

Scholars Journal of Engineering and Technology (SJET) ISSN 2321-435X

Sch. J. Eng. Tech., 2013; 1(2):63-67
©Scholars Academic and Scientific Publisher
(An International Publisher for Academic and Scientific Resources)
www.saspublisher.com

 63

Research Article

Efficient Mining Tree in Association Rule Mining for Reducing the Time

complexity
Richa Sharma, Pream Narayan Araya

Samrat Ashok Technological Institute, Vidisha-464001 (M.P.) ,INDIA

*Corresponding author

Richa Sharma

Email:

Abstract: Association rule mining, one of the most important and well researched techniques of data mining, was first

introduced in. It aims to extract interesting correlations, frequent patterns, associations or casual structures among sets of

items in the transaction databases or other data repositories. However, no method has been shown to be able to handle
data streams, as no method is scalable enough to manage the high rate which stream data arrive at. More recently, they

have received attention from the data mining community and methods have been defined to automatically extract and

maintain gradual rules from numerical databases. In this paper, we thus propose an original approach to mine data

streams for Association rule mining. In this paper we present a novel ABFP tree technique that greatly reduces the need

to traverse FP-trees and array based FP tree, thus obtaining significantly improved performance for FP-tree based

algorithms. The technique works especially well for sparse datasets. We then present a new algorithm which use the FP-

tree data structure in combination with the FP- Experimental results show that the new algorithm outperform other

algorithm in not only the speed of algorithms, but also their CPU consumption and their scalability.

Keywords: FP-Tree, WSFP –Tree, Frequent Patterns, Array Technique.

1. INTRODUCTION

Frequent-pattern mining plays an essential role

in mining associations [1] if any length k pattern is not

frequent in the database, its length (k + 1) super-pattern
can never be frequent. The essential idea is to iteratively

generate the set of candidate patterns of length (k+1)

from the set of frequent-patterns of length k (for k ≥ 1),

and check their corresponding occurrence frequencies

in the database.

The Apriori heuristic achieves good

performance gained by (possibly significantly) reducing

the size of candidate sets. However, in situations with a

large number of frequent patterns, long patterns, or

quite low minimum support thresholds, an Apriori-like

algorithm may suffer from the following two nontrivial
costs: – It is costly to handle a huge number of

candidate sets. For example, if there are 104 frequent 1-

itemsets, the Apriori algorithm will need to generate

more than 107 length-2 candidates and accumulate and

test their occurrence frequencies. Moreover, to discover

a frequent pattern of size 100, such as {a1. . . a100}, it

must generate 2100 − 2 ≈ 1030 candidates in total.

This is the inherent cost of candidate

generation, no matter what implementation technique is

applied. It is tedious to repeatedly scan the database and
check a large set of candidates by pattern matching,

which is especially true for mining long patterns. Can

one develop a method that may avoid candidate

generation-and-test and utilize some novel data

structures to reduce the cost in frequent-pattern mining?

This is the motivation of this study [5].

Let I= {i1, i2, in} be a set of items, we call x

and I an item set, and we call X a k-item set if the

cardinality of item set X is k. Let database T be a multi
set of subsets of I, and let support(X) be the percentage

of item set Y in T such that X U Y .Informally, the

support of an item set procedures how often X occurs in

the database. If support(X) + minus , we say that X is a

frequent item set , and we denote the set of all frequent

item sets by FI.A closed frequent item set is a frequent

item set X such that there exists no superset of X with

the same support count as X. If X is frequent and no

superset of X is frequent, we

Say that X is a maximal frequent item set, and

we denote the set of all maximal frequent item sets by
MFI. [7]

2.RELATED WORK

Association Analysis is the discovery of

association rules attribute-value conditions that occur

frequently together in a given data set. Association

analysis is widely used for market basket or transaction

data analysis. Association Rule mining techniques can

be used to discover unknown or hidden correlation

between items found in the database of transactions. An

association rule [1, 3, 4, and 7] is a rule, which implies
certain association relationships among a set of objects

(such as „occurs together‟ or „one implies to other‟) in a

database. Discovery of association rules can help in

business decision making, planning marketing strategies

etc.Apriori was proposed by Agrawal and Srikant in

1994. It is also called the level-wise algorithm. It is the

http://www.saspublisher.com/

Richa Sharma et al., Sch. J. Eng. Tech., 2013; 1(2):63-67

 64

most popular and influent algorithm to find all the

frequent sets. The mining of multilevel association is

involving items at different level of abstraction. For

many applications, it is difficult to find strong

association among data items at low or primitive level

of abstraction due to the sparsity of data in multilevel
dimension. Strong associations discovered at higher

levels may represent common sense knowledge. For

example, instead of discovering 70% customers of a

supermarket that buy milk may also buy bread. It is also

interesting to know that 60% customer of a super

market buys white bread if they buy skimmed milk. The

association relationship in the second statement is

expressed at lower level but it conveys more specific

and concrete information than that in the first one. To

describe multilevel association rule mining, there is a

requirement to find frequent items at multiple level of

abstraction and find efficient method for generating
association rules. The first requirement can be fulfilled

by providing concept taxonomies from the primitive

level concepts to higher level. There are possible to way

to explore efficient discovery of multiple level

association rules. One way is to apply the existing

single level association rule mining method to mine Q

based association rules. If we apply same minimum

support and minimum confidence thresholds (as single

level) to the Q levels, it may lead to some undesirable

results. For example, if we apply Apriori algorithm [1]

to find data items at different level of abstraction under
the same minimum support and minimum confidence

thresholds. It may lead to generation of some

uninteresting associations at higher or intermediate

levels.

Large support is more likely to exist at high

concept level such as bread and butter rather than at low

concept levels, such as a particular.The FP-growth

method relies on the following principle: if X and Y are

two item sets, the support of item set X UY in the

database is exactly that of Y in the restriction of the

database to those transactions containing X. This
restriction of the database is called the conditional

pattern base of X. Given an item in the header table, the

growth method constructs a new FP-tree corresponding

to the frequency information in the sub-dataset of only

those transactions that contain the given item. Figure

2(a) shows the conditional pattern base and the FP-tree

for item {p}, this step is applied recursively, and it

stops when the resulting smaller FP tree contains only

one single path. The complete set of frequent item sets

is generated from all single path FP-trees [5]. When

adding an item i to the existing item set head, we denote
the item set head i by Z, the path from the parent node

of this node (node‟s item-name is i) to the root node in

the head‟s FP-tree is called Z‟s prefix path. Figure 2(b)

shows the prefix paths for item {p}.

Figure 1: FP-Tree

Figure 2: Prefix paths for Item

 Figure 3: Frequency of Sample Database

3. PROPOSED WORK
Algorithm of WS with Array based technique:

Improved FP-tree (IFP-tree) is similar with FP-tree and

each node in IFP-tree consists of four fields: item,

count, ahead and next. Where item registers which item

this node represents, count registers the number of

transactions represented by the portion of the path

Richa Sharma et al., Sch. J. Eng. Tech., 2013; 1(2):63-67

 65

reaching this node, ahead links to the left child or the

parent of the node, and next links to the right brother of

the node or the next node in IFP-tree carrying the same

item, or null if there is none. We also define two arrays:

nodecnt and link, and link [item] registers a pointer

which points to the first node in the IFP-tree carrying
this item, nodecnt [item] registers the support count

sum of those nodes in IFP-tree which carry the same

item. In comparison with FP-tree, IFP-tree doesn‟t

contain the path from root to leaf-node, contains fewer

pointers than FP-tree in mining process, and so may

greatly save cost in memory. The construction method

of IFP-tree is similar with that of FP-tree, the difference

from FP-tree exits in the process of Inserting frequent

item sets in each transaction into IFP-tree. In this paper,

we don‟t adopt the method of recursively performing

the procedure, insert tree ([p|P], t), but employ a

dynamic pointer to complete it.

3.1 The algorithm constructing IFP-tree as follows:

Procedure FP-tree constructs (T, min_sup)

1) Scan T and count the support of each item, derive a

frequent item set (F) and a list (L) of frequent items, in

which items are ordered in frequency-descending order;

2) The root of IFP-tree is created and labeled with

“root”;

3) For each transaction t UT do{Frequent item set It= t

UF, in which items are listed to St according to the

order of L, defines a dynamic pointer (p_current) which
points to root.

Procedure WSFP-tree constructs (T, min_sup)

1) Scan T and count the support of each item, derive a

frequent item set (F) and a list (L) of frequent items, in

which items are in sequence of occurrence form;

2) The root of IFP-tree is created and labeled with

“root”;

3) For each transaction t UT do{ Frequent item set It= t

UF, in which items are listed to St according to the

order of occurrence L, defines a dynamic pointer

(p_current) which points to root.
4}Traverse IFP-tree in a root-first order and transfer the

pointers of ahead and next, count the sum of nodes‟

support carrying the same item and then list together.

For example, let transaction database T be illustrated by

TABLE I, and the minimum support (min_sup) be 4,

then we can get the list (L) of frequent items.

A G D C B

B D E A M

C E F A N

A B N O I

A C Q R G

A C H I G

A F M N O

A D B H I

J E B A D

A K E F C

C D L B A

Table 1

Figure 4: constructed all frequent item set.

A B C D

A B D E

A C E F

A B _ _

A C _ _

A C _ _

A F _ _

A B D _

A B D E

A C E F

A B C D
Table 2: Transaction database t with ascending

order

Figure: 5 FP Tree constructions

A G D C B

B D E A M

C E F A N

A B N O I

A C Q R G

A C H I G

A F M N O

A D B H I

J E B A D

A K E F C

C D L B A
Table 3: Transactional Dataset:

Richa Sharma et al., Sch. J. Eng. Tech., 2013; 1(2):63-67

 66

Figure: 6 WSFP Tree construction

5. ARRAY BASED APPROACH:

Firstly let an order (<) be the order of the list

L, that is, the support descending order of frequent

items. Let the letters (i,j,<,k) denote items in database,

then i is called the minimum item and k is called the

maximum item if i<j<....k. Let the letters (ik,<,i1[<1])
denote items, P be a path from root to the node N in

IFP-tree. If there exists a child node N�of the node N

and the items (ik,<,i1) appear the sub-path from N to N

in order, that is, the item ik corresponds to the node N

and i1 corresponds to N,then P is called the path with

the array of the item sets{ik,<,i1}, the support count of

the node N also is called the base count of A.

The process of building PT (a) is the

following: firstly, each node in IFP-tree whose value of

item is m is retained in PT (a), the support count of each
inner node (except root) is initialized to be zero.

Secondly, for each node, we summate the support count

of its children.

The main work done in the mining process is

traversing the postfix sub-tree to count the support of

item sets and constructing new postfix sub-tree, Recall

that for each item i of conditional PT(x), two traversals

of PT(x) are needed for constructing the new sub-tree

PT(k,i). The first traversal finds all frequent items and

their counts of support, the second traversal constructs

the new sub-tree PT (k, i). In this paper, we use the
array technique presented by reference [2]. All cells in

the array are initialized as 0.

Figure7 (A): Array Examples

Figure7 (B) Array Examples

During the second scan each transaction, first
all frequent items in the transaction are extracted.

Suppose these items form item set I, to insert I into PT,

the items in I are sorted according to the order in the

header of PT. When we insert I into PT, at the same

time AU[i,j] is incremented by 1 if {i,j} is contained in

I. After the second scan, array A keeps the counts of all

pairs of frequent items, as shown in table (a) of Fig 4.

6. EXPERIMENTAL EVALUATION

The experiments were conducted on 2.4 GHz

Pentium with 512 MB of memory running Microsoft

Windows XP. All codes were compiled using Matlab
7.10. We used Connect-4 downloaded form a website to

test and compared FP tree with WSFP tree, which is a

real and dense dataset. Fig 8 and Fig 9 shows the

experimental results. Here we can see that ABWSFP

outperforms WSFP for high levels of minimum support,

but it is slow for very low levels.

Figure8: Graphical Representation of Calculated

Result

Richa Sharma et al., Sch. J. Eng. Tech., 2013; 1(2):63-67

 67

Figure9: CPU Utilization

7. CONCLUSIONS

In this paper, an efficient algorithm, called

ABWSFP-max, for mining maximal frequent patterns

based on improved FP-tree and array technique is

proposed, the algorithm improves the conventional FP-

tree and by introducing the concept of the array sub-

tree, avoids generating the maximal frequent candidate

patterns in mining process and therefore greatly reduces

the memory consume, it also uses an array-based

technique to reduce the traverse time to the improved
FP-tree. Therefore it greatly improves the mining

efficiency in time and space scalability. Experimental

results show that it possesses high mining efficiency

and scalability.

REFERENCES

1. Bharat Gupta, Dr.Deepak Garg, Karun Verma.

A Novel Approach to Mine Frequent Item Sets

Using Maximal Apriori and FP-Tree Method,

International Journal of Advance Computing .

2011; 3(2)1-7.

2. Kuparala Chakrapani. Implementation of array

based technique to improvise representation of

fp-tree using iafp-max algorithm. Journal of

Global Research in Computer Science. 2011;

9(2):216-222.

3. Mantha SS. Maximal Frequent Item set.

International Journal of Computer

Applications, 2010;10(3):12-15.

4. Sumathi K, An array based approach for

mining maximal frequent itemsets

“Computational Intelligence And Computing

Research (ICCIC), 2010, 1-6.

5. Divya R, S.Vinod kumar. Survey on AIS,

Apriori and FP-Tree algorithms International

Journal of Computer Science and Management

Research. 2012; 1(2):226-236.

6. Huanglin Zeng An Improved Algorithm of FP

- tree Growth Based on Mapping Modeling,

ICCASM. 2010; 4:463

7. Vaibhav Kant Singh and Vinay Kumar Singh.

Minimizing Space Time Complexity by

RSTDB a new method for Frequent Pattern

Mining.First International Conference on

Intelligent Human Computer Interaction

,Allahabad, 2009.

8. Christie I. Ezeife and Min Chen. Lecture Notes

in Computer Science, Advances in Web-Age

Information Management. 2004; 3129; 5th

International Conference, WAIM 2004,

Dalian, China.

9. Han J., Pei J, Yin Y and Mao R, Mining

frequent patterns without candidate

generations., Data mining and knowledge

discovery, 2004; 8:53-87.

10. Han J., Pei J, Yin Y and Mao R, Mining

frequent patterns without n improved frequent

pattern growth method for mining association

rule. ACM SIGMOD Record, 2000; 29(2):1-

12.

11. Burdick Doug, Calimlim Manuel, and Gehrke

Johannes, A Maximal Frequent Item set

Algorithm for Transactional Database,

Proceedings of the 17th International

Conference on Data Engineering, Heidelberg,

Germany, 2001; 443-452.

12. Han J, Pei J and Yin Y, Mining frequent

patterns without candidate generation,

Proceedings of Special Interest Group on

Management of Data, Dallas, 2000; 1-12.

13. Agrawal R, Srikant S, Fast algorithms for

mining association rules. In VLDB', 1994; 94:

487-499.

