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Abstract Original Research Article

The present paper aims to bridge the border between real physical-constant-based real fields and dimensionless complex
fields. Unified fields have coupling constants differing by hundreds of orders of magnitude which are catchable by
dimensionless fields. The border between a Fatou set and a Julia of quadratic root finding within a Newton iteration
yields complex curvatures, masses and a generation of Minkowski spacetime. A scan algorithm in the vicinity of
nontrivial zeros of zeta functions yields stable laps with fluctuations of Legendre modules at the critical strip.
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1. INTRODUCTION

The present paper aims to bridge the border between real physical-constant-based real fields and dimensionless
complex fields. Unified fields have coupling constants differing by hundreds of orders of magnitude which are catchable
by dimensionless fields. This approach links fields to entropy and information maxima. In [1] the Green’s function has
been related to substitutions of binary invariants. This algebraic-binary invariant description of bifurcation adds equivalent
elliptic curves as an infinite source of k-components. Binary invariants must overwhelm complex half-differentials [2] [3].
The first nontrivial case is complex Newtonian root finding N, (2) for quadratic q(z) [4]. An angle in a planar triangle at
k—oo decides whether N, (z) tends to z; or z,. This statistical generation rate is used to define a thermal &(¢)-function
source for unified fields [5]. 8(@) is related to rotations about £x in interval [0,1] which gives a cos representation of ()
[5]. A root finding algorithm for entire transcendent function ¢ (z) € C by setting q(z) = ¢ searches simple
zeros in abelian bases B of binary y-eigenstates of periodic continued fractions (CF). Conformal steps ®yy1=Zx+1 = Y © Zk
and Pri2(Preq (Pr(zk))) is as well variables zx and functions ¢x which create a source term in real interval [0,1]. A
threefold map allows to define a plus sign [2]. This transformation of half-differentials is capable to be linked with spinors
in 3+1 dimensions [2] [3]. The present algebraic approach connects a difference zj,; — z;, with the (inverse) Green’s
function in 3-4 complex dimensions. Section 2 describes the combined map of invariants. Section 3 describes a source term
due to permutations of polynomial roots. Section 4 introduces details of scanning processing. Section 5 calculates metrical
invariants and Section 6 shifts the origin of Minkowski spacetime M to a one-dimensional border between the Julia set
J(Ng) and the Fatou set F (Nq) of q(z). Section 6 defines M by (15) for a two-step conformal mapping. Section 5 claims
a number field regulator- Lagrangian relation. Section 3 explains Bethe-Salpeter equation and Dyson equation by periodic
CF iny [6] [1] [7].

2. THE COMBINED MAP

The algorithm proves a window in Newton root finding

(z)
Zr+1 < Nq(zk) =Zx— % |z:zk = F(n)(w’ 7)) = y(n)(w) ° Zy (1)
in combination with binary invariant polynomials of a number field K for a unique factorization domain (UFD). The
windows create entropy sources by equivalent permutations for an infinite number of Poncelet polygons. A spinor is defined
by the standard mapping between cubic and quartic roots for elliptic curves in IK which is a cyclic permutation. First the
division in (1) is discussed in conjunction with a UFD. A convergence of quadratic Newtonian root finding Nq(z) to one

fixed point z,, z, [4]
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dz

q(Z) = (Z - Zl)(Z - ZZ) = efozm @)

requires that 9,Ng(z) < 2. A regular quadratic map y® (w) which transforms cubic roots ¢; is seen as Feigenbaum
Z1—Zp

renormalization [8]. Convergence is discussed in dependence on the angle Imln of a planar triangle [4]

Z0—Z3

T(Az,z,,2,) = T(Az = Zy, 24,249,723 = Y2(2z, + zz)) = T(zq) .
Subsequent rational Hermite-Tschirnhausen transformations of a polynomial oM (2) = Yi=0,..n On—i z" are of degree n-1
FO(w,2) = oM W) /(w = 2) = 10,,6™ (W) = y™(w) Bz 3)

Case n=3 creates transvectants of $® (z) with z A w in a cubic number field w, z € K[A]. A special case of (3) is
a permutation of cubic roots e, , 3 and quartic roots x;;x; (1,j, k1 = 1,2,3,4) for n=3 [9]
z— e =Y® ox = (x;x1) (Xix)Mj; (x) (4)
2

~

where ¢®(x)) = [lg=ju(xixp) (see (4) of §5 [9]). With z—e; — ~
Zk+17Zk

(Zger1 — 71)" (Zge1 — 2g)" conjugates of cubic roots zx enter (4) for a given discriminant A. Homogeneous coordinates X »

with Moebius map M, ,(z) =

z—7p

with (x%;) = %ll)i A lTJ]- depend on a four-component complex J; = X;; + iX;, on Gaussian plane. Commonly used is a 1:2

relation e; — ej = (X;X;) (XkX1). The linear relation (15) between branching points e, , 3 and X i

PP () = [1i(x —x) > ¢® (%) = det(y;v;;P; — x) (%)

permutes between degree 4 and 8. Section 3 justifies an inverse Green’ s function (4) G™! ~z — ¢; ~ lI_J]-lIJi. with source
G = lj_Jilj_Jj TijaWiy, of a rational vertex [jji. Due to y- invariance of (1) q(z) is enveloped by a Bezout matrix B(d, @) =

(d@ W) — dW)(2))/(z — W)
qa(2) = B(¢®(2),1). (6)

Invariances F®)(yow, yoz) are completed by yoF®(w,z) of F®(w,z) via

3) _r®
z = B(F®)(2),1) = WA WW _ 4 72 + Yow, 7

A

eading to sequential steps g(z) = Z), , . 1S a linear z- shift in . Newton 1dentities allow to
leading to sequential steps q B(¢® (B(F®(2),1)),1).(7)isali hift in K[A]. N identities all
represent Bezout matrices as

B(q)(Zn)’ 1) = Vi1, i = Zi:l,...,ZnXiz ®

which leads to a normalization (;; = 1 in case of ¢®. The discriminant-like Bezoutian (8) normalizes which
is capable to define a mass. Next it is proven that the regulator index defines a Lagrangian [10]. The claim is that invariant
one-dimensional complex root finding (1) with an information uncertainty bit z;Vz, is a base for covariant coordinates.
The complexity of the root finding algorithm (1) is much lower than that of a Lattes map u—2u [11]. However, the present
algorithm (1) operates on reduced genus 3 to generalized split genus 1 hypersurfaces reducing the computational
complexity [11]. The purpose of this paper is to propose a subroutine which scans the linear vicinity of simple nontrivial
zeros of an entire transcendent ¢p* (z) by means of a cubic polynomial ¢ (z). An open system would contain infinite
cyclotomic roots {* in a Riemann surface Ry.. Here closed systems are triangulated Ry of volume Vol(M) in M. Invariants

depend on cyclotomic roots ™ of congruences mod m=12,6,4,3 and 2. {™ are capable to satisfy the optimality condition
((m)
e

z=e* and sequentially (™) = e due to the Kronecker-Weber theorem (KWT). Root finding for a complex function
e.g. q(z) = {(2){(z) should converge near simple zeros because it would be quadratic in z. The introduced complex
Lagrangian is underconstrained and provides more degrees of freedom than the physical system constraints. Generally,
binary invariant root finding consists in four real functions Re{,Im{ Rey({)ol,Imy({)o{ in terms of four real variables
Rez,Imz,Rey(z)oz,Imy(z)oz in a quadrupolar configuration {(z),{(Z),{(z), {(Z) of complex conjugates in the vicinity of
Zne. Substitutions y o & and y o z of zeta function {(z) and gamma function I'(z)

0jg(2)

£§@) = (5) i GR@ = %Il -5 = -2 ©)
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can be represented by CF which implies a dependence on the cubic normal field K[A]. A CF of y o {(z) should
be connected with a product {(z) [, L(z, x) with L-functions of character y which needs further clarification. Orbits

around nontrivial zeros z,; of £(z) are linked to masses m, in the scattering amplitude in [6]: Masse are explainable by +
rotations of roots in interval [0,1] in Section 3 [12]. A Feigenbaum constant- fine structure constant relation for a possible
explanation of the world requires a quadratic relation for the charged current [13] [14]. Sections 2-6 claim that the quadratic
Newton iteration N,

No(2) ~ {(2)(2) ~ T(2,2") ~ [A(2), A(2)] ~ (62)* ~ 6z (10)

tends to conformal stress-energy T(z) and Legendre module A(z) correlation. Further on, the concept of half-
integer differentials [3] is extendable to a quadratic mapping (8z)? ~ &z for a Julia set J(Ng) with Feigenbaum constant
8z = 1 — §lnéc for k-components of c. A relation of differentials d?/dz? ~ d/dz implies a correspondence of the heat
equation and the wave equation (dz)? ~ dz as averages over times which causes a §-function source [5]. Optimal modular

units f(w) = ez [15-1(1 + e™@n=D) can be approximated by the first term ((12)6_7 for w = ¥%(1 + iV4) with
very high precision for class number one ha=1 fields K[A] [15].

3. FERMIONS AND RATIONAL ELLIPTIC CURVE POINT ADDITION/PERMUTATION

N,(z) is investigated on an underdetermined Riemann surface R where strings on torus 1 and 2 bifurcate into
string 1’ and string 2’ on a genus 3 surface. A root of a genus 3 quartic polynomial can be shifted to co which shifts 1’ and
2’ to oo cutting out a single torus of variable period. An inverse process would be a single addition step on an elliptic curve
within a variable quartic polynomial ¢4 which is reducible to ¢3. Substitutions y contain additions by Poncelet polygons in
a spatial cone C(x,y,z) [16] [17]. For n=3 subsequent fractional substitutions vy are transvectants of ¢ (z) with z A w [18].
Each second step in k,k+1,k+2 yields an invariant polynomial [9]

¢(3)(Z) -1z — 822 — 83 (11)

Accordingly, the iterated variable z transmits into an invariant f(®) as a rational parameter for the cone C(x.y,z).
Roots of (9) are e 53 = £ (w), {5 (w), —f8(w) with e; + e, + e5 = 0 [9] [18]. ha=1 implies invariants g, = y, € Z and
83 = V3 € Q(/A). Fora, = 4,a; = 0,a; = gy,a3 = g3
Zr — FOw,2) = wo (422 +2g5) + Wiz (12)

Variable w defines a power integral base w* — w,, by {w} = {w, = 1,w;, w,}. Accordingly, (12) splits into the
Mandelbrot map z,; < 4z +c,c = %gz for base vector w, and a linear map zy,, < z; for base vector w;y. The
additional invariance (7) shifts the cubic base vector and avoids ternary CF. The 12-component base vector {1? =
{by, b1} ® {wy, = 1, wy, Wy} ® {T¥} is written as B = {by, b; }[{w, = 1, wy, w,} ® {{®}] Indices i=b,w,s denote points
on three distinct circles $'(b), $'(w), $!(s) with congruences mod 2,3 and 4 .Shifts of the cubic base {w, = 1, w;, w,} leave
a cubic Diophantine index form invariant. The binary base {b,, b, } depends on permutations (15) of quartic roots via DFT-
4 of {{™}. Equivalent variables with dety = ¢®™ = 1 search nearly constant

Y50,0®(2) = 2% — Y58, = (xix)) (xixi) — Y582 = — YU A Ui A Uy — Y38, = Uil — %58, (13)

The phase function L(w,z) =In(z —w) = —L' — L"of cubic root differences z —w = (x;x;) = %1]11 A 1]_Jj

depends on conjugates L', L where (z — w)(z — w)’(z — w)"" = VA are equivalent to cubic units. Permutations of roots
e, X; are rotations by <m in phase space in real interval [0,1]. First this singularity in conjugated phase ¢, space

Gw,z) = —— = aL(F,2) = = (Zksr — 210 (Ze1 — 2" (14)

F(w,z)-z Zk+1—Zk

justifies to call (14) a Green’s function G(w, z) = d,L(w, z).

A simplest cycle F®(F®)) = z is indexed by a quadruple of shifts 8 of steps
q: 1,8k, SkSk, 8k6k6k ~k+3ekk+1,k+2= €, +00, +ico =~ Xj . (15)

For cosq = —g5(3/g,)%/? quartic roots [19]
Xi((‘pq) = (ei(—l—n)! ei(_T[)’ ei(o)l e1(+loo)) (16)

are indexed by discrete by ¢,congruences ei(qoq) =./(g,/3)cos (1/3((p - gaq)>. A quadruple (16) contains

@qcongruences mod 3 and mod 4 in G , % (p £ m), iiOO) + km where k=0,1,2 form a 12-component congruence. A three-

component transformation of a base &w would contain non-periodic ternary CF whereas only two-component shifts are
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Abelian and periodic. Next it is shown that discrete changes by {'%) of dz=d¢ and 6,~8, yield an infinite string circulation
L(ﬁ) on the Riemann surface Ry. Its cross-section of radius +/(g,/3) of circles $* [,/ (g2/ 3)] is constant for dety=1 with
constant g,, gs. Ry is differentiable infinitely sheeted complex planes for discrete sequences of roots by angle rotations ¢,.
First a sum over eigenfunctions yields a Dirac §-function [5]

= [*"dpcos (p(eg — 0q)) = 6(0q — 0q). (17)

A bell-shaped or double-well shaped maximum is expected for cosg =~ 1 — ¥%¢? . The heat singularity (17)
transmits to M. Doubly-periodic z = pe!® = e!®*! can be formulated by complex ¢ in homogeneous roots x; = (X1, Xjz)-
Shifting the origin to ¢ — @4 = ¢4 permutations of two components in (16) yield the one-dimensional Laplace equation

a 1
Gz 9% =(&2/3) 8(0g — 0¢) (18)
with one-dimensional (one-periodic) tent-map Green’s function
GH = S(q)q)e(‘l'[ - (pq) +(1t S((Pq))e(¢q — ) (19)

with Heavyside function 0(z). Ordered congruences m=12,6,4,3 for the mod 2 field ¢, ¢ are capable to satisfy

. (m) —
z=e* and sequentially (™) = et Therefore, the form (19) is equivalent to the form & ~ Y;; of the Green’s function
in terms of quartic/cubic roots (16) which is equivalent to G &) =~ LTJqL|Jq = Pq@q to a quadruple of shifts (15) of the Weber

(4
invariant f(w). The sum of shifts IT |<0 f @q yields a CF representation for the permutated basis (@41, 9q2) —
(‘qu' (pql)
€)]
St = Ty =11 |5 ¢ |0y > 3(L.0,) 20)

For fourth roots {* = +i, +1 the product is the sum of angles in a tubular channel. If the varies {* at each step
one recovers the geometric zeta function form {(£, @) = (3% — 2)~* for the Cantor string £ = 2/3-(+)¢_Each step in a
period-3 cycle n+n+n=3x permutes the sign (3% — 2)™! - (=3¢ —2)71 > (3% — 2)71. Itis claimed that a period-3 cycle
recovers the boson-fermion vertex by the product G (t,t")G (¢, t")¢ (¢, t') . The summed angle S(¢q) is the
occupation number in the Green’s function (19) with timet = ¢,. The ¢, -dependent simplest cycle F® (F(g)) = Z assigns
cubic roots z to ranges d¢, in the real interval [0,1] thereby defining >,<,= relations. The real angle ¢, implies a time-
causality where non-equivalent v yield complex ¢ which act as a damping in (19). On Poincare plane H? metric gl =
y28; = %i(z — 7)%8;; and Laplacian read

b =y70,0; = ey =y (37 +05) = e T (0F + ) = 7=0,/lglg¥9; (1)

The ¢, singularity in [0,1] is on horizontal lines p.(Imz — m,) = 0 on complex plane, i.e. y=const. This links
the mass m,, to Sharkovskii periods and +x rotations in [0,1] [12]. Zeros of L(z, x)€(z) with L-functions yield [20]
By (L2 0E@) + 5L (2, 0E@) = pe(Imz — m,)
with Lagrange parameter g and .. (18) leads to
Dyy & =m,6(z — z,) (22)

The solution with Laplacian (21) is a non-analytic two-dimensional Green’s function
G@(w,2z) =myln(z — z,)(Z - 2,) = Mp(L(zq2) + L(Z,,2) (23)

In base B discrete values of the phase @4 are assumed to satisfy OL(w,z)=~ L(w,z). The angle of the planar triangle
T(zq) = T(Az = z,, 74, Z,, Z3) for q(z) changes over to discussing a net rate process where S(t) contains a Fermi level.
First the Green’s function (19) G(w,z) =~ dL(w,z) = L(w,z) =~ G®(t,t") enters the z;,z, decision algorithm with
[GP(w,z) = GH(t,t) [4]. The problem of half-differentials is attached by replacing the differential dz along the string
circulation £(B) by a sum over £ = '¢ + I'TG) GG where vertex I' = I'[G "] describes tangents on a bell and

on twin peaks or asymmetric peaks. For k—oo the exponent of the quadratic form q(z) tends over to a thermodynamic
potential Q in with quantum statistics [21]. One gets

z dz z Q
q(z) = "7 = e lg 002 = &= 99~ G1(2)671(2) 24)

Integrating (24) a quadratic zx+[zx] confirms a quadratic law in Gy * = z, — z; which explains a zero of q(z) =
e/ 6 The discriminant root of q(z) VA = z; — z, enter the self-energy as an energy gap or mass. Constant values of
discriminant and regulator are capable to exhibit oscillations. First permuting iterates of f(w){!? transform like 4 —
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A(@®?) [9]. Oscillations occur for fixed discriminant A, regulator Ra and hax=1 for units &=
(T@p)?, (@ p)~teie/3, (@ p~1)e~/3 by mod 2 and mod 3 fields {?, 73 e {12, One gets the discriminant

VAlp, @) = 2i([TPTp)* + (@73 p)=3 — 2c0s(9/3))sin(p/3) (25)

as well the regulator index
Ry =1 =loge = 2{Plogp (26)

(25) and (26) are subjected a minimum of the quadratic form Q(1) = w12 + pyl + usN(e?HZ(L, 1) with
geometric zeta function form (£, 1) [22]. Degrees of freedom of Q(1) are a modulo 2 field {® = {®(p, @) , power integral
bases {by, b; }.{w, = 1, w;, w,} and {* which is a discrete Fourier transform (DFT) radix-4. It is noted that shifts in the
cubic base {w;, w,} with invariant A index form include the following CF process

(€3]
90 = Lo @)

=In'q(z) »

-z

The rh.s. of (27) yields the Cantor set geometric zeta function {(£,1) for geometric string £ = 2/3-(+)! for
different roots {¥ = +1, +i with renormalized function g(z) = {(£,1) and infinite periods. For vertex part g(z) =
I{™W=1L=G66and (W =1,L=TD=2%,D ={(L1) periodic CF in (27) yield a Dyson equation with Green’s
functions a Bethe-Salpeter equation because multiplication is convolution by Fourier components {('? within discrete
Fourier transformations (DFT) with ™. Bases {w;, w,} enables a fast optimal solution of the optimizable quadratic form

Q (1) using the identity |0 0| = log |0 1l

4. SCAN ALGORITHM
The aim is root finding of

a@) = ¢ - £(2)§(2) (28)

which is solvable for quadratic q(z) near simple zero z,,; of £(z). The question is to translate binary information
of string of decisions z;, Z, into the real world. The presented algorithm has an infinite number of degrees of freedom. The

dependence on the number field K enters writing variable z = Z(lz)e$ via the Kronecker product of bases B =
{bo, b1 }[{wo = 1, w;, w,} ® {{®}]. Different complex planes already arose from a numerical representation of the
Mandelbrot zoom in space. {*?) is algorithmically accessible by a solvable quartic in order to scan an infinite base of ¢,
Binary invariances zy,; < Y& (W) 0 i, and z. « y® (w) o 7 create an envelope ¢® (1) if substitutions are equivalent
dety® = 1. An envelope of (1) can be written in terms of the elliptic invariant j(w) = j(w") or in terms of ¢® (1) with
Legendre module A(f(w)) or in terms of SL(2, Z) substitutions of A. ¢(6)(/1) writes @ (f8(w)) = f2*(w) — g,f%(w) — g
in terms of z,, — f8(w). Two-component bases b and the conjugate b yield an Abelian four-component base b, = (b, b)
Setting by = b5 = Py, one gets an oscillation around z,,; by three distinct circles centered by z, [S*(zp), S (2,,), St(z, €

¢12))]. Without loss of generality, one gets a two or three “particle’ motion around a given point. With a large background
mass a double peaked configuration is used for a matrix representation of E_,(Z) for speciﬁed b,. Because a substitution v is

equivalent to matrix multiplication b one can use |0 = |0 1 e 0 0 = | 0 1 and n~% - b,eM")p, with
M(zn) = |0 _Zn| The zeta function {(z) = ), n™ yields the product
§@E®@) = biH* Ty ™ Hb, (29)
) M(zn) ) . ) . P
with four-component M = 0 M(zn) acting on up to an undetermined rotation by a Hermitian matrix H.

A renormalized (iterated) behavior &(z[¢4]) should traverse a bell-shaped or double well shaped configuration z[¢, €
{12)]. Rational @4 = Y in homogeneous coordinates on Gaussian plane describe a string circulation in cylindrical
coordinates p and ¢ with in ¢-units of @ in interval [0,1] [8]. A required number of pixels for ¢, to form a smooth maximum
is expected above 22", Tterates Zys1 — Zx = G™1 = z — e; are proportional to differences of cubic roots e; — e = X; =
f (w) for optimal iscrete ¢, with ¢, ~ e®a. The algorithm aims to prove that renormalized Az[¢,] is quadratic or quartic
in @, with Az ~ @, =~ G 1~ 3 . A bell-shaped maximum corresponds to the direct term and a double-well shaped
maximum to the exchange term of the scattering amplitude. The algorithm associates a fast F (Nq) decision by a short Pr,-
string where the message carries very little information. A slow decision on the border between J(Ng) —F (Nq) with a
long @p,- message string carries much information. The underlying idea is that a maximal topological entropy

h{{*?]=#71? is given by a high number of generators {(*?) in the set of three different circles (coordinate systems) among
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maximally five circles. The underdetermined Newton algorithm (1) stores least squares of a thermodynamic potential 0, =
[ dz G(z) along a surface dz triangulated by T(z,). This elliptic approximation is capable to satisfy a Gaussian differential
equation for z(X) due to y-invariance of ¢ (1). The cyclotomic approximation b, [{1?)] of the KWT allows to set 9y =
22 which yields an oscillatory behavior z()). Expanding b,[{(*?)] in terms of Hermite polynomials the n-sum in (29) can
be performed. Accordingly, for still to be found four centers z, only nearest neighbors in (29) contribute to periodic CF.

Root finding (1) converges if [4] 9,Nq(2)| = |m

8wy z + 4w, is only linear in IK[A]. The roots of

< 2 where 9,Ny(2) = 0,F®(w,z) = 2wpaez + wya, + woa, =

F(3)(W, Z) = WOF]. + WlFO = Woaozz + (Wlao + Woal)Z + 1/3W181 + 2/3W032 (30)

are

F® = 2w1a (W1ag + woay ++/(wyag + woay)? — Yawgae(Yswya; + %swoa,)) 31)
0o

For invariants a, = 4,a; = 0,a, = g, one has

2
F® =2W710(1J_r /1—%&) (32)

Convergences are stored in a string (p{bq=0‘0‘0‘0}0f rational angles (in units of 1) where a switch to 1 in the g™ place
denotes a point at zq in a quadruple T(zy). The paper claims that the summed up Py, is equivalent to the Green’s function
(19). On the border between the Julia set J (N, ) set and the Fatou set F (Nq) the length of {bg} — o [4] [23]. Convergence

to z; or Z,depends on the value of a definite angle ¢ = In w in a triangle [4]
K~ Zk+3
T(Az = Zy, 24,249,235 = Y2(z, + Zz)) = T(zq). (33)
try

2[S" (), S*(24), §* (25 € {U)] >

il Tjbny — Y58, = (¥ = £1,+i

i A lTJ]'_"N )/(W) — c(4) 0 |
-1 w
YW) oz = Zpyq N, (z) = 72 — 217,
a z— Y5(zy + 2,)
Ng(Zr41) = Zis2 10, Nq(zi)| < 2

Zk, Z+1) Ziv2 — {new triangle T(zy, Zy11, Zi+2) Zi+3)

Zx+1 — Zk+2
@1 = In————— = L(Zk+2, Zk+1) — L(Zk+3, Zk)

Zg — Zk+3

S(3(p{bq})+= 2nkO (Yot — Imoy) + 2n(k + 1)0(Ime — Vo)

catch

A’k = e(pT

S(@py)) = S(@q), t= @4

G(zi) = Zkar —z) " = 0, logq(z) = GH (¢t

Thermodynamic energy

Q= Z GH(L ) = f dzG* (¢, t)

q(Zi41)
G =z — gy =7 ——
ez et aZk+1q(Zk+1)

Particle energy
G(z) t=x

Fig. 1 Statistical scan of a circulating string near zeros of (Ax) on the border of J(Ny) — F (Nq)
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A circulation of z in Fig.1 (1) indicates convergence towards z,,Z, = Z;, Z,; as a nontrivial zero of £(z). A
calculated condition |9, Ng(2,)| < 2 presupposes a UFD by K[A]. A regular (non-stochastic) behavior in Fig. 1 indicates

the validity of a congruence @;(f(w)) = 0.

5. LAGRANGIAN- REGULATOR INDEX RELATION OF STRESS-ENERGY
The paper claims that thermodynamics and statistics originate from the complex plane as the infinitely sheeted
Riemann surface Ry, of the complex logarithm L(w,z) for triangle string circulation T(zq) in space. The metrical line

element ds? on Poincare plane H?
ds? = y2dzdz = —d,In(z — 2)d;In(z — 2) (34)

with differential d, acts only on variable z for w = Z in L(w,z). ds? depends on invariant properties of

d,In(p(2) — pW))dyyIn($(2) — $W)) — d,In(z — w)d,,In(z — w) (35)

Steps Pri1 = Zry1 =V © 2 and bpyo (Pry1(di(zy))) are as well variables zx and functions ¢x where two
consecutive conformal maps z = ¢Priz = Ory2(Pre1(z)) yield quadratic differentials in the theory of half-differentials
[2]. Consecutive maps z,, = Zy+1 = Zk4» yield the exact sum

de+1 Lk+2de+1 Lk+2 - de+1Lk+1de+1Lk+1 +
de Lk+1deLk+1 - de LdekLk = (36)
de Lk+2 de Lk+2 - de Ldek Lk

or in differential form

[Wi2r Zkt2r Wit 1, Zke 1] AW 1 AZiy 1 + [Wit s, Zicrs, Wi Zi]dWidzye = [Wiet o, Zito, Wi 2 Jdwicdzy (37)
with the denotation

Wit Ziers, Wi 2] = av(v‘i‘:f;—ljki;{; e G%)
Four terms remain in (36)

dzk+1Lk+2dwk+1Lk+2 - dzk+1Lk+1dwk+1Lk+1 + dszk+1dkak+1 - dszk+2dkak+2 =0 (39)
which justifies a square root by Dirac matrices. First in the limit w—z one gets the chain rule

{Zk+2, Zye1}dzi,q + {Zk+1, 7 }dzf = {Zk+2, 7, }dz (40)

with Schwarzian derivative
{F®(w,z),z} = 60,0,log

F(3)(w,z)—F(3)(w,w)

Z—W

¥ 3 ,F
|w—>z =6 az awlogB(F(3)(f' Z)tl)lw—m = E - E(E)z (41)

where F = 0,F®)(f,z). The Schwarzian derivative {F(w,z),z} enters conformal stress-energy T(w,z) [24].
Limits w - z and w - Z indicate that T(w, z)dzdw = {F(f, z), z}dzdw is not compatible with a metrical line element (29)
on H? .The paper solves the contradiction in terms of homogeneous coordinates @, , of Pr, and of @, for dz; on a

discretized infinite string circulation with dz, = (gg; ) A sum of discrete angles @, in exp(o,X,) (i;) leaves metrics
(34) invariant if the imaginary part Imz = m, = const. is constant. This defines M for appropriate rational values
X, =(X1,X2,X3,x4) and Pauli matrices o,. A singularity §(¢, — @) in (19) would transmit to the rh.s of (36-40). A

symmetrized version of (40) is proposed to solve the problem of half-differentials as follows
Yaa{ze, 2q}dzqdzg = Yqq 8(0q — @q)d@qdey (42)

Involutions (15) k—k+1—k+2 in (36-40) yield four neighboring triangles T(Zq) - T(Zq') - T(zqr') - T(zqm)
in R.. For optimal dL=L with dL = dzdL = dzG®)(z) = dz{);; the quadratic differential form d¢4d¢, of (36) should
be invertible in terms of yvaﬂc(ﬂq_q,. This triangulation process should yield
{Zu,' z,} = yvauG(i)q,q’ (43)

which is claimed to be stress-energy for a string of 4 points in triangles T(Zq) propagating on Ry in space. Green’s
functions G®(z) in dL = dzdL =~ dzG® (z) are cubic root -dependent units € in zy, Zy11, Zy+2, Zx+3. Accordingly, the

thermodynamic potential Q depends via the regulator index R, = Ine in (25-26) on a mod 2 field {®. Simultaneously,

deq

dq>2> implies a binary representation for &,_;. Except the

Ry = Ine = detlngy 4 is a circulant determinant. dz, = (

zeroth component &, all contributions (n |(1) (8)| = |8 8| are nilpotent of degree 2 which shows that a cubic field exists.
Simultaneous fractional substitutions y o {(z) possess an analytic continuation to the entire complex plane and to H? where

_ 0 c_
((z—>1)—co~chll+0(z)~|1 _112 (44)
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—Znt

11z (45)

1

(2 = 200) ~ €1z = 20) + 0023 ~ | |
Supposing that y o {(z) validates a CF representation of y o {(z) — {(2) [, L(zX) . Then residua c_; = R, near

Zerit = 1 and zeros z,, are linked by a circular motion of differences of cubic roots where Az = A4z. Accordingly, the

potential
80 = 8L = 6z0L =~ 82GP) (2) ~ 6R,

is proportional to the regulator index R,. Periodic units & ., are nilpotent of degree 2 in (25) and (26). For q(z) =
(z — 2,)(z — z,) the Juliaset J(Ng) = z — z,: z, = Y2(2; + 2z;) contains the involution M, ,(z,) = —1 as a period-3 cycle.
N, (2) is conjugate to z* by a Moebius map M, ,(2) o N,(2) o My ,(z)™" = z* which yields M; ,(z) = M, 5(241)* [25].
This approach approximates z by cubic roots e;. For zero-start value zy1.1(z) = £(2) = 0 M, ,(zy) = Z;:z can be viewed
-€3
as a Legendre module A. Then z,,, corresponds to a lemniscate with g; = 0,e; = 0,e, = —e; and M(zy,4) = g_% =—1.
-€3

Subsequent steps k yield k-components of y M; ,(z,) = M , (Zk+N)2N which are viewed as real particles.

6. M ORIGIN

M is seen as the common action of (thermal) chaotic y-cycles superimposed by converging Nq cycles (¢-series).
Root finding (1) by the scan in Fig.1 is a two-conformal step algorithm by iterating N and independently iterating y. The
invariant form (12) is a Mandelbrot map with ¢ = %gz. Writing D, = 2%z and Ty, = 23z, F = %N(C — 2141),§ =
1%3(c — Zy41) the map (12) rewrites as D, + 2FD2, — G2 = 0 or F + iG = D3, + 2iD,y 1, — I3,. The invariant g, in
F +1G is like an energy density in quantum electrodynamics for tensor D, [26-31]. D,,,, and current tensor I, are seen
as four-component invariants in M with normal X = /(F +iG) = E + iB to a complex plane z. Variable z is subjected
two transformations

(1) the fractional substitution y of z itself leads to binary invariants (11). Four-component states ; of (4) are
decomposable in cyclotomic bases of { (12) which leaves (11) invariant
(i1) converging iterates (1) are discrete rotations of homogeneous angles £+x in (19) of triangle iterates T(Zq) with
. . ~ ~ d d .
Az = 7y g — 2 = Dy, +ily, — F —iG = dzgq = (d$;) - exp(o,x") (dﬁz) as CF in (19)

T(z)~T (20~
Here z and Az is one point of four points in a triangle T(Zq) in Fig.2.

Fig.2 the planar triangle Tq(z)- configuration for deciding whether root finding (1) tends to z; or z,. The Fatou
set is the range of the hyperbola [4]

| © 2026 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India | 63 |




Otto Ziep, Sch J Phys Math Stat, Feb, 2026; 13(2): 56-65

Both substitutions (i) and (ii) yield Ty (z) shifts (index q is denoted by s)
AZk,s < AZk—1,s + Dk—l,ss’AZk—l,s' (46)

D = Dy, [y*, "] is a four-component representation of exp(oux“) with D, = [x",x"]_. Period-n cycles of y®
consist of n period-3 cycles Y oy o y&) = y& or FO(F®)) = z
X
Dk,n < ;Dk,n—l (47)

which yields a product Hn%Dk‘n = %D,‘Q where X = |X| = VD2, Quadruples (15) imply F(F) =z, yoy =1
which is equivalent to D,fyn =~ X?Dy -, which is period-3. As a consequence, one gets from (46) and (47) a matrix
exponential Az, ,; < ePkAz,. Even powers are diagonal matrices D3 = X2D,D* = X* D> = X*D. One gets the unit
transformation matrix e® =~ chX + X~*shXD. A mod 2 field {® involution is realized by squared Dirac matrices (y*)? =

1. Tt is argued that a mod 3 field x = {® & {0 with e* ~ izljzo_?lx(l‘i)j e’mod(x® — 1) yields the CF representation
of the Cantor set (20) with a quadratic expansion e®*(®) ~ ¢, (B). A subsequent tower of roots should require a mod 2 field
in B({'?). The present picture is an infinite discrete string circulation L(E) on R; with a long @y, - message in (ii) is
expected on the line Az-z; of involutions M; ,(z,) = —1. This occurs for a Julia set J(N,) with d,logq(z) — 0 which
yields G(Az — z3) = 0. But G (y“ Oyn — mJ(Nq)) = 1 [26] which yields an infinite hypothetical (dark) background mass
Mgy, = @ . T(zq) triangulations of Ry are disc-like and remembers a gap state with Fermi level Az —z5. Two

independent steps (i) and (ii) should yield two irreducible susceptibilities yarin and Ygdisusion. Drift yarine is caused by time
t=S(¢pq) with highest velocity by the maximal angle of the hyperbola in Fig.2, Diffusion ydimrusion is caused by theta constants
9=n(o)f*(w) which satisfy a heat equation with unit diffusion constant. Circulations in the vicinity of z,, in Fig. 1 are
subsequent iterates Az«—AAz with JA[f(w)]= % on the critical strip.

7. CONCLUSIONS

It is argued that spacetime curvature is complex, i.e. there exists simultaneously two curvatures and two masses.
This claims a dark, complex environment for Minkowski spacetime M. A quadratic root finding fits in an infinite mass on
the border to a Julia set J(N,). A proposed scan algorithm of zeros of entire transcendent functions is optimal because
cubic and quartic polynomials have algorithmically accessible roots. As a result, the detection of zeros in quadratic,
complex Newtonian root finding is non-unique in the general case. This non-uniqueness embeds covariant transformations
x#* = e)x” of real coordinates and vierbeins e}, and spacetime M by parametrizations of a planar triangle in a triangulated
complex Riemann surface Ry of algebraic units. A point z with two possible complex solutions z;,z, of the quadratic
polynomial q(z) stands for two possible complex curvatures K, K, of spacetime. Alternatively, each point z is described
by two complex masses mi,m, where their imaginary part stands for dark matter. This chaotic dark matter state as the set
of frayed paths of (1) is viewed as one origin of Minkowski spacetime M. Whereas M is caused by Abelian permutations
of two components of cubic/quartic roots ei/xi (16) the creation of fermions as mass generating laps at root finding (1) is a
1:2 relation (4) between Aei and Axi. The entropy source window permutes an infinite number of Poncelet polygons which
defines spacetime M, mass and charge.
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