosclerosis*, 204[2], 580-585.

33. Grundy, S. M. [2016]. Metabolic syndrome update. *Trends in Cardiovascular Medicine*, 26[4], 364-373.

34. Schiffrin, E. L. [2012]. Vascular remodeling in hypertension: mechanisms and treatment. *Hypertension*, 59[2], 367-374.

35. Toth, P. P. [2016]. Insulin resistance, small LDL particles, and risk for atherosclerotic disease. *Current Vascular Pharmacology*, 14[5], 461-466.

36. Fantin, F., Comellato, G., Rossi, A. P., Grison, E., Zoico, E., Mazzali, G., & Zamboni, M. [2019]. Relationship between epicardial adipose tissue and coronary microvascular function in patients with metabolic syndrome. *Nutrition, Metabolism and Cardiovascular Diseases*, 29[1], 36-43.

37. Muniyappa, R., & Sowers, J. R. [2013]. Role of insulin resistance in endothelial dysfunction. *Reviews in Endocrine and Metabolic Disorders*, 14[1], 5-12.

38. Gami, A. S., Witt, B. J., Howard, D. E., Erwin, P. J., Gami, L. A., Somers, V. K., & Montori, V. M. [2007]. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. *Journal of the American College of Cardiology*, 49[4], 403-414.