

Scholars Journal of Engineering and Technology (SJET) ISSN 2321-435X

Sch. J. Eng. Tech., 2013; 1(2):78-90
©Scholars Academic and Scientific Publisher
(An International Publisher for Academic and Scientific Resources)
www.saspublisher.com

 78

Research Article

Comparative Study and Analysis of Various Edge Detection Algorithms in

Digital Image Processing
Sreemana Datta

Heritage Institute of Technology, Chowbaga Road, Anandapur, P.O.East Kolkata Township, Kolkata – 700107, West

Bengal, India

*Corresponding author

SreemanaDatta

Email:

Abstract: In the field of image processing, edge detection is an important step for extracting relevant and meaningful
information from digital images. The main goal of edge detection techniques is to obtain and detect thin edges of the

objects present in the image, so that the result is more suitable for further processing and analysis such as boundary

detection, image segmentation, motion detection/estimation, texture analysis, object identification, feature detection,
implementing various transformations and so on. We tested six edge detection algorithms that use different methods for

detecting edges and compared their results under a variety of situations to determine a generally preferable technique

under different sets of conditions. This data could then be used to create a multi-edge-detector system, which analyses the

scene and runs the edge detector best suited for the current set of data. For each of these edge detectors we considered

two different ways of implementation, the one using intensity only and the other coupling to it, the colour information.

We also considered one additional edge detector which takes a different philosophy to edge detection. Rather than trying

to find the ideal edge detector to apply to traditional photographs, it would be more efficient to merely change the method

of photography to one which is more conducive to edge detection. It makes use of a camera that takes multiple images in

rapid succession under different lighting conditions. It has been observed that the Canny‟s edge detection algorithm

performs better than all these operators under almost all scenarios. Evaluation of the images showed that under noisy

conditions Canny, LoG(Laplacian of Gaussian), Robert, Prewitt, Sobel exhibit better performance, respectively. It has
been observed that Canny‟s edge detection algorithm is computationally more expensive compared to LoG(Laplacian of

Gaussian), Sobel, Prewitt and Robert‟s cross operator.

Keywords: Boolean Edge Detector, Sobel Operator, Prewitt‟s Operator, Canny Edge Detector, Vector Angle Detector,

Euclidean Distance

1.INTRODUCTION

Edge detection refers to the process of identifying

and locating sharp discontinuities in an image. The

discontinuities are abrupt changes in pixel intensity

which characterize boundaries of objects in a scene.

Classical methods of edge detection involve convolving

the image with an operator (a 2-D filter), which is

constructed to be sensitive to large gradients in the

image while returning values of zero in uniform
regions. There are an extremely large number of edge

detection operators available, each designed to be

sensitive to certain types of edges. Variables involved

in the selection of an edge detection operator include

Edge orientation, Noise environment and Edge

structure. The geometry of the operator determines a

characteristic direction in which it is most sensitive to

edges. Operators can be optimized to look for

horizontal, vertical, or diagonal edges. Edge detection is

difficult in noisy images, since both the noise and the

edges contain high frequency content. Attempts to
reduce the noise result in blurred and distorted edges.

Operators used on noisy images are typically larger in

scope, so they can average enough data to discount

localized noisy pixels. This results in less accurate

localization of the detected edges. Not all edges involve

a step change in intensity. Effects such as refraction or

poor focus can result in objects with boundaries defined

by a gradual change in intensity. The operator needs to

be chosen to be responsive to such a gradual change in

those cases. So, there are problems of false edge

detection, missing true edges, edge localization, high

computational time and problems due to noise etc.

Therefore, the objective is to do the comparison of

various edge detection techniques and analyse the
performance of the various techniques in different

conditions. Edge detection is a very important area in

the field of Computer Vision. Edges define the

boundaries or sharp discontinuities between regions in

an image, which helps with segmentation and object

recognition. They can show where shadows fall in an

image or any other distinct change in the intensity of an

image. Edge detection is a fundamental of low-level

image processing and good edges are necessary for

higher level processing. The problem is that in general

edge detectors behave very poorly. While their

behaviour may fall within tolerances in specific
situations, in general edge detectors have difficulty

adapting to different situations. The quality of edge

detection is highly dependent on lighting conditions, the

presence of objects of similar intensities, density of

http://www.saspublisher.com/

Sreemana Datta, Sch. J. Eng. Tech., 2013; 1(2):78-90

 79

edges in the scene, and noise. While each of these

problems can be handled by adjusting certain values in

the edge detector and changing the threshold value for

what is considered an edge, no good method has been

determined for automatically setting these values, so

they must be manually changed by an operator each
time the detector is run with a different set of data.

Since different edge detectors work better under

different conditions, it would be ideal to have an

algorithm that makes use of multiple edge detectors,

applying each one when the scene conditions are most

ideal for its method of detection. In order to create this

system, you must first know which edge detectors

perform better under which conditions, which is the

goal of our research. We tested six edge detectors that

use different methods for detecting edges and compared

their results under a variety of situations to determine

which detector was preferable under different sets of
conditions. This data could then be used to create a

multi-edge-detector system, which analyses the scene

and runs the edge detector best suited for the current set

of data. For one of the edge detectors we considered

two different ways of implementation, one using

intensity only and the other using colour information.

We also considered one additional edge detector which

takes a different philosophy to edge detection. Rather

than trying to find the ideal edge detector to apply to

traditional photographs, it would be more efficient to

merely change the method of photography to one which
is more conducive to edge detection. It makes use of a

camera that takes multiple images in rapid succession

under different lighting conditions. Since the hardware

for this sort of edge detection is different than that used

with the other edge detectors, it would not be included

in the multiple edge detector system but can be

considered as a viable alternative to the existent system.

2. Edge Detection

2.1. Variables involved in selection of edge detector

Edge orientation: [1] [5] The geometry of the operator
determines a characteristic direction in which it is most

sensitive to edges. Operators can be optimized to look

for horizontal, vertical, or diagonal edges.

Noise environment: [5] Edge detection is difficult in

noisy images, since both the noise and the edges contain

high-frequency content. Attempts to reduce the noise

result in blurred and distorted edges. Operators used on

noisy images are typically larger in scope, so they can

average enough data to discount localized noisy pixels.

This results in less accurate localization of the detected
edges.

Edge structure: [1][3] Not all edges involve a step

change in intensity. Effects such as refraction or poor

focus can result in objects with boundaries defined by a

gradual change in intensity. The operator needs to be

chosen to be responsive to such a gradual change in

those cases. Newer wavelet-based techniques actually

characterize the nature of the transition for each edge in

order to distinguish, for example, edges associated with

hair from edges associated with a face.

2.2. Edge detection methodologies

There are many ways to perform edge detection.
However, the majority of different methods may be

grouped into two categories:

Gradient: The gradient method detects the edges by

looking for the maximum and minimum in the first

derivative of the image.

Laplacian: [8] The Laplacian method searches for zero

crossings in the second derivative of the image to find

edges. An edge has the one-dimensional shape of a

ramp and calculating the derivative of the image can

highlight its location. Suppose we have the following
signal, with an edge shown by the jump in intensity

below:

Suppose we have the following signal, with an edge

shown by the jump in intensity below:

If we take the gradient of this signal (which, in one

dimension, is just the first derivative with respect to t)

we get the following:

 t

Clearly, the derivative shows a maximum located at

the center of the edge in the original signal. This

method of locating an edge is characteristic of the

“gradient filter” family of edge detection filters and

includes the Sobel‟s method. A pixel location is

declared an edge location if the value of the gradient

exceeds some threshold. As mentioned before, edges

will have higher pixel intensity values than those
surrounding it. So once a threshold is set, you can

Figure 2: Gradient of the signal

Figure 1: Intensity jump at edge

Sreemana Datta, Sch. J. Eng. Tech., 2013; 1(2):78-90

 80

compare the gradient value to the threshold value and

detect an edge whenever the threshold is exceeded.

Furthermore, when the first derivative is at a maximum,

the second derivative is zero. As a result, another

alternative to finding the location of an edge is to locate

the zeros in the second derivative. This method is
known as the Laplacian and the second derivative of the

signal is shown below:

2.3 Various Edge Detection Techniques

2.3.1 Local Threshold and Boolean Function Based

Edge Detection

[9] This edge detector is fundamentally different than

many of the modern edge detectors derived from

Canny‟s original. It does not rely on the gradient or

Gaussian smoothing. It takes advantage of both local

and global thresholding to find edges. Unlike other edge

detectors, it converts a window of pixels into a binary

pattern based on a local threshold, and then applies

masks to determine if an edge exists at a certain point or

not. By calculating the threshold on a per pixel basis,
the edge detector should be less sensitive to variations

in lighting throughout the picture. It does not rely on

blurring to reduce noise in the image. It instead looks at

the variance on a local level.

The algorithm is as follows:

Step 1

Apply a local threshold to a 3x3 window of the image.

Because this is a local threshold, it is
recalculated each time the window is moved. The

threshold value is calculated as the mean of the 9

intensity values of the pixels in the window minus some

small tolerance value. If a pixel has an intensity value

greater than this threshold, it is set to a 1. If a pixel has

an intensity value less than this threshold, it is set to a 0.

This gives a binary pattern of the 3x3 window.

Step 2

Compare the binary pattern to the edge masks. There
are sixteen possible edge-like patterns that can arise in a

3x3 window, as shown in figure 4. If the binary window

obtained in step matches any of these sixteen masks, the

centre pixel of the window is set to be an edge pixel.

Step 3

Repeat steps a and b for each pixel in the image as the
centre pixel of the window. This will give all edges, but

it will also give some false edges as a result of noise.

Step 4

Use a global threshold to remove false edges. The

variance for each 3x3 window is calculated, which will

have a maximum at an edge. This value is then

compared with a global threshold based on the level of

noise in the image. If the value is greater than the

threshold, it is kept as an edge. If it is not greater than
the threshold, it is removed.

2.3.2 Sobel Operator

[3] The operator consists of a pair of 3×3 convolution

kernels as shown in Figure 1.

One kernel is simply the other rotated by 90°.

Figure 4: Possible Edge Masks for 3X3 Window

Figure 3: Second derivative of the signal

Sreemana Datta, Sch. J. Eng. Tech., 2013; 1(2):78-90

 81

These kernels are designed to respond maximally to

edges running vertically and horizontally relative to the

pixel grid, one kernel for each of the two perpendicular

orientations. The kernels can be applied separately to

the input image, to produce separate measurements of

the gradient component in each orientation (call these
Gx and Gy). These can then be combined together to

find the absolute magnitude of the gradient at each

point and the orientation of that gradient. The gradient

magnitude is given by:

Typically, an approximate magnitude is computed

using:

which is much faster to compute.

The angle of orientation of the edge (relative to the
pixel grid) giving rise to the spatial gradient is given by:

2.3.3 Robert’s cross operator:

[2] The Roberts Cross operator performs a simple,

quick to compute, 2-D spatial gradient measurement on

an image. Pixel values at each point in the output

represent the estimated absolute magnitude of the

spatial gradient of the input image at that point. The

operator consists of a pair of 2×2 convolution kernels as

shown in Figure. One kernel is simply the other rotated

by 90°. This is very similar to the Sobel operator.

These kernels are designed to respond maximally to

edges running at 45° to the pixel grid, one kernel for

each of the two perpendicular orientations. The kernels

can be applied separately to the input image, to produce

separate measurements of the gradient component in

each orientation (call these Gx and Gy). These can then

be combined together to find the absolute magnitude of

the gradient at each point and the orientation of that

gradient. The gradient magnitude is given by:

although typically, an approximate magnitude is

computed using:

which is much faster to compute.

The angle of orientation of the edge giving rise to the

spatial gradient (relative to the pixel grid orientation) is

given by:

2.3.4 Prewitt’s operator:

Prewitt operator is similar to the Sobel operator and
is used for detecting vertical and horizontal edges in

images.

2.3.5 Laplacian of Gaussian (Marr-Hildreth Edge

Detector) :

The Laplacian is a 2-D isotropic measure of the 2nd

spatial derivative of an image. The Laplacian of an

image highlights regions of rapid intensity change and

is therefore often used for edge detection. The
Laplacian is often applied to an image that has first

been smoothed with something approximating a

Gaussian Smoothing filter in order to reduce its

sensitivity to noise. The operator normally takes a

single gray level image as input and produces another

gray level image as output.

The Laplacian L(x,y) of an image with pixel intensity

values I(x,y) is given by:

Since the input image is represented as a set of

discrete pixels, we have to find a discrete convolution
kernel that can approximate the second derivatives in

the definition of the Laplacian. Three commonly used

small kernels are shown in Figure 1.

Figure 1 Three commonly used discrete

approximations to the Laplacian filter.

Because these kernels are approximating a second

derivative measurement on the image, they are very

sensitive to noise. To counter this, the image is often

http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

Sreemana Datta, Sch. J. Eng. Tech., 2013; 1(2):78-90

 82

Gaussian Smoothed before applying the Laplacian

filter. This pre-processing step reduces the high

frequency noise components prior to the differentiation

step.

In fact, since the convolution operation is associative,
we can convolve the Gaussian smoothing filter with the

Laplacian filter first of all, and then convolve this

hybrid filter with the image to achieve the required

result. Doing things this way has two advantages:

 Since both the Gaussian and the Laplacian kernels are

usually much smaller than the image, this method

usually requires far fewer arithmetic operations.

 The LoG (`Laplacian of Gaussian') kernel can be

precalculated in advance so only one convolution needs
to be performed at run-time on the image.

The 2-D LoG function centered on zero and with

Gaussian standard deviation has the form:

and is shown in Figure 2.

Note that as the Gaussian is made increasingly narrow,

the LoG kernel becomes the same as the simple

Laplacian kernels shown in Figure 1. This is because

smoothing with a very narrow Gaussian (< 0.5

pixels) on a discrete grid has no effect. Hence on a

discrete grid, the simple Laplacian can be seen as a
limiting case of the LoG for narrow Gaussians.

2.3.6 Canny’s Edge Detection Algorithm

[11][12] The Canny edge detection algorithm is

known to many as the optimal edge detector. Canny's

intentions were to enhance the many edge detectors

already out at the time he started his work. He was very

successful in achieving his goal and his ideas and

methods can be found in his paper, "A Computational

Approach to Edge Detection". In his paper, he followed

a list of criteria to improve current methods of edge
detection. The first and most obvious is low error rate.

It is important that edges occurring in images should

not be missed and that there be NO responses to non-

edges. The second criterion is that the edge points be

well localized. In other words, the distance between the

edge pixels as found by the detector and the actual edge

is to be at a minimum. A third criterion is to have only

one response to a single edge. This was implemented

because the first 2 were not substantial enough to

completely eliminate the possibility of multiple

responses to an edge.

Based on these criteria, the canny edge detector first

smoothes the image to eliminate and noise. It then finds

the image gradient to highlight regions with high spatial

derivatives. The algorithm then tracks along these

regions and suppresses any pixel that is not at the

maximum (non-maximum suppression). The gradient

array is now further reduced by hysteresis. Hysteresis is

used to track along the remaining pixels that have not

been suppressed. Hysteresis uses two thresholds and if

the magnitude is below the first threshold, it is set to

zero (made a nonedge). If the magnitude is above the
high threshold, it is made an edge. And if the magnitude

is between the 2 thresholds, then it is set to zero unless

there is a path from this pixel to a pixel with a gradient

above T2.

Step 1
In order to implement the canny edge detector

algorithm, a series of steps must be followed. The first

step is to filter out any noise in the original image

before trying to locate and detect any edges. And

because the Gaussian filter can be computed using a

simple mask, it is used exclusively in the Canny
algorithm. Once a suitable mask has been calculated,

the Gaussian smoothing can be performed using

standard convolution methods. A convolution mask is

usually much smaller than the actual image. As a result,

the mask is slid over the image, manipulating a square

of pixels at a time. The larger the width of the Gaussian

mask, the lower is the detector's sensitivity to noise.

The localization error in the detected edges also

Figure 6: Discrete approximation to LoG

function with Gaussian = 1.4

Figure 5: The Mexican hat operator

Sreemana Datta, Sch. J. Eng. Tech., 2013; 1(2):78-90

 83

increases slightly as the Gaussian width is increased.

The Gaussian mask used in my implementation is

shown below.

Step 2

After smoothing the image and eliminating the noise,
the next step is to find the edge strength by taking the

gradient of the image. The Sobel operator performs a 2-

D spatial gradient measurement on an image. Then, the

approximate absolute gradient magnitude (edge

strength) at each point can be found. The Sobel operator

uses a pair of 3x3 convolution masks, one estimating

the gradient in the x-direction (columns) and the other

estimating the gradient in the y-direction (rows). They

are shown below:

The magnitude, or edge strength, of the gradient is

then approximated using the formula:

|G| = |Gx| + |Gy|

Step 3
The direction of the edge is computed using the

gradient in the x and y directions. However, an error

will be generated when sumX is equal to zero. So in the

code there has to be a restriction set whenever this takes

place. Whenever the gradient in the x direction is equal

to zero, the edge direction has to be equal to 90 degrees

or 0 degrees, depending on what the value of the

gradient in the y-direction is equal to. If GY has a value

of zero, the edge direction will equal 0 degrees.

Otherwise the edge direction will equal 90 degrees. The
formula for finding the edge direction is just:

Theta = invtan (Gy / Gx)

Step 4
Once the edge direction is known, the next step is to

relate the edge direction to a direction that can be traced

in an image. So if the pixels of a 5x5 image are aligned

as follows:

Then, it can be seen by looking at pixel "a", there are

only four possible directions when describing the

surrounding pixels - 0 degrees (in the horizontal

direction), 45 degrees (along the positive diagonal), 90

degrees (in the vertical direction), or 135 degrees (along
the negative diagonal). So now the edge orientation has

to be resolved into one of these four directions

depending on which direction it is closest to (e.g. if the

orientation angle is found to be 3 degrees, make it zero

degrees). Think of this as taking a semicircle and

dividing it into 5 regions.

Therefore, any edge direction falling within the

yellow range (0 to 22.5 & 157.5 to 180 degrees) is set to

0 degrees. Any edge direction falling in the green range

(22.5 to 67.5 degrees) is set to 45 degrees. Any edge
direction falling in the blue range (67.5 to 112.5

degrees) is set to 90 degrees. And finally, any edge

direction falling within the red range (112.5 to 157.5

degrees) is set to 135 degrees.

Step 5

 After the edge directions are known, non-maximum

suppression now has to be applied. Non maximum

suppression is used to trace along the edge in the edge

direction and suppress any pixel value (sets it equal to

0) that is not considered to be an edge. This will give a
thin line in the output image.

Figure 8: Angles describing neighbouring pixels

Figure 7: Discrete approximation to Gaussian

 function with = 1.4

Sreemana Datta, Sch. J. Eng. Tech., 2013; 1(2):78-90

 84

Step 6

 Finally, hysteresis is used as a means of eliminating

streaking. Streaking is the breaking up of an edge

contour caused by the operator output fluctuating above

and below the threshold. If a single threshold, T1 is
applied to an image, and an edge has an average

strength equal to T1, then due to noise, there will be

instances where the edge dips below the threshold.

Equally it will also extend above the threshold making

an edge look like a dashed line. To avoid this, hysteresis

uses 2 thresholds, a high and a low. Any pixel in the

image that has a value greater than T1 is presumed to be

an edge pixel, and is marked as such immediately.

Then, any pixels that are connected to this edge pixel

and that have a value greater than T2 are also selected

as edge pixels. If you think of following an edge, you

need a gradient of T2 to start but you don't stop till you
hit a gradient below T1.

2.3.7 Colour Edge Detection Using Euclidean

Distance and Vector Angle

 [14][16] Most edge detectors work on the

grayscale representation of the image. This cuts down

the amount of data you have to work with (one channel

instead of three), but you also lose some information

about the scene. By including the colour component of

the image, the edge detector should be able to detect

edges in regions with high colour variation but low
intensity variation.

This edge detector uses two operators: Euclidean

Distance and Vector Angle. The Euclidean Distance is a

good operator for finding edges based on intensity and

the Vector Angle is a good operator for finding edges

based on hue and saturation. The detector applies both

operators to the RGB colour space of an image, and
then combines the results from each based on the

amount of colour in a region. There is a difference

vector and a vector gradient version; we chose to

implement the vector gradient version.

The Euclidean Distance between two pixels is defined

as:

where v1 and v2 are RGB triplets (v = [R G B]).

The Vector Angle between two pixels is approximated

by:

because sin θ ≈ θ for small angles. Again, v1 and v2 are

RGB triplets (v = [R G B]). The Euclidean Distance and

Vector Angle are combined using a saturation-based

combination method. This combination is defined as:

Where

And

 The "slope" and "offset" values in the sigmoid α(S)

are set experimentally, and S1 and S2 are the saturation

values of each pixel. This combination weights the

Vector Angle more heavily in areas of high colour

saturation and the Euclidean Distance more heavily in

areas of low saturation.

 The algorithm for finding edges in the image is as

follows:

Step 1

For each pixel in the image, take the 3x3 window of

pixels surrounding that pixel.

Step 2

Calculate the saturation-based combination of the

Euclidean Distance and Vector Angle between the

center point and each of the eight points around it.

Step 3

Assign the largest value obtained to the centre pixel.

Step 4

When each pixel has had a value assigned to it, run

the results through a threshold to eliminate false edges.

2.3.8 Edge Detection of coloured images using the

Canny Operator

Sreemana Datta, Sch. J. Eng. Tech., 2013; 1(2):78-90

 85

[2][9]Another approach to edge detection using colour

information is simply to extend a traditional intensity

based edge detector into the colour space. This method

seeks to take advantage of the known strengths of the

traditional edge detector and tries to overcome its

weaknesses by providing more information in the form
of three colour channels rather than a single intensity

channel. As the Canny edge detector is the current

standard for intensity based edge detection, it seemed

logical to use this operator as the basis for colour edge

detection. The algorithm we used for applying colours

to the Canny edge detector was a very simple one:

 Read in a colour image and divide it into its three

separate colour channels.

 Run each colour channel through the Canny edge

detector separately to find a resulting coloured edge
map.

 Combine the resulting edge maps from each of the three

colour channels into one complete edge map.

For this step there are a variety of ways you can

combine the edges found for each different colour, but

we found that a simple additive approach provided the

best results. So if there was an edge in any of the three

coloured edge maps, we added it to the general edge

map.

2.3.9 Depth Edge Detection using Multi-Flash

Imaging Technique

[4][7]This is another edge detector following the

principle that using more data in the edge detection

process should result in better detection of edges.

However, in this case rather than merely extending

from one channel of intensity to three channels of color,

this edge detector actually makes use of multiple

different images. The approach is based on taking

successive photos of a scene, each with a different light
source close to and around the camera‟s center of

projection. The location of the shadows abutting depth

discontinuities are used as a robust cue to create a depth

edge map in both static and dynamic scenes. The idea is

that rather than using complicated mathematical

techniques to try to extract edges from existing

photographs, we should change the way we take

photographs in general. This technique uses a camera

with four flashes located at cardinal directions around

the lens to take four successive pictures. The

differences in shadows between each picture suggest

“depth edges”, or edges caused by depth discontinuities
in a scene. This method suppresses “texture edges”, or

edges caused by the texture of a surface which all lie at

a relatively equivalent depth. This is accomplished by

calculated the epipolar geometry of the shadows in the

different images.

The general algorithm is as follows:

Step 1

 Capture an image using only ambient light. Label this

image as I0.

Step 2

 For „n‟ different light sources located a positions P1-
Pn, capture n pictures I+k, with k=1-n where I+k is the

picture taken with light source position Pk

Step 3

 Remove the ambient component from each image: Ik =

I+ k - I0

Step 4

 For all pixels x, Imax(x) = maxk(Ik(x)), k = 1..n. Imax

is the base image, which is an approximation of what

image you would get if the light source were exactly at

the center of the camera lens.

Step 5

 For each image k, create a ratio image, Rk where Rk(x)

= Ik(x)/ Imax (x). The intensity of a point in an image, if

it is lit, will follow the following equation:

where μk is the magnitude of the light intensity, p(x) is

the reflectance at point X, Lk(x) is the normalized light

vector Lk (x) = Pk – X and N(x) is the surface normal. If

the surface is not lit, Ik(x) = 0. So the equation for the
ratio is:

However, if the objects are relatively diffuse and far

from the camera relative to the positions of the light

sources, the ratio can be approximated by simply

This ratio will be close to 1 in areas lit by light source k

and close to 0 in areas not lit by light source k.

Step 6

For each image Rk, traverse each epipolar ray from

epipole ek (location of the flashes). A sharp negative

transition in the image indicates a depth edge. So if a

pixel has a negative transition, mark that pixel as an

edge. Since the flashes are oriented along the cardinal

directions, tracing the epipolar rays is equivalent to

walking along a row or column of the image.

2.4 Visual Comparison of Various Edge Detection

Algorithms

Sreemana Datta, Sch. J. Eng. Tech., 2013; 1(2):78-90

 86

Figure 9: Test case 1

Figure 10: Test case 2

Figure 11: Test case 3

Sreemana Datta, Sch. J. Eng. Tech., 2013; 1(2):78-90

 87

3. RESULTS

3.1. Performance of Edge Detection Algorithms

Gradient-based algorithms such as the Prewitt filter
have a major drawback of being very sensitive to noise.

The size of the kernel filter and coefficients are fixed

and cannot be adapted to a given image. An adaptive

edge-detection algorithm is necessary to provide a

robust solution that is adaptable to the varying noise

levels. Gradient-based algorithms such as the Prewitt

filter have a major drawback of being very sensitive to

noise. The size of the kernel filter and coefficients are

fixed and cannot be adapted to a given image. An

adaptive edge-detection algorithm is necessary to

provide a robust solution that is adaptable to the varying
noise levels of these images to help distinguish valid

image contents from visual artifacts introduced by

noise.

The performance of the Canny algorithm depends

heavily on the adjustable parameters, σ, which is the

standard deviation for the Gaussian filter, and the

threshold values, „T1‟ and „T2‟. σ also controls the size

of the Gaussian filter. The bigger the value for σ, the

larger the size of the Gaussian filter becomes. This

implies more blurring, necessary for noisy images, as

well as detecting larger edges. As expected, however,
the larger the scale of the Gaussian, the less accurate is

the localization of the edge. Smaller values of σ imply a

smaller Gaussian filter which limits the amount of

blurring, maintaining finer edges in the image. The user

can tailor the algorithm by adjusting these parameters to

adapt to different environments.

Canny‟s edge detection algorithm is computationally

more expensive compared to Sobel, Prewitt and

Robert‟s operator. However, the Canny‟s edge detection

algorithm performs better than all these operators under

almost all scenarios.

3.2 Analysis of various Edge Detection Algorithms

We ran five separate test images through our edge

detectors (except the Multi-Flash edge detector, which

only had data sufficient data to run on two of the
images). One image was artificial and the rest were real

world photographs. The results are shown in the figures

below. All coloured images were converted to grayscale

using Matlab‟s RBG2GRAY function except when

using an edge detector that required colour information.

Various threshold, sigma, slope, etc. values were

chosen by hand. The images were blurred by a Gaussian

filter (3x3 filter, sigma=1) before being fed into the

Euclidean Distance and Vector Angle colour edge

detector as we found this significantly decreased the

effect of noise. The other edge detectors do their own
smoothing (Where applicable). The low threshold in the

Canny edge detector was always defined to be 40% of

Figure 12: Test case 4

Figure 13: Test case 5

Sreemana Datta, Sch. J. Eng. Tech., 2013; 1(2):78-90

 88

the high threshold. The average of the four images from

the Multi-Flash edge detector was used as input to the

other edge detectors. The first thing to notice about the

Boolean and Euclidean Distance/Vector Angle edge

detectors is that neither algorithm identifies edges down

to a single point as in Canny‟s edge detector. The edges
are often spotty and disconnected. Edge following to

trace out a continuous edge is not possible in these edge

detectors because the direction of the edge is not known

(since they are not based on the gradient of the image).

The Marr-Hildreth edge detector will give more nicely

connected edges if hysteresis is used to threshold the

image, and will not give connected edges if a single

threshold is used. Regardless, it is usually gives spotty

and thick edges.

Figure 9 shows the ability of the edge detectors to

handle corners as well as a wide range of slopes in edge
on the circle. The Canny edge detector becomes fairly

confused at corners due to the Gaussian smoothing of

the image. Also, since the direction of the edge changes

instantly, corner pixels looks in the wrong directions for

its neighbours. The colour version of Canny produces

many double lines as the edge may be detected in a

different location in each channel. The Boolean edge

detector usually omits the corner pixel since the pattern

for a corner is not one of the bit masks. Other than the

omitted pixels, the Boolean edge detector performs well

on the boxes and circle. The Euclidean Distance/Vector
angle edge detector performs well on the blocks,

creating a 2 pixel wide line along every edge. It became

a little confused on the circle. This could possibly be

remedied with a different threshold between the

Euclidean Distance metric and the Vector Angle metric.

The Marr-Hildreth edge detector creates lines even

thicker than the Euclidean Distance.

Figure 10 is the standard edge detector benchmarking

image. Overall, the Boolean edge detector performs a

decent job of marking the locations of edges, but many

of the edges are spotty and not contiguous. For the most
part it detects the same edges as the Canny edge

detector. The colour version of the Canny detector was

able to find a few more edges than the grayscale version

given the same input parameters. These edges are most

noticeable on the hat. The Euclidean Distance detector

creates much wider edges than the other two methods. It

appears as if it marks edge pixels on both sides of the

edge. As a result the output image shows the major

edges, but not much fine grained detail. In general, the

Boolean edge detector makes no guarantees about

finding thin edges, but it usually does a reasonable job.

Figure 11 is a picture of a shoreline. All edge

detectors had problems detecting the different ridges of

the cliff. The foam of the waves also provided some

inconsistent results. There are a lot of discrepancies in

colour at these locations, but no clear edges. Similar to

the Figure 2, the Euclidean Distance detector produces

much thicker lines and less detail than the other edge

detectors. The Boolean edge detector does a better job

of maintaining contiguous curves for the edges, but they

still have a few discontinuities.

Figure 12 is the first of the Multi-Flash images. The

bright flashes in the different directions caused drop
shadows around some edges of the object. Even though

the average of all four images was used as the input to

the other edge detectors, some of them still picked up

on the faint shadows. Surprisingly, the Multi-Flash edge

detector did not perform better than other edge detectors

for this image. For example, it missed parts of the

vertebrae. It could pick up these images if the threshold

was reduced, but much more noise was introduced into

the image. Other than the Boolean edge detector, the

Multi-Flash method is the only detector that no

smoothing of the image before processing, so it is more

sensitive to noise in the image. The other edge detectors
all identify almost the same edges, but follow similar

behaviour to previous images.

Figure 13 more accurately shows the capabilities of

each edge detector. The Marr-Hildreth detector

perceives many edges, but they are too spotty and wide

to really identify any features. The Canny edge detector

gives nice outlines of the table, the vase, and many of

the flowers on the border. Features in the middle of the

arrangement are missed, but some are recovered with

the addition of colour. For example, the red flower in
the center and the leaves to its right are found. The

Boolean edge detector does a good job at detecting a

large number of edges, but many of them are noisy. The

Euclidean Distance/Vector Angle edge detector finds

strong edges around the colour flowers, but finds almost

no edges in the middle of the green leafy region. It also

misses the table entirely. The Multi-flash edge detector

finds most of the geometry in the scene but misses parts

of the table. If the background is too far away from the

objects, the drop shadows will not be sharp enough to

detect a discontinuity. The inventors of this algorithm

supplement the edge detection with a step that finds the
colour difference between the object and its

background.

3.3 Relative advantage and disadvantages of various

edge detection operators

It was found during our analysis that there was no

optimal algorithm which would give the best result in

all possible cases. However, each one of these operators

had their own advantages and disadvantages. We

tabularised these details as follows:

Sreemana Datta, Sch. J. Eng. Tech., 2013; 1(2):78-90

 89

Table: 1. Relative Advantage and Disadvantages of

Edge Detection Operators

4. DISCUSSION

The Boolean edge detector performs surprisingly

similarly to the Canny edge detector even though they

both take drastically different approaches. Canny‟s

method is still preferred since it produces single pixel

thick, continuous edges. The Boolean edge detector‟s

edges are often spotty. Colour edge detection seems like

it should be able to outperform grayscale edge detectors

since it has more information about the image. In the

case of the Canny‟s colour edge detector, it usually

finds more edges than the grayscale version. Finding
the optimal way to combine the three colour challenges

may improve this method. The other colour edge

detection scheme we implemented, the Euclidian

Distance/Vector Angle detector, did a decent job of

identifying the borders between regions, but misses fine

grained detail. If the direction of the edge were known,

a non-maximal suppression on the colour edge

detector‟s output may help the granularity of its output.

Multi-flash edge detection shows some promise as it

strives to produce photographs that will be easy to edge

detect, rather than running on an arbitrary image. One
problem inherent to the Multi-flash edge detector is that

it will have difficulty finding edges between objects that

are at almost the same depth or are at depths which are

very far away. For example, the Multi-flash method

would not work at all on an outdoor scene such as the

shoreline.

 5. CONCLUSION

Since edge detection is the initial step in object

recognition, it is important to know the differences

between edge detection techniques. In this paper we

studied the most commonly used edge detection

techniques of Gradient-based and Laplacian based Edge

Detection. Gradient-based algorithms such as the

Prewitt filter have a major drawback of being very

sensitive to noise.

The size of the kernel filter and coefficients are fixed

and cannot be adapted to a given image. An adaptive

edge-detection algorithm is necessary to provide a
robust solution that is adaptable to the varying noise

levels of these images to help distinguish valid image

contents from visual artifacts introduced by noise. The

performance of the Canny algorithm depends heavily

on the adjustable parameters, _, which is the standard

deviation for the Gaussian filter, and the threshold

values, „T1‟ and „T2‟. _ also controls the size of the

Gaussian filter. The bigger the value for _, the larger the

size of the Gaussian filter becomes. This implies more

blurring, necessary for noisy images, as well as

detecting larger edges. As expected, however, the larger
the scale of the Gaussian, the less accurate is the

localization of the edge. Smaller values of _ imply a

smaller Gaussian filter which limits the amount of

blurring, maintaining finer edges in the image. The user

can tailor the algorithm by adjusting these parameters to

adapt to different environments. Canny‟s edge detection

algorithm is computationally more expensive compared

to Sobel, Prewitt and Robert‟s operator. However, the

Canny‟s edge detection algorithm performs better than

all these operators under almost all scenarios.

Evaluation of the images showed that under noisy

conditions, Canny, LoG, Sobel, Prewitt, Roberts‟s
exhibit better performance, respectively.

REFERENCE

1. Argyle E. Techniques for edge detection. Proc.

IEEE, 1971; 59:285-286.

2. Bergholm F. Edge focusing,” in Proc. 8th Int.

Conf. Pattern Recognition, Paris, France,

1986; 597- 600,

3. Matthews J. An introduction to edge detection:

The sobel edge detector, Available at
http://www.generation5.org/content/2002/im01

.asp, 2002.

4. Roberts LG. Machine perception of 3-D solids

ser. Optical and Electro-Optical Information

Processing. MIT Press, 1965 .

5. Gonzalez RC and Woods RE. Digital Image

Processing”. 2nd ed. Prentice Hall, 2002.

Sreemana Datta, Sch. J. Eng. Tech., 2013; 1(2):78-90

 90

6. Torre V and Poggio TA. On edge detection.

IEEE Trans. Pattern Anal. Machine Intell.,

1986;8 (2):187-163,

7. Davies ER. Constraints on the design of

template masks for edge detection. Pattern

Recognition Lett., 1986; 4(11) 1-120.
8. Frei W and Chen CC. Fast boundary detection:

A generalization and a new algorithm . lEEE

Trans.Comput., 1977;26(10): 988-998.

9. Grimson WE and Hildreth EC. Comments on

Digital step edges from zero crossings of

second directional derivatives. IEEE Trans.

Pattern Anal. Machine Intell., 1985; 7(1): 121-

129.

10. Haralick RM. Digital step edges from zero

crossing of the second directional derivatives,”

IEEE Trans. Pattern Anal. Machine Intell.

1984;, 6(1): 58-68.

11. Canny JF. A computational approach to edge

detection. IEEE Trans. Pattern Anal. Machine

Intell., 1986; 8(6):679-697.

12. Canny J. Finding edges and lines in image.

Master‟s thesis, MIT, 1983.

13. Kirsch RA. Computer determination of the
constituent structure of biomedical images.

Comput.Eiorned. Res., 1971;4:315-328.

14. Hueckel MH. A local visual operator which

recognizes edges and line. J. ACM, 1977;

20(4): 634-647.

15. Yakimovsky Y, Boundary and object detection

in real world images. J.ACM, 1976; 23(4):

598-619.

16. Yuille A and Poggio TA . Scaling theorems for

zero crossings. IEEE Trans. Pattern Anal.

Machine Intell., 1986;8(1):187-163.

