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Abstract: Association rule mining, one of the most important and well researched techniques of data mining, was first 

introduced in. It aims to extract interesting correlations, frequent patterns, associations or casual structures among sets of 

items in the transaction databases or other data repositories. However, no method has been shown to be able to handle 
data streams, as no method is scalable enough to manage the high rate which stream data arrive at. More recently, they 

have received attention from the data mining community and methods have been defined to automatically extract and 

maintain gradual rules from numerical databases. In this paper, we thus propose an original approach to mine data 

streams for Association rule mining. In this paper we present a novel ABFP tree technique that greatly reduces the need 

to traverse FP-trees and array based  FP tree, thus obtaining significantly improved performance for FP-tree based 

algorithms. The technique works especially well for sparse datasets. We then present a new algorithm which use the FP-

tree data structure in combination with the FP- Experimental results show that the new algorithm outperform other 

algorithm in not only the speed of algorithms, but also their CPU consumption and their scalability. 

Keywords:  FP-Tree, WSFP –Tree, Frequent Patterns, Array Technique. 

 

1. INTRODUCTION  

Frequent-pattern mining plays an essential role 

in mining associations [1] if any length k pattern is not 

frequent in the database, its length (k + 1) super-pattern 
can never be frequent. The essential idea is to iteratively 

generate the set of candidate patterns of length (k+1) 

from the set of frequent-patterns of length k (for k ≥ 1), 

and check their corresponding occurrence frequencies 

in the database.  

 

The Apriori heuristic achieves good 

performance gained by (possibly significantly) reducing 

the size of candidate sets. However, in situations with a 

large number of frequent patterns, long patterns, or 

quite low minimum support thresholds, an Apriori-like 

algorithm may suffer from the following two nontrivial 
costs: – It is costly to handle a huge number of 

candidate sets. For example, if there are 104 frequent 1-

itemsets, the Apriori algorithm will need to generate 

more than 107 length-2 candidates and accumulate and 

test their occurrence frequencies. Moreover, to discover 

a frequent pattern of size 100, such as {a1.  . . a100}, it 

must generate 2100 − 2 ≈ 1030 candidates in total. 

 

This is the inherent cost of candidate 

generation, no matter what implementation technique is 

applied. It is tedious to repeatedly scan the database and 
check a large set of candidates by pattern matching, 

which is especially true for mining long patterns. Can 

one develop a method that may avoid candidate 

generation-and-test and utilize some novel data 

structures to reduce the cost in frequent-pattern mining? 

This is the motivation of this study [5].  

 

Let I= {i1, i2, in} be a set of items, we call x 

and   I an item set, and we call X a k-item set if the 

cardinality of item set X is k. Let database T be a multi 
set of subsets of I, and let support(X) be the percentage 

of item set Y in T such that X U Y .Informally, the 

support of an item set procedures how often X occurs in 

the database. If support(X) + minus , we say that X is a 

frequent item set , and we denote the set of all frequent 

item sets by FI.A closed frequent item set is a frequent 

item set X such that there exists no superset of X with 

the same support count as X. If X is frequent and no 

superset of X is frequent, we 

 

Say that X is a maximal frequent item set, and 

we denote the set of all maximal frequent item sets by 
MFI. [7] 

 

2.RELATED WORK 

Association Analysis is the discovery of 

association rules attribute-value conditions that occur 

frequently together in a given data set. Association 

analysis is widely used for market basket or transaction 

data analysis. Association Rule mining techniques can 

be used to discover unknown or hidden correlation 

between items found in the database of transactions. An 

association rule [1, 3, 4, and 7] is a rule, which implies 
certain association relationships among a set of objects 

(such as „occurs together‟ or „one implies to other‟) in a 

database. Discovery of association rules can help in 

business decision making, planning marketing strategies 

etc.Apriori was proposed by Agrawal and Srikant in 

1994. It is also called the level-wise algorithm. It is the 
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most popular and influent algorithm to find all the 

frequent sets. The mining of multilevel association is 

involving items at different level of abstraction. For 

many applications, it is difficult to find strong 

association among data items at low or primitive level 

of abstraction due to the sparsity of data in multilevel 
dimension. Strong associations discovered at higher 

levels may represent common sense knowledge. For 

example, instead of discovering 70% customers of a 

supermarket that buy milk may also buy bread. It is also 

interesting to know that 60% customer of a super 

market buys white bread if they buy skimmed milk. The 

association relationship in the second statement is 

expressed at lower level but it conveys more specific 

and concrete information than that in the first one. To 

describe multilevel association rule mining, there is a 

requirement to find frequent items at multiple level of 

abstraction and find efficient method for generating 
association rules. The first requirement can be fulfilled 

by providing concept taxonomies from the primitive 

level concepts to higher level. There are possible to way 

to explore efficient discovery of multiple level 

association rules. One way is to apply the existing 

single level association rule mining method to mine Q 

based association rules. If we apply same minimum 

support and minimum confidence thresholds (as single 

level) to the Q levels, it may lead to some undesirable 

results. For example, if we apply Apriori algorithm [1] 

to find data items at different level of abstraction under 
the same minimum support and minimum confidence 

thresholds. It may lead to generation of some 

uninteresting associations at higher or intermediate 

levels. 

 

Large support is more likely to exist at high 

concept level such as bread and butter rather than at low 

concept levels, such as a particular.The FP-growth 

method relies on the following principle: if X and Y are 

two item sets, the support of item set X UY in the 

database is exactly that of Y in the restriction of the 

database to those transactions containing X. This 
restriction of the database is called the conditional 

pattern base of X. Given an item in the header table, the 

growth method constructs a new FP-tree corresponding 

to the frequency information in the sub-dataset of only 

those transactions that contain the given item. Figure 

2(a) shows the conditional pattern base and the FP-tree 

for item {p}, this step is applied recursively, and it 

stops when the resulting smaller FP tree contains only 

one single path. The complete set of frequent item sets 

is generated from all single path FP-trees [5]. When 

adding an item i to the existing item set head, we denote 
the item set head i by Z, the path from the parent node 

of this node (node‟s item-name is i) to the root node in 

the head‟s FP-tree is called Z‟s prefix path. Figure 2(b) 

shows the prefix paths for item {p}. 

 
Figure 1: FP-Tree 

 

 
Figure 2: Prefix paths for Item 

 

 

 
            Figure 3: Frequency of Sample Database 

 

 

3. PROPOSED WORK 
Algorithm of WS with Array based technique: 

Improved FP-tree (IFP-tree) is similar with FP-tree and 

each node in IFP-tree consists of four fields: item, 

count, ahead and next. Where item registers which item 

this node represents, count registers the number of 

transactions represented by the portion of the path 
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reaching this node, ahead links to the left child or the 

parent of the node, and next links to the right brother of 

the node or the next node in IFP-tree carrying the same 

item, or null if there is none. We also define two arrays: 

nodecnt and link, and link [item] registers a pointer 

which points to the first node in the IFP-tree carrying 
this item, nodecnt [item] registers the support count 

sum of those nodes in IFP-tree which carry the same 

item. In comparison with FP-tree, IFP-tree doesn‟t 

contain the path from root to leaf-node, contains fewer 

pointers than FP-tree in mining process, and so may 

greatly save cost in memory. The construction method 

of IFP-tree is similar with that of FP-tree, the difference 

from FP-tree exits in the process of Inserting frequent 

item sets in each transaction into IFP-tree. In this paper, 

we don‟t adopt the method of recursively performing 

the procedure, insert tree ([p|P], t), but employ a 

dynamic pointer to complete it. 

 

3.1 The algorithm constructing IFP-tree as follows: 

Procedure FP-tree constructs (T, min_sup) 

1) Scan T and count the support of each item, derive a 

frequent item set (F) and a list (L) of frequent items, in 

which items are ordered in frequency-descending order; 

2) The root of IFP-tree is created and labeled with 

“root”; 

3) For each transaction t UT do{Frequent item set It= t 

UF, in which items are listed to St according to the 

order of L, defines a dynamic pointer (p_current) which 
points to root. 

 

Procedure WSFP-tree constructs (T, min_sup) 

1) Scan T and count the support of each item, derive a 

frequent item set (F) and a list (L) of frequent items, in 

which items are in sequence of occurrence form; 

2) The root of IFP-tree is created and labeled with 

“root”; 

3) For each transaction t UT do{ Frequent item set It= t 

UF, in which items are listed to St according to the 

order of occurrence  L, defines a dynamic pointer 

(p_current) which points to root. 
4}Traverse IFP-tree in a root-first order and transfer the 

pointers of ahead and next, count the sum of nodes‟ 

support carrying the same item and then list  together. 

For example, let transaction database T be illustrated by 

TABLE I, and the minimum support (min_sup) be 4, 

then we can get the list (L) of frequent items. 

A G D C B

B D E A M

C E F A N

A B N O I

A C Q R G

A C H I G

A F M N O

A D B H I

J E B A D

A K E F C

C D L B A  
 

Table 1 

 
Figure 4:  constructed all frequent item set. 

 

 

A B C D

A B D E

A C E F

A B _ _

A C _ _

A C _ _

A F _ _

A B D _

A B D E

A C E F

A B C D  
Table 2: Transaction database t with ascending 

order 

 
 

 
Figure: 5 FP Tree constructions 

 

 
A G D C B

B D E A M

C E F A N

A B N O I

A C Q R G

A C H I G

A F M N O

A D B H I

J E B A D

A K E F C

C D L B A  
Table 3: Transactional Dataset: 
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Figure: 6 WSFP Tree construction 

 

5. ARRAY BASED APPROACH: 

Firstly let an order (<) be the order of the list 

L, that is, the support descending order of frequent 

items. Let the letters (i,j,<,k) denote items in database, 

then i is called the minimum item and k is called the 

maximum item if i<j<....k. Let the letters (ik,<,i1[<1]) 
denote items, P be a path from root to the node N in 

IFP-tree. If there exists a child node N�of the node N 

and the items (ik,<,i1) appear the sub-path from N to N 

in order, that is, the item ik corresponds to the node N 

and i1 corresponds to N,then P is called the path with 

the array of the item sets{ik,<,i1}, the support count of 

the node N also is called the base count of A. 

 

The process of building PT (a) is the 

following: firstly, each node in IFP-tree whose value of 

item is m is retained in PT (a), the support count of each 
inner node (except root) is initialized to be zero. 

Secondly, for each node, we summate the support count 

of its children.  

 

The main work done in the mining process is 

traversing the postfix sub-tree to count the support of 

item sets and constructing new postfix sub-tree, Recall 

that for each item i of conditional PT(x), two traversals 

of PT(x) are needed for constructing the new sub-tree 

PT(k,i). The first traversal finds all frequent items and 

their counts of support, the second traversal constructs 

the new sub-tree PT (k, i). In this paper, we use the 
array technique presented by reference [2]. All cells in 

the array are initialized as 0. 

 

  
Figure7 (A): Array Examples 

 
Figure7 (B) Array Examples 

 

During the second scan each transaction, first 
all frequent items in the transaction are extracted. 

Suppose these items form item set I, to insert I into PT, 

the items in I are sorted according to the order in the 

header of PT. When we insert I into PT, at the same 

time AU[i,j] is incremented by 1 if {i,j} is contained in 

I. After the second scan, array A keeps the counts of all 

pairs of frequent items, as shown in table (a) of Fig 4. 

 

6. EXPERIMENTAL EVALUATION 

The experiments were conducted on 2.4 GHz 

Pentium with 512 MB of memory running Microsoft 

Windows XP. All codes were compiled using Matlab 
7.10. We used Connect-4 downloaded form a website to 

test and compared FP tree with WSFP tree, which is a 

real and dense dataset. Fig 8 and Fig 9 shows the 

experimental results. Here we can see that ABWSFP 

outperforms WSFP for high levels of minimum support, 

but it is slow for very low levels.  

 

 
Figure8: Graphical Representation of Calculated 

Result 
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Figure9: CPU Utilization 
 

7. CONCLUSIONS 

In this paper, an efficient algorithm, called 

ABWSFP-max, for mining maximal frequent patterns 

based on improved FP-tree and array technique is 

proposed, the algorithm improves the conventional FP-

tree and by introducing the concept of the array sub-

tree, avoids generating the maximal frequent candidate 

patterns in mining process and therefore greatly reduces 

the memory consume, it also uses an array-based 

technique to reduce the traverse time to the improved 
FP-tree. Therefore it greatly improves the mining 

efficiency in time and space scalability. Experimental 

results show that it possesses high mining efficiency 

and scalability. 
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