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Abstract  Original Research Article 
 

The present paper aims to bridge the border between real physical-constant-based real fields and dimensionless complex 

fields. Unified fields have coupling constants differing by hundreds of orders of magnitude which are catchable by 

dimensionless fields. The border between a Fatou set and a Julia of quadratic root finding within a Newton iteration 

yields complex curvatures, masses and a generation of Minkowski spacetime. A scan algorithm in the vicinity of 

nontrivial zeros of zeta functions yields stable laps with fluctuations of Legendre modules at the critical strip. 
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1. INTRODUCTION 
The present paper aims to bridge the border between real physical-constant-based real fields and dimensionless 

complex fields. Unified fields have coupling constants differing by hundreds of orders of magnitude which are catchable 

by dimensionless fields. This approach links fields to entropy and information maxima. In [1] the Green’s function has 

been related to substitutions of binary invariants. This algebraic-binary invariant description of bifurcation adds equivalent 

elliptic curves as an infinite source of k-components. Binary invariants must overwhelm complex half-differentials [2] [3]. 

The first nontrivial case is complex Newtonian root finding Nq(𝑧) for quadratic q(z) [4]. An angle in a planar triangle at 

k→∞ decides whether Nq(𝑧) tends to z1 or z2. This statistical generation rate is used to define a thermal δ(φ)-function 

source for unified fields [5]. δ(φ) is related to rotations about ±π in interval [0,1] which gives a cos representation of δ(φ) 

[5]. A root finding algorithm for entire transcendent function ϕ(∞)(𝑧) ∊ ℂ by setting q(z) → ϕ(∞)ϕ̅(∞) searches simple 

zeros in abelian bases B̂ of binary γ-eigenstates of periodic continued fractions (CF). Conformal steps ϕk+1=zk+1 = γ ∘ zk 

and ϕk+2(ϕk+1(ϕk(zk))) is as well variables zk and functions ϕk which create a source term in real interval [0,1]. A 

threefold map allows to define a plus sign [2]. This transformation of half-differentials is capable to be linked with spinors 

in 3+1 dimensions [2] [3]. The present algebraic approach connects a difference 𝑧𝑘+1 − 𝑧𝑘 with the (inverse) Green’s 

function in 3⋅4 complex dimensions. Section 2 describes the combined map of invariants. Section 3 describes a source term 

due to permutations of polynomial roots. Section 4 introduces details of scanning processing. Section 5 calculates metrical 

invariants and Section 6 shifts the origin of Minkowski spacetime ℳ to a one-dimensional border between the Julia set 

𝒥(𝑁𝑞) and the Fatou set ℱ(𝑁𝑞) of q(z). Section 6 defines ℳ by (15) for a two-step conformal mapping. Section 5 claims 

a number field regulator- Lagrangian relation. Section 3 explains Bethe-Salpeter equation and Dyson equation by periodic 

CF in γ [6] [1] [7]. 

 

2. THE COMBINED MAP 

The algorithm proves a window in Newton root finding 

zk+1 ← Nq(zk) = zk −
q(z)

∂zq(z)
|z=zk

≃ F(𝑛)(w, zk) = γ(𝑛)(w) ∘ zk       (1) 

 

in combination with binary invariant polynomials of a number field 𝕂 for a unique factorization domain (UFD). The 

windows create entropy sources by equivalent permutations for an infinite number of Poncelet polygons. A spinor is defined 

by the standard mapping between cubic and quartic roots for elliptic curves in 𝕂 which is a cyclic permutation. First the 

division in (1) is discussed in conjunction with a UFD. A convergence of quadratic Newtonian root finding Nq(𝑧) to one 

fixed point z1, z2 [4] 
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q(z) = (z − z1)(z − z2) = e
∫

dz

F(3)(w,z)−𝑧

z
0                                    (2) 

 

requires that ∂zNq(𝑧) < 2. A regular quadratic map γ(3)(w) which transforms cubic roots ei is seen as Feigenbaum 

renormalization [8]. Convergence is discussed in dependence on the angle Imln
z1−z2

z0−z3
 of a planar triangle [4] 

 

T(Δz, 𝑧1, 𝑧2) = T(Δz = 𝑧0, 𝑧1, 𝑧2, 𝑧3 = ½(𝑧1 + 𝑧2)) = T(𝑧𝑞) .  

 

Subsequent rational Hermite-Tschirnhausen transformations of a polynomial ϕ(𝑛)(𝑧) =  ∑ 𝑎𝑛−𝑖𝑖=0,…,n 𝑧𝑖 are of degree n-1 

 

F(𝑛)(w, 𝑧) = ϕ(𝑛)(w)/(w − z) − ⅓ ∂𝑤ϕ(𝑛)(w) = γ(𝑛)(w) ◦ z     (3) 

 

Case n=3 creates transvectants of ϕ(3)(𝑧) with 𝑧 ∧ 𝑤 in a cubic number field w, z ∊ 𝕂[Δ]. A special case of (3) is 

a permutation of cubic roots e1,2,3 and quartic roots xi,j,k,l (i, j, k, l = 1,2,3,4) for n=3 [9] 

z − ei = γ(3) ∘ x = (xixk)(xixl)Mj,i(x)                                      (4) 

 

with Moebius map 𝑀1,2(𝑧) =
𝑧−𝑧1

𝑧−𝑧2
 where ϕ(3)(xi) =  ∏ (xixβ)β=𝑗𝑘𝑙  (see (4) of §5 [9]). With z − ei →

1

zk+1−zk
≃

(zk+1 − zk)′(zk+1 − zk)′′ conjugates of cubic roots zk enter (4) for a given discriminant Δ. Homogeneous coordinates x1,2 

with (xixj) =
1

2i
ψi ∧ ψ̅j depend on a four-component complex ψi = xi1 + ixi2 on Gaussian plane. Commonly used is a 1:2 

relation ei − ej ≃ (xixj)(xkxl). The linear relation (15) between branching points e1,2,3 and xi,j,k,l  

 

ϕ(4)(x) = ∏ (x − xi) → ϕ(8)(x) = det(γiγjψiψ̅j − x)i                     (5) 

 

permutes between degree 4 and 8. Section 3 justifies an inverse Green’ s function (4) 𝐺−1 ≃ z − ei ≃ ψ̅jψi. with source 

𝐺 ≃ ψ̅iψ̅jΓijklψkψ𝑙 of a rational vertex Γijkl. Due to γ- invariance of (1) q(z) is enveloped by a Bezout matrix B(ϕ, φ) =

(ϕ(z)φ(w) − ϕ(w)φ(z))/(z − w) 

 

𝑞(𝑧) ≃ 𝐵(ϕ(3)(𝑧), 1).                                                           (6) 

 

Invariances F(3)(γ∘w, γ∘z) are completed by γ∘F(3)(w,z) of F(3)(w,z) via 

z = B(F(3)(z), 1) =
F(3)(w,z)−F(3)(w,w)

𝑧−𝑤
= 4𝑤0𝑧 + ½𝑤1                    (7) 

 

leading to sequential steps 𝑞(𝑧) ≃ 𝐵 (ϕ(3) (B(F(3)(z), 1)) , 1) . (7) is a linear z- shift in 𝕂[Δ]. Newton identities allow to 

represent Bezout matrices as  

 𝐵(ϕ(2𝑛), 1) ≃ ∑ 𝜓𝑖𝜓̅𝑖i=1,…,n = ∑ xi
2

i=1,…,2n                               (8) 

 

which leads to a normalization ψ̅iψi = 1 in case of ϕ(8). The discriminant-like Bezoutian (8) normalizes which 

is capable to define a mass. Next it is proven that the regulator index defines a Lagrangian [10]. The claim is that invariant 

one-dimensional complex root finding (1) with an information uncertainty bit 𝑧1⋁𝑧2 is a base for covariant coordinates. 

The complexity of the root finding algorithm (1) is much lower than that of a Lattes map u→2u [11]. However, the present 

algorithm (1) operates on reduced genus 3 to generalized split genus 1 hypersurfaces reducing the computational 

complexity [11]. The purpose of this paper is to propose a subroutine which scans the linear vicinity of simple nontrivial 

zeros of an entire transcendent ϕ(∞)(𝑧) by means of a cubic polynomial ϕ (3)(𝑧). An open system would contain infinite 

cyclotomic roots ζ(∞) in a Riemann surface ℝL. Here closed systems are triangulated ℝL of volume Vol(ℳ) in ℳ. Invariants 

depend on cyclotomic roots ζ(m) of congruences mod m=12,6,4,3 and 2. ζ(𝑚) are capable to satisfy the optimality condition 

z=ez and sequentially ζ(𝑚´) = 𝑒𝑒ζ(𝑚)

 due to the Kronecker-Weber theorem (KWT). Root finding for a complex function 

e.g. 𝑞(z) = 𝜁(z)ζ̅(z̅) should converge near simple zeros because it would be quadratic in z. The introduced complex 

Lagrangian is underconstrained and provides more degrees of freedom than the physical system constraints. Generally, 

binary invariant root finding consists in four real functions Reζ,Imζ,Reγ(ζ)∘ζ,Imγ(ζ)∘ζ in terms of four real variables 

Rez,Imz,Reγ(z)∘z,Imγ(z)∘z in a quadrupolar configuration 𝜁(z), 𝜁(z̅), ζ̅(z), ζ̅(z̅) of complex conjugates in the vicinity of 

𝑧𝑛𝑡. Substitutions 𝛾 ∘ 𝜉 and 𝛾 ∘ 𝑧  of zeta function 𝜁(𝑧) and gamma function 𝛤(𝑧) 

𝜉(𝑧) = (
𝑧
2

) 𝜋−
𝑧

2𝛤(
𝑧

2
)𝜁(𝑧) = ½ ∏ (1 −

𝑧

𝑧𝑛𝑡
𝑛 ) = −

𝜕𝑗𝜉(𝑧)

𝜕𝑧
      (9) 
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can be represented by CF which implies a dependence on the cubic normal field 𝕂[Δ]. A CF of γ ∘ ζ(z)  should 

be connected with a product 𝜁(𝑧) ∏ 𝐿(𝑧, 𝜒)𝜒  with L-functions of character χ which needs further clarification. Orbits 

around nontrivial zeros 𝑧𝑛𝑡 of 𝜉(𝑧) are linked to masses mn in the scattering amplitude in [6]: Masse are explainable by ± 

rotations of roots in interval [0,1] in Section 3 [12]. A Feigenbaum constant- fine structure constant relation for a possible 

explanation of the world requires a quadratic relation for the charged current [13] [14]. Sections 2-6 claim that the quadratic 

Newton iteration 𝑁𝑞  

𝑁𝑞(𝑧) ∼ 𝜁(𝑧)𝜁(𝑧´) ∼ 𝑇(𝑧, 𝑧´) ∼ [𝜆(𝑧), 𝜆(𝑧´)] ∼ (𝛿𝑧)2 ∼ 𝛿𝑧      (10) 

 

tends to conformal stress-energy T(z) and Legendre module λ(z) correlation. Further on, the concept of half-

integer differentials [3] is extendable to a quadratic mapping (𝛿𝑧)2 ∼ 𝛿𝑧 for a Julia set 𝒥(𝑁𝑞) with Feigenbaum constant 

𝛿𝐹 = 1 − 𝛿𝑙𝑛𝛿𝑐 for k-components of c. A relation of differentials d2/dz2 ∼ d/dz implies a correspondence of the heat 

equation and the wave equation (𝑑𝑧)2 ∼ 𝑑𝑧 as averages over times which causes a δ-function source [5]. Optimal modular 

units 𝑓(𝜔) = 𝑒
−𝑖𝜋𝜔

24 ∏ (1 + 𝑒𝑖𝜋𝜔(2𝑛−1))∞
𝑛=1  can be approximated by the first term ζ(12)𝑒

−𝑖𝜋𝜔

24   for 𝜔 = ½(1 + i√𝛥) with 

very high precision for class number one hΔ=1 fields 𝕂[Δ] [15].  

 

3. FERMIONS AND RATIONAL ELLIPTIC CURVE POINT ADDITION/PERMUTATION 

𝑁𝑞(𝑧) is investigated on an underdetermined Riemann surface ℝL where strings on torus 1 and 2 bifurcate into 

string 1’ and string 2’ on a genus 3 surface. A root of a genus 3 quartic polynomial can be shifted to ∞ which shifts 1’ and 

2’ to ∞ cutting out a single torus of variable period. An inverse process would be a single addition step on an elliptic curve 

within a variable quartic polynomial ϕ4 which is reducible to ϕ3. Substitutions γ contain additions by Poncelet polygons in 

a spatial cone C(x,y,z) [16] [17]. For n=3 subsequent fractional substitutions γ are transvectants of ϕ(3)(𝑧) with 𝑧 ∧ 𝑤 [18]. 

Each second step in k,k+1,k+2 yields an invariant polynomial [9] 

ϕ(3)(z) → z3 − g2z − g3                                                                                (11) 

 

Accordingly, the iterated variable z transmits into an invariant f(ω) as a rational parameter for the cone C(x,y,z). 

Roots of (9) are e1,2,3 = f1
8(ω), f2

8(ω), −f 8(ω) with e1 + e2 + e3 = 0 [9] [18]. hΔ=1 implies invariants 𝑔2 ≃ 𝛾2 ∊ ℤ and 

g3 ≃ γ3 ∊ ℚ(√Δ). For a0 = 4, a1 = 0, a2 = g2, a3 = g3 

zk+1 ← F(3)(w, zk) = w0(4zk
2 +

2

3
g2) + w1zk.                                (12) 

 

Variable w defines a power integral base w𝑘 → w𝑘 by {𝑤} =  {𝑤0 = 1, w1, w2}. Accordingly, (12) splits into the 

Mandelbrot map zk+1 ← 4𝑧𝑘
2 + 𝑐, 𝑐 =

2

3
g2 for base vector w0 and a linear map zk+1 ← zk for base vector  w1. The 

additional invariance (7) shifts the cubic base vector and avoids ternary CF. The 12-component base vector ζ(12) =

{b0, b1} ⊗ {𝑤0 = 1, w1, w2} ⊗ {ζ(4)} is written as B̂ = {b0, b1}[{w0 = 1, w1, w2} ⊗ {ζ(4)}] Indices i=b,w,s denote points 

on three distinct circles 𝕊1(b), 𝕊1(w), 𝕊1(s) with congruences mod 2,3 and 4 .Shifts of the cubic base {𝑤0 = 1, w1, w2} leave 

a cubic Diophantine index form invariant. The binary base {b0, b1} depends on permutations (15) of quartic roots via DFT-

4 of  {ζ(4)}. Equivalent variables with detγ =  ϕ(n) = 1 search nearly constant  

 ⅓ ∂zϕ(3)(z) = z2 − ⅓g2 = (xixj)(xixk) − ⅓g2 ≃ −¼ψi ∧ ψ̅jψi ∧ ψ̅k − ⅓g2 ≃ ψ̅iψ̅jΓijklψkψl − ⅓g2        (13) 

 

The phase function L(w, z) = ln(z − w) = −L′ − L′′of cubic root differences z − w ≃ (xixj) =
1

2i
ψi ∧ ψ̅j 

depends on conjugates L′, L′′ where (z − w)(z − w)′(z − w)′′ = √Δ are equivalent to cubic units. Permutations of roots 

ei, xi are  rotations by ±π in phase space in real interval [0,1]. First this singularity in conjugated phase 𝜑𝑞 space  

G(w, z) =
1

F(w,z)−z
= ∂L(F, z) =

1

zk+1−zk
= (zk+1 − zk)′(zk+1 − zk)′′     (14) 

 

justifies to call (14) a Green’s function G(w, z) = ∂zL(w, z). 
 

A simplest cycle F(3)(F(3)) = 𝑧 is indexed by a quadruple of shifts δk of steps 

q: 1, δk, δkδk, δkδkδk ≃ k + 3 ∊ k, k + 1, k + 2 ≃ ei, ±∞, ±i∞ ≃ xi .     (15) 

 

For cosφ = −g3(3/g2)3/2 quartic roots [19] 

xi(φq) = (ei(+π), ei(−π), ei(0), ei(+i∞))                                      (16) 

 

are indexed by discrete by 𝜑𝑞congruences ei(𝜑𝑞) = √(g2/3)cos (⅓(φ − 𝜑𝑞)). A quadruple (16) contains 

𝜑𝑞congruences mod 3 and mod 4 in (
1

3
𝜑,

1

3
(𝜑 ± 𝜋), ±𝑖∞) + 𝑘𝜋 where k=0,1,2 form a 12-component congruence. A three-

component transformation of a base âw would contain non-periodic ternary CF whereas only two-component shifts are 
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Abelian and periodic. Next it is shown that discrete changes by ζ(12) of dz≃dφ and ∂z≃∂φ yield an infinite string circulation 

ℒ(B̂) on the Riemann surface ℝL. Its cross-section of radius √(g2/3) of circles 𝕊1[√(g2/3)] is constant for detγ=1 with 

constant 𝑔2, 𝑔3. ℝL is differentiable infinitely sheeted complex planes for discrete sequences of roots by angle rotations 𝜑𝑞. 

First a sum over eigenfunctions yields a Dirac δ-function [5] 
1

2𝜋
∫ 𝑑𝑝𝑐𝑜𝑠 (𝑝(𝜑𝑞 − 𝜑𝑞´))

+∞

−∞
≃ 𝛿(𝜑𝑞 − 𝜑𝑞´).                                             (17)  

 

A bell-shaped or double-well shaped maximum is expected for 𝑐𝑜𝑠𝜑 ≃ 1 − ½φ2 . The heat singularity (17) 

transmits to ℳ.  Doubly-periodic z = ρeiφ = eiφ+Γ can be formulated by complex φ in homogeneous roots xi = (xi1, xi2). 

Shifting the origin to φ − φq → φq permutations of two components in (16) yield the one-dimensional Laplace equation 

(
𝜕

𝜕𝜑𝑞
2 +

1

9
)𝑥 = √(g2/3) 𝛿(𝜑𝑞 − 𝜑𝑞´)                                                    (18) 

with one-dimensional (one-periodic) tent-map Green’s function 

 𝐺(±) = 𝑆(𝜑𝑞)θ(π − 𝜑𝑞) + (1 ± S(𝜑𝑞))θ(𝜑𝑞 − π)                                  (19) 

 

with Heavyside function θ(z). Ordered congruences m=12,6,4,3 for the mod 2 field 𝜑𝑞 ζ(𝑚) are capable to satisfy 

z=ez and sequentially ζ(𝑚´) = 𝑒𝑒ζ(𝑚)

. Therefore, the form (19) is equivalent to the form 𝐺(±) ≃ ψ̅jψi of the Green’s function 

in terms of quartic/cubic roots (16) which is equivalent to 𝐺(±) ≃ ψ̅qψq ≃ φ̅qφq to a quadruple of shifts (15) of the Weber 

invariant f(ω). The sum of shifts 𝛱 |ζ
(4) ℒ
0 1

| 𝜑𝑞  yields a CF representation for the permutated basis (𝜑𝑞1, 𝜑𝑞2) →

(𝜑𝑞2, 𝜑𝑞1) 

𝑆(𝜑𝑞) = ∑ 𝑑𝜑𝑞 = 𝛱 |ℒ ζ(4)

1 0
| 𝜑𝑞 → ζ(ℒ, 𝜑𝑞)                                        (20)  

 

For fourth roots ζ(4) = ±𝑖, ±1 the product is the sum of angles in a tubular channel. If the varies ζ(4) at each step 

one recovers the geometric zeta function form ζ(ℒ, φ) = (3𝜑 − 2)−1 for the Cantor string ℒ = 2𝑗3−(1+𝑗)𝜑 . Each step in a 

period-3 cycle π+π+π=3π permutes the sign (3𝜑 − 2)−1 → (−3𝜑 − 2)−1 → (3𝜑 − 2)−1. It is claimed that a period-3 cycle 

recovers the boson-fermion vertex by the product 𝐺(+)(𝑡, 𝑡′)𝐺(−)(𝑡, 𝑡′)𝐺(−)(𝑡, 𝑡′) . The summed angle S(𝜑𝑞) is the 

occupation number in the Green’s function (19) with  time t ≃ 𝜑𝑞. The 𝜑𝑞 -dependent simplest cycle F(3)(F(3)) = 𝑧 assigns 

cubic roots z to ranges 𝑑𝜑𝑞  in the real interval [0,1] thereby defining >,<,= relations. The real angle 𝜑𝑞 implies a time-

causality where non-equivalent γ yield complex φ which act as a damping in (19). On Poincare plane ℍ2 metric gij =

y2δij =
1

4𝑖
(𝑧 − 𝑧̅)2δij and Laplacian read 

𝛥ℎ = 𝑦2𝜕𝑧𝜕𝑧̅ = 𝑦2𝛥𝑥𝑦 = 𝑦2(𝜕𝑥
2 + 𝜕𝑦

2) = 𝑒−2𝛤(𝜕𝛤
2 + 𝜕𝜑

2) =
−1

√|𝑔|
𝜕𝑖√|𝑔|𝑔𝑖𝑗𝜕𝑗     (21) 

 

The 𝜑𝑞 singularity in [0,1] is on horizontal lines μ𝑐(Imz − m𝑛) = 0 on complex plane, i.e. y=const. This links 

the mass m𝑛 to Sharkovskii periods and ±π rotations in [0,1] [12]. Zeros of L(z, χ)ξ(z) with L-functions yield [20] 

Δxy(L(z, χ)ξ(z)) + μ𝑠L(z, χ)ξ(z) = μ𝑐(Imz − m𝑛)  

with Lagrange parameter μ𝑠 and μ𝑐. (18) leads to 

Δxy 𝜉 = 𝑚𝑛𝛿(𝑧 − 𝑧𝑞)                                                                        (22) 

 

The solution with Laplacian (21) is a non-analytic two-dimensional Green’s function 

 G(2)(w, z) = 𝑚𝑛𝑙𝑛(𝑧 − 𝑧𝑞)(𝑧̅ − 𝑧𝑞̅) = 𝑚𝑛(L(zq, z) + L(𝑧𝑞̅ , 𝑧̅)                         (23) 

 

In base B̂ discrete values of the phase 𝜑𝑞 are assumed to satisfy ∂L(w,z)≃ L(w,z).  The angle of the planar triangle 

𝑇(zq) = 𝑇(Δz = 𝑧0, 𝑧1, 𝑧2, 𝑧3) for q(z) changes over to discussing a net rate process where S(t) contains a Fermi level. 

First the Green’s function (19) G(w, z) ≃ ∂L(w, z) ≃ L(w, z) ≃ G(±)(t, t′) enters the z1, z2 decision algorithm with 

∫ G(2)(w, z) ≃ G(±)(t, t′) [4]. The problem of half-differentials is attached by replacing the differential dz along the string 

circulation ℒ(B̂) by a sum over 𝛴 = 𝛤𝐺(−) + 𝛤𝛤𝐺(−)𝐺(−)𝐺(−) where vertex 𝛤 = 𝛤[𝐺(+)] describes tangents on a bell and 

on twin peaks or asymmetric peaks. For k→∞ the exponent of the quadratic form q(z) tends over to a thermodynamic 

potential Ω in with quantum statistics [21]. One gets 

 q(z) = e
∫

d𝑧

zk+1−z

𝑧
0 = e− ∫ Gd𝑧

z
0 = e− ∫ dΩ

Ω𝑘
0 ≃ 𝐺0

−1(𝑧)𝐺0
−1(𝑧)      (24) 

 

Integrating (24) a quadratic zk+1[zk] confirms a quadratic law in 𝐺0
−1 = 𝑧𝑘 − 𝑧1 which explains a zero of 𝑞(z) ≃

𝑒∫ 𝛴𝐺 . The discriminant root of q(z) √𝛥 = 𝑧1 − 𝑧2 enter the self-energy as an energy gap or mass. Constant values of 

discriminant and regulator are capable to exhibit oscillations. First permuting iterates of f(ω)ζ(12) transform like 𝛥 →
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𝛥(𝜙(3)2) [9]. Oscillations occur for fixed discriminant Δ, regulator RΔ and hΔ=1 for units ε =

(ζ(2)𝜌)2, (ζ(2)𝜌)−1𝑒𝑖𝜑/3, (ζ(2)𝜌−1)𝑒−𝑖𝜑/3 by mod 2 and mod 3 fields ζ(2), ζ(3) ⋴ ζ(12). One gets the discriminant 

√𝛥(𝜌, 𝜑) = 2𝑖((ζ(2)ζ(3)𝜌)3 + (ζ(2)ζ(3)𝜌)−3 − 2𝑐𝑜𝑠(𝜑/3))𝑠𝑖𝑛(𝜑/3)          (25) 

 

as well the regulator index 

RΔ = l = log ε = 2ζ(2)logρ                                                              (26) 

 

(25) and (26) are subjected a minimum of the quadratic form 𝑄(𝑙) = μ1𝑙2 + μ2𝑙 + μ3𝑁(𝑒2𝑙)𝜁(ℒ, 𝑙) with 

geometric zeta function form ζ(ℒ, l) [22]. Degrees of freedom of Q(l) are a modulo 2 field ζ(2) = ζ(2)(𝜌, 𝜑) , power integral 

bases {b0, b1},{w0 = 1, w1, w2} and ζ(4) which is a discrete Fourier transform (DFT) radix-4.  It is noted that shifts in the 

cubic base {w1, w2} with invariant Δ index form include the following CF process  

𝑔(𝑧) =
1

zk+1−zk
= 𝑙𝑛´𝑞(𝑧) → |ℒ ζ(4)

0 1
| 𝑔(𝑧)                                         (27) 

 

The r.h.s. of (27) yields the Cantor set geometric zeta function 𝜁(ℒ, 𝑙) for geometric string ℒ = 2𝑗3−(1+𝑗)𝑙 for 

different roots ζ(4) = ±1, ±𝑖 with renormalized function 𝑔(𝑧) = 𝜁(ℒ, 𝑙) and infinite periods. For vertex part 𝑔(𝑧) =

𝛤, ζ(4) = 1, ℒ = 𝐺𝐺 and  ζ(4) = 1 , ℒ = 𝛤𝐷 = 𝛴, 𝐷 ≃ 𝜁(ℒ, 𝑙) periodic CF in (27) yield a Dyson equation with Green’s 

functions a Bethe-Salpeter equation because multiplication is convolution by Fourier components ζ(12) within discrete 

Fourier transformations (DFT) with ζ(𝑚). Bases {𝑤1, 𝑤2} enables a fast optimal solution of the optimizable quadratic form 

𝑄(𝑙) using the identity |
0 𝛴
0 0

| = 𝑙𝑜𝑔 |
1 𝛴
0 1

|.  

 

4. SCAN ALGORITHM 

The aim is root finding of 

q(z) → ϕ(∞)ϕ̅(∞) → 𝜉(𝑧)𝜉̅(𝑧̅)                                                            (28) 

 

which is solvable for quadratic q(z) near simple zero 𝑧𝑛𝑡  of 𝜉(𝑧). The question is to translate binary information 

of string of decisions z1, z2 into the real world. The presented algorithm has an infinite number of degrees of freedom. The 

dependence on the number field 𝕂 enters writing variable 𝑧 ≃ ζ(12)𝑒
−𝑖𝜋𝜔

24  via the Kronecker product of bases B̂ =

{𝑏0, b1}[{𝑤0 = 1, w1, w2} ⊗ {ζ(4)}]. Different complex planes already arose from a numerical representation of the 

Mandelbrot zoom in space. ζ(12) is algorithmically accessible by a solvable quartic in order to scan an infinite base of ϕ(∞). 

Binary invariances zk+1 ← γ(3)(w) ∘ zk+1 and zk ← γ(3)(w) ∘ zk create an envelope ϕ(6)(𝜆) if substitutions are equivalent 

detγ(3) = 1. An envelope of (1) can be written in terms of the elliptic invariant 𝑗(ω) = 𝑗(ω´) or in terms of ϕ(6)(𝜆) with 

Legendre module λ(f(ω)) or in terms of SL(2, ℤ) substitutions of λ. ϕ(6)(𝜆) writes ϕ(3)(f 8(𝜔)) = f 24(𝜔) − 𝑔2f 8(𝜔) − 𝑔3 

in terms of zk → f 8(𝜔). Two-component bases 𝑏̂ and the conjugate 𝑏̂̅ yield an Abelian four-component base 𝑏4 = (𝑏̂, 𝑏̂̅). 

Setting  𝑏4 = 𝑏4𝑠 = 𝜓𝑏𝑤𝑠 one gets an oscillation around 𝑧𝑛𝑡 by three distinct circles centered by 𝑧𝑞[𝕊1(𝑧𝑏), 𝕊1(𝑧𝑤), 𝕊1(𝑧𝑠 ⋴

𝜁(12))]. Without loss of generality, one gets a two or three ‘particle’ motion around a given point. With a large background 

mass a double peaked configuration is used for a matrix representation of ξ(z) for specified 𝑏4. Because a substitution γ is 

equivalent to matrix multiplication 𝛾𝑏̂ one can use |
1 1
0 1

|
𝑛

= |
1 𝑛
0 1

|, 𝑒
|
0 𝑛
0 0

|
= |

1 𝑛
0 1

| and 𝑛−𝑧 → b4𝑒𝑀(𝑛𝑧)b4 with 

𝑀(𝑧𝑛) = |
0 −𝑧𝑛
0 0

|. The zeta function 𝜁(𝑧) = ∑ 𝑛−𝑧
𝑛  yields the product 

 ξ(z)ξ̅(z̅) = b4
+Ĥ+ ∑ eĤMĤ+

Ĥb4n,n´                                                    (29) 

 

with four-component 𝑀 = |
M(𝑧𝑛) 0

0 M(𝑧𝑛´)
| acting on up to an undetermined rotation by a Hermitian matrix 𝐻̂. 

A renormalized (iterated) behavior 𝜉(𝑧[𝜑𝑞]) should traverse a bell-shaped or double well shaped configuration 𝑧[𝜑𝑞 ⋴

ζ(12)]. Rational 𝜑𝑞 ≃ ψi in homogeneous coordinates on Gaussian plane describe a string circulation in cylindrical 

coordinates ρ and φ with in φ-units of π in interval [0,1] [8]. A required number of pixels for 𝜑𝑞 to form a smooth maximum 

is expected above 2210
. Iterates zk+1 − zk ≃ 𝐺−1 ≃ z − ei are proportional to differences of cubic roots ei − ej ≃ xi ≃

𝑓(ω) for optimal iscrete 𝜑𝑞 with 𝜑𝑞 ≃ 𝑒𝜑𝑞. The algorithm aims to prove that renormalized Δz[𝜑𝑞] is quadratic or quartic 

in 𝜑𝑞 with Δz ≃ 𝜑𝑞 ≃ 𝐺−1 ≃ Σ . A bell-shaped maximum corresponds to the direct term and a double-well shaped 

maximum to the exchange term of the scattering amplitude. The algorithm associates a fast ℱ(Nq) decision by a short φbq
-

string where the message carries very little information. A slow decision on the border between 𝒥(Nq) − ℱ(Nq) with a 

long φbq
- message string carries much information. The underlying idea is that a maximal topological entropy 

ht[ζ
(12)]=#ζ(12) is given by a high number of generators ζ(12) in the set of three different circles (coordinate systems) among 
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maximally five circles. The underdetermined Newton algorithm (1) stores least squares of a thermodynamic potential Ω𝑘 =

∫ 𝑑𝑧 𝐺(𝑧) along a surface dz triangulated by T(zq). This elliptic approximation is capable to satisfy a Gaussian differential 

equation for z(λ) due to γ-invariance of ϕ(6)(𝜆). The cyclotomic approximation b4[ζ(12)] of the KWT allows to set ∂lnλ ≃

𝜆2 which yields an oscillatory behavior z(λ). Expanding b4[𝜁(12)] in terms of Hermite polynomials the n-sum in (29) can 

be performed. Accordingly, for still to be found four centers 𝑧𝑞 only nearest neighbors in (29) contribute to periodic CF. 

Root finding (1) converges if [4] ∂zNq(𝑧)| = |
2

𝑞(∂z𝑙𝑛q)2| < 2 where ∂zNq(𝑧) = ∂zF(3)(w, z) = 2w0a0𝑧 + w1a0 + w0a1 =

8w0𝑧 + 4w1 is only linear in 𝕂[Δ]. The roots of  

 

F(3)(w, z) = w0F1 + w1F0 = w0a0𝑧2 + (w1a0 + w0a1)𝑧 + ⅓w1a1 + ⅔w0a2      (30) 

are 

F(3) =
1

2w0a0
(w1a0 + w0a1 ± √(w1a0 + w0a1)2 − ⅓w0a0(⅓w1a1 + ⅔w0a2))         (31) 

 

For invariants a0 = 4, a1 = 0, a2 = g2 one has 

 F(3) =
w1

2w0
(1 ± √1 −

w0
2

72w1
2 g2)                                                                        (32) 

 

Convergences are stored in a string φ{𝑏q=0,0,0,0}of rational angles (in units of π) where a switch to 1 in the qth place 

denotes a point at zq in a quadruple T(zq). The paper claims that the summed up φbq
 is equivalent to the Green’s function 

(19). On the border between the Julia set 𝒥(𝑁𝑞) set and the Fatou set ℱ(𝑁𝑞) the length of {𝑏q} → ∞  [4] [23]. Convergence 

to z1 or z2depends on the value of a definite angle φ𝑇 = ln
zk+1−zk+2

zk−zk+3
 in a triangle [4] 

 

T(Δz = 𝑧0, 𝑧1, 𝑧2, 𝑧3 = ½(𝑧1 + 𝑧2)) = T(𝑧𝑞).                                                      (33) 

 

𝒕𝒓𝒚  

𝑧𝑘[𝕊1(𝑧𝑏), 𝕊1(𝑧𝑤), 𝕊1(𝑧𝑠 ⋴ 𝜁(12))] →  ψi 

 

 ψ̅iψ̅jΓijhlψhψl − ⅓g2 ≃ ζ(4) = ±1, ±𝑖 

 

ψi ∧ ψ̅j→w 

 
𝛾(𝑤) = |ζ

(4) 0
−1 𝑤

| 

 

𝛾(𝑤) ∘ 𝑧𝑘 → 𝑧𝑘+1 

 𝑁𝑞(𝑧) =
𝑧2 − z1z2

𝑧 − ½(z1 + z2)
 

 

 Nq(𝑧𝑘+1) → 𝑧𝑘+2 

 

|𝜕𝑧𝑘
Nq(𝑧𝑘)| < 2 

 

𝑧𝑘 , 𝑧𝑘+1, 𝑧𝑘+2 → {𝑛𝑒𝑤 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑇(𝑧𝑘 , 𝑧𝑘+1, 𝑧𝑘+2, 𝑧𝑘+3) 

 

 

φ𝑇 = ln
zk+1 − zk+2

zk − zk+3

= 𝐿(zk+2, zk+1) − 𝐿(zk+3, zk) 

 

 

𝑆(3φ{bq})+= 2𝜋𝑘𝜃(½𝜋 − Imφ𝑇) + 2𝜋(𝑘 + 1)𝜃(Imφ𝑇 − ½𝜋) 

 

 

𝒄𝒂𝒕𝒄𝒉  

𝜆𝑘 = 𝑒φ𝑇 

 

𝑆(φ{bq}) ≃ S(φ𝑞), t ≃ φ𝑞 

 

𝐺(𝑧𝑘) = (𝑧𝑘+1 − 𝑧𝑘)−1 = 𝜕𝑧𝑘
logq(𝑧𝑘) ≃ 𝐺(±)(𝑡, 𝑡′) 

 

Thermodynamic energy 

Ω = ∑ G±(t, t′) = ∫ dzG±(t, t′) 

 

𝐺(𝑧)−1 = 𝑧𝑘+2 − 𝑧𝑘+1 =
𝑞(𝑧𝑘+1)

𝜕𝑧𝑘+1
𝑞(𝑧𝑘+1)

 

 

Particle energy 

𝐺(𝑧)−1 ≃ 𝛴 

Fig. 1 Statistical scan of a circulating string near zeros of ξ(λk) on the border of 𝓙(𝐍𝐪) − 𝓕(𝐍𝐪) 
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A circulation of z in Fig.1 (1) indicates convergence towards z1, z2 ≃ 𝑧𝑛𝑡 , 𝑧𝑛̅𝑡 as a nontrivial zero of 𝜉(𝑧). A 

calculated condition |𝜕𝑧𝑘
Nq(𝑧𝑘)| < 2 presupposes a UFD by 𝕂[Δ]. A regular (non-stochastic) behavior in Fig. 1 indicates 

the validity of a congruence 𝛷3(f(ω)) = 0.  

 

5.  LAGRANGIAN- REGULATOR INDEX RELATION OF STRESS-ENERGY 

The paper claims that thermodynamics and statistics originate from the complex plane as the infinitely sheeted 

Riemann surface ℝL of the complex logarithm 𝐿(w, z) for triangle string circulation 𝑇(𝑧𝑞) in space. The metrical line 

element 𝑑𝑠2 on Poincare plane ℍ2 

 𝑑𝑠2 = 𝑦−2𝑑𝑧𝑑𝑧̅  = −𝑑𝑧𝑙𝑛(𝑧 − 𝑧̅)𝑑𝑧̅𝑙𝑛(𝑧 − 𝑧)̅                                                                       (34) 

 

with differential dz acts only on variable z for 𝑤 = 𝑧̅ in L(w,z). ds2 depends on invariant properties of  

𝑑𝑧𝑙𝑛(𝜙(𝑧) − 𝜙(𝑤))𝑑𝑤𝑙𝑛(𝜙(𝑧) − 𝜙(𝑤)) − 𝑑𝑧𝑙𝑛(𝑧 − 𝑤)𝑑𝑤𝑙𝑛(𝑧 − 𝑤)                                     (35)  

 

 Steps 𝜙𝑘+1 = 𝑧𝑘+1 = 𝛾 ∘ 𝑧𝑘 and ϕk+2(ϕk+1(ϕk(zk))) are as well variables zk and functions ϕk where two 

consecutive conformal maps z → ϕk+2 → ϕk+2(ϕk+1(z))  yield quadratic differentials in the theory of half-differentials 

[2]. Consecutive maps 𝑧𝑘 → 𝑧𝑘+1 → 𝑧𝑘+2 yield the exact sum 

dzk+1
Lk+2dwk+1

Lk+2 − dzk+1
Lk+1dwk+1

Lk+1 +   

dzk
Lk+1dwk

Lk+1 − dzk
Lkdwk

Lk =                                                     (36) 

dzk
Lk+2dwk

Lk+2 − dzk
Lkdwk

Lk    

or in differential form  

[wk+2, zk+2, wk+1, zk+1]dwk+1dzk+1 + [wk+1, zk+1, wk, zk]dwkdzk = [wk+2, zk+2, wk, zk]dwkdzk (37) 

with the denotation 

[𝑤𝑘+1, 𝑧𝑘+1, 𝑤𝑘 , 𝑧𝑘] =
𝜕𝑤𝑘

𝑤𝑘+1𝜕𝑧𝑘
𝑧𝑘+1

(𝑤𝑘+1−𝑧𝑘+1)2 −
1

(𝑤𝑘−𝑧𝑘)2                                                                 (38) 

Four terms remain in (36) 

dzk+1
Lk+2dwk+1

Lk+2 − dzk+1
Lk+1dwk+1

Lk+1 + dzk
Lk+1dwk

Lk+1 − dzk
Lk+2dwk

Lk+2 = 0                (39) 

which justifies a square root by Dirac matrices. First in the limit w→z one gets the chain rule 

{zk+2,, zk+1}dzk+1
2 + {zk+1,, zk}dzk

2 = {zk+2,, zk}dzk
2                                                             (40) 

with Schwarzian derivative 

{F(3)(w, z), z} = 6 ∂z ∂wlog
F(3)(w,z)−F(3)(w,w)

z−w
|w→z = 6 ∂z ∂wlogB(F(3)(f, z),1)|w→z =

F⃛

Ḟ
−

3

2
(

F̈

Ḟ
)2   (41) 

 

where 𝐹̇ = 𝜕𝑧F(3)(𝑓, 𝑧). The Schwarzian derivative {F(w, z), z} enters conformal stress-energy T(w, z) [24]. 

Limits 𝑤 → 𝑧 and 𝑤 → 𝑧̅ indicate that T(w, z)dzdw = {F(f, z), z}dzdw is not compatible with a metrical line element (29) 

on ℍ2 .The paper solves the contradiction in terms of homogeneous coordinates φ1,2 of φbq
 and of φ𝑞 for dz𝑞 on a 

discretized infinite string circulation with dz𝑞 ≃ (dφ1 
dφ2 

). A sum of discrete angles φ𝑞  in  exp(σμxμ) (φ1 
φ2 

) leaves metrics 

(34) invariant if the imaginary part Imz = mn = const. is constant. This defines ℳ for appropriate rational values 

xμ=(x1,x2,x3,x4) and Pauli matrices σμ. A singularity 𝛿(𝜑𝑞 − 𝜑𝑞´) in (19) would transmit to the r.h.s of (36-40). A 

symmetrized version of (40) is proposed to solve the problem of half-differentials as follows 

 

∑ {zq,, zq´}dzqdzq´ =  ∑ δ(φq − φq´)dφqdφq´q,q´q,q´                                                             (42) 

 

Involutions (15) k→k+1→k+2 in (36-40) yield four neighboring triangles 𝑇(𝑧𝑞) → 𝑇(𝑧𝑞´) → 𝑇(𝑧𝑞´´) → 𝑇(𝑧𝑞´´´) 

in ℝL. For optimal dL≃L with dL ≃ dz ∂L ≃ dzG(±)(z) ≃ dzψ̅jψi the quadratic differential form dφqdφq´ of (36) should 

be invertible in terms of 𝛾𝜈𝜕𝜇G(±)
q,q´. This triangulation process should yield 

{z𝜇,, z𝜈} = 𝛾𝜈𝜕𝜇G(±)
q,q´                                                                                              (43) 

 

which is claimed to be stress-energy for a string of 4 points in triangles 𝑇(zq) propagating on ℝL in space. Green’s 

functions G(±)(z) in 𝑑𝐿 ≃ 𝑑𝑧𝜕𝐿 ≃ 𝑑𝑧G(±)(z) are cubic root -dependent units ε in 𝑧𝑘 , 𝑧𝑘+1, 𝑧𝑘+2, 𝑧𝑘+3. Accordingly, the 

thermodynamic potential Ω depends via the regulator index 𝑅𝛥 = 𝑙𝑛𝜀 in (25-26) on a mod 2 field ζ(2). Simultaneously, 

RΔ = 𝑙𝑛𝜀 = 𝑑𝑒𝑡𝑙𝑛ε0,r−1 is a circulant determinant. dz𝑞 ≃ (dφ1 
dφ2 

) implies a binary representation for 𝜀0,𝑟−1. Except the 

zeroth component 𝜀0 all contributions 𝑙𝑛 |
1 𝜀
0 0

| = |
0 𝜀
0 0

| are nilpotent of degree 2 which shows that a cubic field exists. 

Simultaneous fractional substitutions γ ∘ ζ(z) possess an analytic continuation to the entire complex plane and to ℍ2 where 

𝜁(𝑧 → 1) − 𝑐0 ∼
𝑐−1

𝑧−1
+ 0(𝑧) ∼ |

0 𝑐−1

1 −1
| 𝑧                                                                     (44) 
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𝜁(𝑧 → 𝑧𝑛𝑡) ∼ 𝑐1(𝑧 − 𝑧𝑛𝑡) + 0(𝑧2) ∼ |
1 −𝑧𝑛𝑡

0 1
| 𝑧                                                           (45) 

 

Supposing that  𝛾 ∘ 𝜁(𝑧) validates a CF representation of 𝛾 ∘ 𝜁(z) → 𝜁(𝑧) ∏ L(z, χ)𝜒  . Then residua 𝑐−1 → 𝑅𝛥 near 

𝑧𝑐𝑟𝑖𝑡 = 1 and zeros 𝑧𝑛𝑡 are linked by a circular motion of differences of cubic roots where 𝛥𝑧 ≃ 𝜆𝛥𝑧.  Accordingly, the 

potential 

δΩ ≃ δL ≃ δz ∂L ≃ δzG(±)(z) ≃ δRΔ 

 

is proportional to the regulator index 𝑅𝛥. Periodic units 𝜀0,𝑟−1are nilpotent of degree 2 in (25) and (26). For q(z) =
(z − z1)(z − z2) the Julia set 𝒥(𝑁𝑞) = 𝑧 − 𝑧∗: 𝑧∗ = ½(𝑧1 + 𝑧2) contains the involution 𝑀1,2(𝑧∗) = −1 as a period-3 cycle. 

𝑁𝑞(𝑧) is conjugate to 𝑧2 by a Moebius map 𝑀1,2(𝑧) ∘ 𝑁𝑞(𝑧) ∘ 𝑀1,2(𝑧)−1 = 𝑧2 which yields 𝑀1,2(𝑧𝑘) = 𝑀1,2(𝑧𝑘+1)2 [25]. 

This approach approximates z by cubic roots ei. For zero-start value 𝑧𝑘+1(𝑧𝑘) = 𝜉(𝑧) = 0 𝑀1,2(𝑧𝑘) =
𝑧𝑘−e2

𝑧𝑘−e3
 can be viewed 

as a Legendre module λ. Then 𝑧𝑛𝑡 corresponds to a lemniscate with  𝑔3 = 0, e1 = 0, e2 = −e3 and 𝑀(𝑧𝑘+1) =
0−e2

0−e3
= −1. 

Subsequent steps k yield k-components of γ 𝑀1,2(𝑧𝑘) = 𝑀1,2(𝑧𝑘+𝑁)2𝑁
 which are viewed as real particles.  

 

6. ℳ ORIGIN 

ℳ is seen as the common action of (thermal) chaotic γ-cycles superimposed by converging Nq cycles (φ-series). 

Root finding (1) by the scan in Fig.1 is a two-conformal step algorithm by iterating Nq  and independently iterating γ. The 

invariant form (12) is a Mandelbrot map with 𝑐 =
2

3
g2. Writing Dμυ = 2𝔑zk and 𝑇μυ = 2𝔍z𝑘, ℱ = ½𝔑(c − zk+1), 𝒢 =

½𝔍(c − zk+1) the map (12) rewrites as Dμν
4 + 2ℱDμν

𝟐 − 𝒢2 = 0 or ℱ + i𝒢 = Dμν
𝟐 + 2iDμυIμυ − Iμν

𝟐 . The invariant g2 in 

ℱ + i𝒢 is like an energy density in quantum electrodynamics for tensor Dμυ [26-31]. Dμυ and current tensor Iμυ are seen 

as four-component invariants in ℳ with normal 𝐗 = √(ℱ + i𝒢) ≃ 𝐄 + i𝐁  to a complex plane z. Variable z is subjected 

two transformations  

 

(i) the fractional substitution γ of z itself leads to binary invariants (11). Four-component states ψi of (4) are 

decomposable in cyclotomic bases of 𝜁(12) which leaves (11) invariant 

(ii) converging iterates (1) are discrete rotations of homogeneous angles ±π in (19) of triangle iterates T(zq) with 

Δz ≃ zk+1 − zk ≃ Dμυ + iIμυ − ℱ − i𝒢 ≃ dzq ≃ (dφ1 
dφ2 

) → exp(σμxμ) (dφ1 
dφ2 

) as CF in (19) 

 

 
Here z and Δz is one point of four points in a triangle T(zq) in Fig.2.  

 

Fig.2 the planar triangle 𝑇q(𝑧)- configuration for deciding whether root finding (1) tends to 𝑧1 or 𝑧2. The Fatou 

set is the range of the hyperbola [4] 
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Both substitutions (i) and (ii) yield Tq(z) shifts (index q is denoted by s) 

Δzk,s ← Δzk−1,s + D𝑘−1,𝑠𝑠´𝛥zk−1,s´                                                                            (46) 

 

D = Dμν[γμ, γν]− is a four-component representation of exp(σμxμ) with Dμν = [xμ, xν]−. Period-n cycles of γ(3) 

consist of n period-3 cycles γ(3) ∘ γ(3) ∘ γ(3) = γ(3) or F(3)(F(3)) = 𝑧  

𝐷𝑘,n ←
X

n
𝐷𝑘,n−1                                                                                                                              (47) 

 

which yields a product ∏
1

n
𝐷𝑘,n =

1

n!
𝐷𝑘

n
n  where 𝑋 = |𝐗| = √𝐷2. Quadruples (15) imply 𝐹(F) = 𝑧, 𝛾 ∘ 𝛾 = 1 

which is equivalent to 𝐷𝑘,n
3 ≃  X2𝐷𝑘,n−1 which is period-3. As a consequence, one gets from (46) and (47) a matrix 

exponential 𝛥𝑧𝑘+1 ← 𝑒𝐷𝑘𝛥𝑧𝑘 . Even powers are diagonal matrices D3  =  X2𝐷, D4 =  X4, D5  =  X4𝐷. One gets the unit 

transformation matrix eD ≃ chX + X−1shXD. A mod 2 field ζ(2) involution is realized by squared Dirac matrices  (γμ)2 =

1.  It is argued that a mod 3 field x = ζ(2) ⋴ ζ(12) with ex ≃ ∑
−1

3
x(1−i)j2

i,j=0 exj
mod(x3 − 1)  yields the CF representation 

of the Cantor set (20) with a quadratic expansion eiφ(B̂) ≃ ϕ2(B̂). A subsequent tower of roots should require a mod 2 field 

in B̂(ζ(12)). The present picture is an infinite discrete string circulation ℒ(B̂) on ℝL with a long φbq
- message in (ii) is 

expected on the line Δz-z3 of involutions 𝑀1,2(𝑧∗) = −1. This occurs for a Julia set 𝒥(𝑁𝑞) with 𝜕𝑧𝑙𝑜𝑔𝑞(𝑧) → 0 which 

yields 𝐺(Δ𝑧 − z3) → 0. But G (γμ ∂γμ − m𝒥(Nq)) = 1 [26] which yields an infinite hypothetical (dark) background mass 

m𝒥(𝑁𝑞) → ∞ . T(zq) triangulations of ℝL are disc-like and remembers a gap state with Fermi level Δ𝑧 − z3. Two 

independent steps (i) and (ii) should yield two irreducible susceptibilities χdrift and χdiffusion. Drift χdrift is caused by time 

t≃𝑆(𝜑𝑞) with highest velocity by the maximal angle of the hyperbola in Fig.2, Diffusion χdiffusion is caused by theta constants 

ϑ=η(ω)f2(ω) which satisfy a heat equation with unit diffusion constant. Circulations in the vicinity of 𝑧𝑛𝑡 in Fig. 1 are 

subsequent iterates Δz←λΔz with 𝕹λ[f(ω)]= ½ on the critical strip.  

 

7. CONCLUSIONS 
It is argued that spacetime curvature is complex, i.e. there exists simultaneously two curvatures and two masses. 

This claims a dark, complex environment for Minkowski spacetime ℳ. A quadratic root finding fits in an infinite mass on 

the border to a Julia set 𝒥(𝑁𝑞). A proposed scan algorithm of zeros of entire transcendent functions is optimal because 

cubic and quartic polynomials have algorithmically accessible roots. As a result, the detection of zeros in quadratic, 

complex Newtonian root finding is non-unique in the general case. This non-uniqueness embeds covariant transformations 

x𝜇 = e𝜈
𝜇

x𝜈 of real coordinates and vierbeins e𝜈
𝜇

 and spacetime ℳ by parametrizations of a planar triangle in a triangulated 

complex Riemann surface ℝL of algebraic units. A point z with two possible complex solutions z1, z2 of the quadratic 

polynomial q(z) stands for two possible complex curvatures K1, K2 of spacetime. Alternatively, each point z is described 

by two complex masses m1,m2 where their imaginary part stands for dark matter. This chaotic dark matter state as the set 

of frayed paths of (1) is viewed as one origin of Minkowski spacetime ℳ. Whereas ℳ is caused by Abelian permutations 

of two components of cubic/quartic roots ei/xi (16) the creation of fermions as mass generating laps at root finding (1) is a 

1:2 relation (4) between Δei and Δxi. The entropy source window permutes an infinite number of Poncelet polygons which 

defines spacetime ℳ, mass and charge. 
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