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Abstract: In the field of image processing, edge detection is an important step for extracting relevant and meaningful 
information from digital images. The main goal of edge detection techniques is to obtain and detect thin edges of the 

objects present in the image, so that the result is more suitable for further processing and analysis such as boundary 

detection, image segmentation, motion detection/estimation, texture analysis, object identification, feature detection, 
implementing various transformations and so on. We tested six edge detection algorithms that use different methods for 

detecting edges and compared their results under a variety of situations to determine a generally preferable technique 

under different sets of conditions. This data could then be used to create a multi-edge-detector system, which analyses the 

scene and runs the edge detector best suited for the current set of data. For each of these edge detectors we considered 

two different ways of implementation, the one using intensity only and the other coupling to it, the colour information. 

We also considered one additional edge detector which takes a different philosophy to edge detection. Rather than trying 

to find the ideal edge detector to apply to traditional photographs, it would be more efficient to merely change the method 

of photography to one which is more conducive to edge detection. It makes use of a camera that takes multiple images in 

rapid succession under different lighting conditions. It has been observed that the Canny‟s edge detection algorithm 

performs better than all these operators under almost all scenarios. Evaluation of the images showed that under noisy 

conditions Canny, LoG( Laplacian of Gaussian), Robert, Prewitt, Sobel exhibit better performance, respectively. It has 
been observed that Canny‟s edge detection algorithm is computationally more expensive compared to LoG( Laplacian of 

Gaussian), Sobel, Prewitt and Robert‟s cross operator. 

Keywords:  Boolean Edge Detector, Sobel Operator, Prewitt‟s Operator, Canny Edge Detector, Vector Angle Detector, 

Euclidean Distance 

 

1.INTRODUCTION  

Edge detection refers to the process of identifying 

and locating sharp discontinuities in an image. The 

discontinuities are abrupt changes in pixel intensity 

which characterize boundaries of objects in a scene. 

Classical methods of edge detection involve convolving 

the image with an operator (a 2-D filter), which is 

constructed to be sensitive to large gradients in the 

image while returning values of zero in uniform 
regions. There are an extremely large number of edge 

detection operators available, each designed to be 

sensitive to certain types of edges. Variables involved 

in the selection of an edge detection operator include 

Edge orientation, Noise environment and Edge 

structure. The geometry of the operator determines a 

characteristic direction in which it is most sensitive to 

edges. Operators can be optimized to look for 

horizontal, vertical, or diagonal edges. Edge detection is 

difficult in noisy images, since both the noise and the 

edges contain high frequency content. Attempts to 
reduce the noise result in blurred and distorted edges. 

Operators used on noisy images are typically larger in 

scope, so they can average enough data to discount 

localized noisy pixels. This results in less accurate 

localization of the detected edges. Not all edges involve 

a step change in intensity. Effects such as refraction or 

poor focus can result in objects with boundaries defined 

by a gradual change in intensity. The operator needs to 

be chosen to be responsive to such a gradual change in 

those cases. So, there are problems of false edge 

detection, missing true edges, edge localization, high 

computational time and problems due to noise etc. 

Therefore, the objective is to do the comparison of 

various edge detection techniques and analyse the 
performance of the various techniques in different 

conditions. Edge detection is a very important area in 

the field of Computer Vision. Edges define the 

boundaries or sharp discontinuities between regions in 

an image, which helps with segmentation and object 

recognition. They can show where shadows fall in an 

image or any other distinct change in the intensity of an 

image. Edge detection is a fundamental of low-level 

image processing and good edges are necessary for 

higher level processing. The problem is that in general 

edge detectors behave very poorly. While their 

behaviour may fall within tolerances in specific 
situations, in general edge detectors have difficulty 

adapting to different situations. The quality of edge 

detection is highly dependent on lighting conditions, the 

presence of objects of similar intensities, density of 
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edges in the scene, and noise. While each of these 

problems can be handled by adjusting certain values in 

the edge detector and changing the threshold value for 

what is considered an edge, no good method has been 

determined for automatically setting these values, so 

they must be manually changed by an operator each 
time the detector is run with a different set of data. 

Since different edge detectors work better under 

different conditions, it would be ideal to have an 

algorithm that makes use of multiple edge detectors, 

applying each one when the scene conditions are most 

ideal for its method of detection. In order to create this 

system, you must first know which edge detectors 

perform better under which conditions, which is the 

goal of our research. We tested six edge detectors that 

use different methods for detecting edges and compared 

their results under a variety of situations to determine 

which detector was preferable under different sets of 
conditions. This data could then be used to create a 

multi-edge-detector system, which analyses the scene 

and runs the edge detector best suited for the current set 

of data. For one of the edge detectors we considered 

two different ways of implementation, one using 

intensity only and the other using colour information. 

We also considered one additional edge detector which 

takes a different philosophy to edge detection. Rather 

than trying to find the ideal edge detector to apply to 

traditional photographs, it would be more efficient to 

merely change the method of photography to one which 
is more conducive to edge detection. It makes use of a 

camera that takes multiple images in rapid succession 

under different lighting conditions. Since the hardware 

for this sort of edge detection is different than that used 

with the other edge detectors, it would not be included 

in the multiple edge detector system but can be 

considered as a viable alternative to the existent system. 

 

2. Edge Detection 

2.1. Variables involved in selection of edge detector    

Edge orientation: [1] [5] The geometry of the operator 
determines a characteristic direction in which it is most 

sensitive to edges. Operators can be optimized to look 

for horizontal, vertical, or diagonal edges. 

 

Noise environment: [5] Edge detection is difficult in 

noisy images, since both the noise and the edges contain 

high-frequency content. Attempts to reduce the noise 

result in blurred and distorted edges. Operators used on 

noisy images are typically larger in scope, so they can 

average enough data to discount localized noisy pixels. 

This results in less accurate localization of the detected 
edges.  

 

Edge structure: [1][3] Not all edges involve a step 

change in intensity. Effects such as refraction or poor 

focus can result in objects with boundaries defined by a 

gradual change in intensity. The operator needs to be 

chosen to be responsive to such a gradual change in 

those cases. Newer wavelet-based techniques actually 

characterize the nature of the transition for each edge in 

order to distinguish, for example, edges associated with 

hair from edges associated with a face. 

 

2.2. Edge detection methodologies 

There are many ways to perform edge detection. 
However, the majority of different methods may be 

grouped into two categories: 

 

Gradient:  The gradient method detects the edges by 

looking for the maximum and minimum in the first 

derivative of the image. 

 

Laplacian: [8] The Laplacian method searches for zero 

crossings in the second derivative of the image to find 

edges. An edge has the one-dimensional shape of a 

ramp and calculating the derivative of the image can 

highlight its location. Suppose we have the following 
signal, with an edge shown by the jump in intensity 

below: 

 

Suppose we have the following signal, with an edge 

shown by the jump in intensity below:  

 

 

 
 

If we take the gradient of this signal (which, in one 

dimension, is just the first derivative with respect to t) 

we get the following:  

 t 

 
 

Clearly, the derivative shows a maximum located at 

the center of the edge in the original signal. This 

method of locating an edge is characteristic of the 

“gradient filter” family of edge detection filters and 

includes the Sobel‟s method. A pixel location is 

declared an edge location if the value of the gradient 

exceeds some threshold. As mentioned before, edges 

will have higher pixel intensity values than those 
surrounding it. So once a threshold is set, you can 

Figure 2: Gradient of the signal 

Figure 1: Intensity jump at edge 
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compare the gradient value to the threshold value and 

detect an edge whenever the threshold is exceeded. 

Furthermore, when the first derivative is at a maximum, 

the second derivative is zero. As a result, another 

alternative to finding the location of an edge is to locate 

the zeros in the second derivative. This method is 
known as the Laplacian and the second derivative of the 

signal is shown below:  

 

 
 

2.3 Various Edge Detection Techniques 

 

2.3.1 Local Threshold and Boolean Function Based 

Edge Detection 

[9] This edge detector is fundamentally different than 

many of the modern edge detectors derived from 

Canny‟s original. It does not rely on the gradient or 

Gaussian smoothing. It takes advantage of both local 

and global thresholding to find edges. Unlike other edge 

detectors, it converts a window of pixels into a binary 

pattern based on a local threshold, and then applies 

masks to determine if an edge exists at a certain point or 

not. By calculating the threshold on a per pixel basis, 
the edge detector should be less sensitive to variations 

in lighting throughout the picture. It does not rely on 

blurring to reduce noise in the image. It instead looks at 

the variance on a local level.  

 

The algorithm is as follows: 

 

Step 1  
 

Apply a local threshold to a 3x3 window of the image. 

Because this is a local threshold, it is 
recalculated each time the window is moved. The 

threshold value is calculated as the mean of the 9 

intensity values of the pixels in the window minus some 

small tolerance value. If a pixel has an intensity value 

greater than this threshold, it is set to a 1. If a pixel has 

an intensity value less than this threshold, it is set to a 0. 

 

This gives a binary pattern of the 3x3 window. 

 

Step 2  
 

Compare the binary pattern to the edge masks. There 
are sixteen possible edge-like patterns that can arise in a 

3x3 window, as shown in figure 4. If the binary window 

obtained in step matches any of these sixteen masks, the 

centre pixel of the window is set to be an edge pixel. 

 

Step 3  
 

Repeat steps a and b for each pixel in the image as the 
centre pixel of the window. This will give all edges, but 

it will also give some false edges as a result of noise. 

 

 

Step 4  
 

Use a global threshold to remove false edges. The 

variance for each 3x3 window is calculated, which will 

have a maximum at an edge. This value is then 

compared with a global threshold based on the level of 

noise in the image. If the value is greater than the 

threshold, it is kept as an edge. If it is not greater than 
the threshold, it is removed. 

 

 

 

 

2.3.2 Sobel Operator 

 

[3] The operator consists of a pair of 3×3 convolution 

kernels as shown in Figure 1.  

 

One kernel is simply the other rotated by 90°. 

 

 

Figure 4: Possible Edge Masks for 3X3 Window 

Figure 3: Second derivative of the signal 



Sreemana Datta, Sch.  J. Eng. Tech., 2013; 1(2):78-90 

 

    81 
 

 

These kernels are designed to respond maximally to 

edges running vertically and horizontally relative to the 

pixel grid, one kernel for each of the two perpendicular 

orientations. The kernels can be applied separately to 

the input image, to produce separate measurements of 

the gradient component in each orientation (call these 
Gx and Gy). These can then be combined together to 

find the absolute magnitude of the gradient at each 

point and the orientation of that gradient. The gradient 

magnitude is given by:  

 

 
 

Typically, an approximate magnitude is computed 

using:  

 

 
 

which is much faster to compute.  

 

The angle of orientation of the edge (relative to the 
pixel grid) giving rise to the spatial gradient is given by:  

 

 
 

2.3.3 Robert’s cross operator: 

 

[2] The Roberts Cross operator performs a simple, 

quick to compute, 2-D spatial gradient measurement on 

an image. Pixel values at each point in the output 

represent the estimated absolute magnitude of the 

spatial gradient of the input image at that point.  The 

operator consists of a pair of 2×2 convolution kernels as 

shown in Figure. One kernel is simply the other rotated 

by 90°. This is very similar to the Sobel operator.  

 
 

These kernels are designed to respond maximally to 

edges running at 45° to the pixel grid, one kernel for 

each of the two perpendicular orientations. The kernels 

can be applied separately to the input image, to produce 

separate measurements of the gradient component in 

each orientation (call these Gx and Gy). These can then 

be combined together to find the absolute magnitude of 

the gradient at each point and the orientation of that 

gradient. The gradient magnitude is given by:  

 

 

although typically, an approximate magnitude is 

computed using:  

 

 
which is much faster to compute.  

 

The angle of orientation of the edge giving rise to the 

spatial gradient (relative to the pixel grid orientation) is 

given by:  

 

 
 

2.3.4 Prewitt’s operator:    

Prewitt operator is similar to the Sobel operator and 
is used for detecting vertical and horizontal edges in 

images. 

       
 

2.3.5 Laplacian of Gaussian (Marr-Hildreth Edge 

Detector) : 

The Laplacian is a 2-D isotropic measure of the 2nd 

spatial derivative of an image. The Laplacian of an 

image highlights regions of rapid intensity change and 

is therefore often used for edge detection. The 
Laplacian is often applied to an image that has first 

been smoothed with something approximating a 

Gaussian Smoothing filter in order to reduce its 

sensitivity to noise. The operator normally takes a 

single gray level image as input and produces another 

gray level image as output.  

 

The Laplacian L(x,y) of an image with pixel intensity 

values I(x,y) is given by:  

 
Since the input image is represented as a set of 

discrete pixels, we have to find a discrete convolution 
kernel that can approximate the second derivatives in 

the definition of the Laplacian. Three commonly used 

small kernels are shown in Figure 1.  

 

 
 

Figure 1 Three commonly used discrete 

approximations to the Laplacian filter. 

 

Because these kernels are approximating a second 

derivative measurement on the image, they are very 

sensitive to noise. To counter this, the image is often 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm
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Gaussian Smoothed before applying the Laplacian 

filter. This pre-processing step reduces the high 

frequency noise components prior to the differentiation 

step.  

 

In fact, since the convolution operation is associative, 
we can convolve the Gaussian smoothing filter with the 

Laplacian filter first of all, and then convolve this 

hybrid filter with the image to achieve the required 

result. Doing things this way has two advantages:  

 

 Since both the Gaussian and the Laplacian kernels are 

usually much smaller than the image, this method 

usually requires far fewer arithmetic operations.  

 

 The LoG (`Laplacian of Gaussian') kernel can be 

precalculated in advance so only one convolution needs 
to be performed at run-time on the image.  

The 2-D LoG function centered on zero and with 

Gaussian standard deviation has the form:  

 

 
and is shown in Figure 2.     
                                                                                  

 

 

 

 

Note that as the Gaussian is made increasingly narrow, 

the LoG kernel becomes the same as the simple 

Laplacian kernels shown in Figure 1. This is because 

smoothing with a very narrow Gaussian (  < 0.5 

pixels) on a discrete grid has no effect. Hence on a 

discrete grid, the simple Laplacian can be seen as a 
limiting case of the LoG for narrow Gaussians.  

 
2.3.6 Canny’s Edge Detection Algorithm 

[11][12] The Canny edge detection algorithm is 

known to many as the optimal edge detector. Canny's 

intentions were to enhance the many edge detectors 

already out at the time he started his work. He was very 

successful in achieving his goal and his ideas and 

methods can be found in his paper, "A Computational 

Approach to Edge Detection". In his paper, he followed 

a list of criteria to improve current methods of edge 
detection. The first and most obvious is low error rate. 

It is important that edges occurring in images should 

not be missed and that there be NO responses to non-

edges. The second criterion is that the edge points be 

well localized. In other words, the distance between the 

edge pixels as found by the detector and the actual edge 

is to be at a minimum. A third criterion is to have only 

one response to a single edge. This was implemented 

because the first 2 were not substantial enough to 

completely eliminate the possibility of multiple 

responses to an edge.  

 
Based on these criteria, the canny edge detector first 

smoothes the image to eliminate and noise. It then finds 

the image gradient to highlight regions with high spatial 

derivatives. The algorithm then tracks along these 

regions and suppresses any pixel that is not at the 

maximum (non-maximum suppression). The gradient 

array is now further reduced by hysteresis. Hysteresis is 

used to track along the remaining pixels that have not 

been suppressed. Hysteresis uses two thresholds and if 

the magnitude is below the first threshold, it is set to 

zero (made a nonedge). If the magnitude is above the 
high threshold, it is made an edge. And if the magnitude 

is between the 2 thresholds, then it is set to zero unless 

there is a path from this pixel to a pixel with a gradient 

above T2.  

 

Step 1 
In order to implement the canny edge detector 

algorithm, a series of steps must be followed. The first 

step is to filter out any noise in the original image 

before trying to locate and detect any edges. And 

because the Gaussian filter can be computed using a 

simple mask, it is used exclusively in the Canny 
algorithm. Once a suitable mask has been calculated, 

the Gaussian smoothing can be performed using 

standard convolution methods. A convolution mask is 

usually much smaller than the actual image. As a result, 

the mask is slid over the image, manipulating a square 

of pixels at a time. The larger the width of the Gaussian 

mask, the lower is the detector's sensitivity to noise. 

The localization error in the detected edges also 

Figure 6:  Discrete approximation to LoG 

function with Gaussian = 1.4 

 

Figure 5: The Mexican hat operator 
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increases slightly as the Gaussian width is increased. 

The Gaussian mask used in my implementation is 

shown below.  

 

 
 

Step 2 

After smoothing the image and eliminating the noise, 
the next step is to find the edge strength by taking the 

gradient of the image. The Sobel operator performs a 2-

D spatial gradient measurement on an image. Then, the 

approximate absolute gradient magnitude (edge 

strength) at each point can be found. The Sobel operator 

uses a pair of 3x3 convolution masks, one estimating 

the gradient in the x-direction (columns) and the other 

estimating the gradient in the y-direction (rows). They 

are shown below:  

 
The magnitude, or edge strength, of the gradient is 

then approximated using the formula:  

 

|G| = |Gx| + |Gy|  

 

Step 3 
The direction of the edge is computed using the 

gradient in the x and y directions. However, an error 

will be generated when sumX is equal to zero. So in the 

code there has to be a restriction set whenever this takes 

place. Whenever the gradient in the x direction is equal 

to zero, the edge direction has to be equal to 90 degrees 

or 0 degrees, depending on what the value of the 

gradient in the y-direction is equal to. If GY has a value 

of zero, the edge direction will equal 0 degrees. 

Otherwise the edge direction will equal 90 degrees. The 
formula for finding the edge direction is just:  

 

Theta = invtan (Gy / Gx)  

 

Step 4 
Once the edge direction is known, the next step is to 

relate the edge direction to a direction that can be traced 

in an image. So if the pixels of a 5x5 image are aligned 

as follows: 

 

 
 

Then, it can be seen by looking at pixel "a", there are 

only four possible directions when describing the 

surrounding pixels - 0 degrees (in the horizontal 

direction), 45 degrees (along the positive diagonal), 90 

degrees (in the vertical direction), or 135 degrees (along 
the negative diagonal). So now the edge orientation has 

to be resolved into one of these four directions 

depending on which direction it is closest to (e.g. if the 

orientation angle is found to be 3 degrees, make it zero 

degrees). Think of this as taking a semicircle and 

dividing it into 5 regions. 

 

 

 

 

Therefore, any edge direction falling within the 

yellow range (0 to 22.5 & 157.5 to 180 degrees) is set to 

0 degrees. Any edge direction falling in the green range 

(22.5 to 67.5 degrees) is set to 45 degrees. Any edge 
direction falling in the blue range (67.5 to 112.5 

degrees) is set to 90 degrees. And finally, any edge 

direction falling within the red range (112.5 to 157.5 

degrees) is set to 135 degrees.  

 

Step 5 
 

      After the edge directions are known, non-maximum 

suppression now has to be applied. Non maximum 

suppression is used to trace along the edge in the edge 

direction and suppress any pixel value (sets it equal to 

0) that is not considered to be an edge. This will give a 
thin line in the output image.  

 

 
Figure 8: Angles describing neighbouring pixels 

Figure 7:  Discrete approximation to Gaussian   

                function with  = 1.4  
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Step 6 

 

     Finally, hysteresis is used as a means of eliminating 

streaking. Streaking is the breaking up of an edge 

contour caused by the operator output fluctuating above 

and below the threshold. If a single threshold, T1 is 
applied to an image, and an edge has an average 

strength equal to T1, then due to noise, there will be 

instances where the edge dips below the threshold. 

Equally it will also extend above the threshold making 

an edge look like a dashed line. To avoid this, hysteresis 

uses 2 thresholds, a high and a low. Any pixel in the 

image that has a value greater than T1 is presumed to be 

an edge pixel, and is marked as such immediately. 

Then, any pixels that are connected to this edge pixel 

and that have a value greater than T2 are also selected 

as edge pixels. If you think of following an edge, you 

need a gradient of T2 to start but you don't stop till you 
hit a gradient below T1. 

 

2.3.7 Colour Edge Detection Using Euclidean 

Distance and Vector Angle 

        [14][16] Most edge detectors work on the 

grayscale representation of the image. This cuts down 

the amount of data you have to work with (one channel 

instead of three), but you also lose some information 

about the scene. By including the colour component of 

the image, the edge detector should be able to detect 

edges in regions with high colour variation but low 
intensity variation. 

 

This edge detector uses two operators: Euclidean 

Distance and Vector Angle. The Euclidean Distance is a 

good operator for finding edges based on intensity and 

the Vector Angle is a good operator for finding edges 

based on hue and saturation. The detector applies both 

operators to the RGB colour space of an image, and 
then combines the results from each based on the 

amount of colour in a region. There is a difference 

vector and a vector gradient version; we chose to 

implement the vector gradient version. 

 

The Euclidean Distance between two pixels is defined 

as: 

 
where v1 and v2 are RGB triplets (v = [R G B]). 

 

The Vector Angle between two pixels is approximated 

by: 

 
because sin θ ≈ θ for small angles. Again, v1 and v2 are 

RGB triplets (v = [R G B]). The Euclidean Distance and 

Vector Angle are combined using a saturation-based 

combination method. This combination is defined as: 

 
Where 

 
And 

 
   The "slope" and "offset" values in the sigmoid α(S) 

are set experimentally, and S1 and S2 are the saturation 

values of each pixel. This combination weights the 

Vector Angle more heavily in areas of high colour 

saturation and the Euclidean Distance more heavily in 

areas of low saturation. 

 

 The algorithm for finding edges in the image is as 

follows: 

 

Step 1 

  
For each pixel in the image, take the 3x3 window of 

pixels surrounding that pixel. 

 

Step 2 

  

Calculate the saturation-based combination of the 

Euclidean Distance and Vector Angle between the 

center point and each of the eight points around it. 

 

Step 3 

  

Assign the largest value obtained to the centre pixel. 

 

Step 4 

  

When each pixel has had a value assigned to it, run 

the results through a threshold to eliminate false edges. 
 

 

2.3.8 Edge Detection of coloured images using the 

Canny Operator 
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[2][9]Another approach to edge detection using colour 

information is simply to extend a traditional intensity 

based edge detector into the colour space. This method 

seeks to take advantage of the known strengths of the 

traditional edge detector and tries to overcome its 

weaknesses by providing more information in the form 
of three colour channels rather than a single intensity 

channel. As the Canny edge detector is the current 

standard for intensity based edge detection, it seemed 

logical to use this operator as the basis for colour edge 

detection. The algorithm we used for applying colours 

to the Canny edge detector was a very simple one: 

 

 Read in a colour image and divide it into its three 

separate colour channels. 

 Run each colour channel through the Canny edge 

detector separately to find a resulting coloured edge 
map. 

 Combine the resulting edge maps from each of the three 

colour channels into one complete edge map. 

 

For this step there are a variety of ways you can 

combine the edges found for each different colour, but 

we found that a simple additive approach provided the 

best results. So if there was an edge in any of the three 

coloured edge maps, we added it to the general edge 

map. 

 

 

2.3.9 Depth Edge Detection using Multi-Flash 

Imaging Technique 

 

[4][7]This is another edge detector following the 

principle that using more data in the edge detection 

process should result in better detection of edges. 

However, in this case rather than merely extending 

from one channel of intensity to three channels of color, 

this edge detector actually makes use of multiple 

different images. The approach is based on taking 

successive photos of a scene, each with a different light 
source close to and around the camera‟s center of 

projection. The location of the shadows abutting depth 

discontinuities are used as a robust cue to create a depth 

edge map in both static and dynamic scenes. The idea is 

that rather than using complicated mathematical 

techniques to try to extract edges from existing 

photographs, we should change the way we take 

photographs in general. This technique uses a camera 

with four flashes located at cardinal directions around 

the lens to take four successive pictures. The 

differences in shadows between each picture suggest 

“depth edges”, or edges caused by depth discontinuities 
in a scene. This method suppresses “texture edges”, or 

edges caused by the texture of a surface which all lie at 

a relatively equivalent depth. This is accomplished by 

calculated the epipolar geometry of the shadows in the 

different images.  

 

The general algorithm is as follows: 

 

Step 1 

 Capture an image using only ambient light. Label this 

image as I0. 

 

Step 2 

 For „n‟ different light sources located a positions P1-
Pn, capture n pictures I+k, with k=1-n where I+k is the 

picture taken with light source position Pk 

 

Step 3 

 Remove the ambient component from each image: Ik = 

I+ k - I0 

 

Step 4 

 For all pixels x, Imax(x) = maxk( Ik(x) ), k = 1..n. Imax 

is the base image, which is an approximation of what 

image you would get if the light source were exactly at 

the center of the camera lens. 

 

Step 5 

 For each image k, create a ratio image, Rk where Rk(x) 

= Ik(x)/ Imax (x). The intensity of a point in an image, if 

it is lit, will follow the following equation: 

 

 
 

where μk is the magnitude of the light intensity, p(x) is 

the reflectance at point X, Lk(x) is the normalized light 

vector Lk (x) = Pk – X and N(x) is the surface normal. If 

the surface is not lit, Ik(x) = 0. So the equation for the 
ratio is: 

 

 
 

However, if the objects are relatively diffuse and far 

from the camera relative to the positions of the light 

sources, the ratio can be approximated by simply 

 

 
 

This ratio will be close to 1 in areas lit by light source k 

and close to 0 in areas not lit by light source k. 

 

Step 6 

For each image Rk, traverse each epipolar ray from 

epipole ek (location of the flashes). A sharp negative 

transition in the image indicates a depth edge. So if a 

pixel has a negative transition, mark that pixel as an 

edge. Since the flashes are oriented along the cardinal 

directions, tracing the epipolar rays is equivalent to 

walking along a row or column of the image. 

 

2.4 Visual Comparison of Various Edge Detection 

Algorithms 
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Figure 9: Test case 1 

Figure 10: Test case 2 

Figure 11: Test case 3 
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3. RESULTS  

3.1. Performance of Edge Detection Algorithms 

Gradient-based algorithms such as the Prewitt filter 
have a major drawback of being very sensitive to noise. 

The size of the kernel filter and coefficients are fixed 

and cannot be adapted to a given image. An adaptive 

edge-detection algorithm is necessary to provide a 

robust solution that is adaptable to the varying noise 

levels. Gradient-based algorithms such as the Prewitt 

filter have a major drawback of being very sensitive to 

noise. The size of the kernel filter and coefficients are 

fixed and cannot be adapted to a given image. An 

adaptive edge-detection algorithm is necessary to 

provide a robust solution that is adaptable to the varying 
noise levels of these images to help distinguish valid 

image contents from visual artifacts introduced by 

noise. 

 

The performance of the Canny algorithm depends 

heavily on the adjustable parameters, σ, which is the 

standard deviation for the Gaussian filter, and the 

threshold values, „T1‟ and „T2‟. σ also controls the size 

of the Gaussian filter. The bigger the value for σ, the 

larger the size of the Gaussian filter becomes. This 

implies more blurring, necessary for noisy images, as 

well as detecting larger edges. As expected, however, 
the larger the scale of the Gaussian, the less accurate is 

the localization of the edge. Smaller values of σ imply a 

smaller Gaussian filter which limits the amount of 

blurring, maintaining finer edges in the image. The user 

can tailor the algorithm by adjusting these parameters to 

adapt to different environments. 
 

Canny‟s edge detection algorithm is computationally 

more expensive compared to Sobel, Prewitt and 

Robert‟s operator. However, the Canny‟s edge detection 

algorithm performs better than all these operators under 

almost all scenarios. 

 

3.2 Analysis of various Edge Detection Algorithms 

We ran five separate test images through our edge 

detectors (except the Multi-Flash edge detector, which 

only had data sufficient data to run on two of the 
images). One image was artificial and the rest were real 

world photographs. The results are shown in the figures 

below. All coloured images were converted to grayscale 

using Matlab‟s RBG2GRAY function except when 

using an edge detector that required colour information. 

Various threshold, sigma, slope, etc. values were 

chosen by hand. The images were blurred by a Gaussian 

filter (3x3 filter, sigma=1) before being fed into the 

Euclidean Distance and Vector Angle colour edge 

detector as we found this significantly decreased the 

effect of noise. The other edge detectors do their own 
smoothing (Where applicable). The low threshold in the 

Canny edge detector was always defined to be 40% of 

Figure 12: Test case 4 

Figure 13: Test case 5 
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the high threshold. The average of the four images from 

the Multi-Flash edge detector was used as input to the 

other edge detectors. The first thing to notice about the 

Boolean and Euclidean Distance/Vector Angle edge 

detectors is that neither algorithm identifies edges down 

to a single point as in Canny‟s edge detector. The edges 
are often spotty and disconnected. Edge following to 

trace out a continuous edge is not possible in these edge 

detectors because the direction of the edge is not known 

(since they are not based on the gradient of the image). 

The Marr-Hildreth edge detector will give more nicely 

connected edges if hysteresis is used to threshold the 

image, and will not give connected edges if a single 

threshold is used. Regardless, it is usually gives spotty 

and thick edges. 

 

Figure 9 shows the ability of the edge detectors to 

handle corners as well as a wide range of slopes in edge 
on the circle. The Canny edge detector becomes fairly 

confused at corners due to the Gaussian smoothing of 

the image. Also, since the direction of the edge changes 

instantly, corner pixels looks in the wrong directions for 

its neighbours. The colour version of Canny produces 

many double lines as the edge may be detected in a 

different location in each channel. The Boolean edge 

detector usually omits the corner pixel since the pattern 

for a corner is not one of the bit masks. Other than the 

omitted pixels, the Boolean edge detector performs well 

on the boxes and circle. The Euclidean Distance/Vector 
angle edge detector performs well on the blocks, 

creating a 2 pixel wide line along every edge. It became 

a little confused on the circle. This could possibly be 

remedied with a different threshold between the 

Euclidean Distance metric and the Vector Angle metric. 

The Marr-Hildreth edge detector creates lines even 

thicker than the Euclidean Distance. 

 

Figure 10 is the standard edge detector benchmarking 

image. Overall, the Boolean edge detector performs a 

decent job of marking the locations of edges, but many 

of the edges are spotty and not contiguous. For the most 
part it detects the same edges as the Canny edge 

detector. The colour version of the Canny detector was 

able to find a few more edges than the grayscale version 

given the same input parameters. These edges are most 

noticeable on the hat. The Euclidean Distance detector 

creates much wider edges than the other two methods. It 

appears as if it marks edge pixels on both sides of the 

edge. As a result the output image shows the major 

edges, but not much fine grained detail. In general, the 

Boolean edge detector makes no guarantees about 

finding thin edges, but it usually does a reasonable job. 
 

Figure 11 is a picture of a shoreline. All edge 

detectors had problems detecting the different ridges of 

the cliff. The foam of the waves also provided some 

inconsistent results. There are a lot of discrepancies in 

colour at these locations, but no clear edges. Similar to 

the Figure 2, the Euclidean Distance detector produces 

much thicker lines and less detail than the other edge 

detectors. The Boolean edge detector does a better job 

of maintaining contiguous curves for the edges, but they 

still have a few discontinuities. 

 

Figure 12 is the first of the Multi-Flash images. The 

bright flashes in the different directions caused drop 
shadows around some edges of the object. Even though 

the average of all four images was used as the input to 

the other edge detectors, some of them still picked up 

on the faint shadows. Surprisingly, the Multi-Flash edge 

detector did not perform better than other edge detectors 

for this image. For example, it missed parts of the 

vertebrae. It could pick up these images if the threshold 

was reduced, but much more noise was introduced into 

the image. Other than the Boolean edge detector, the 

Multi-Flash method is the only detector that no 

smoothing of the image before processing, so it is more 

sensitive to noise in the image. The other edge detectors 
all identify almost the same edges, but follow similar 

behaviour to previous images. 

 

Figure 13 more accurately shows the capabilities of 

each edge detector. The Marr-Hildreth detector 

perceives many edges, but they are too spotty and wide 

to really identify any features. The Canny edge detector 

gives nice outlines of the table, the vase, and many of 

the flowers on the border. Features in the middle of the 

arrangement are missed, but some are recovered with 

the addition of colour. For example, the red flower in 
the center and the leaves to its right are found. The 

Boolean edge detector does a good job at detecting a 

large number of edges, but many of them are noisy. The 

Euclidean Distance/Vector Angle edge detector finds 

strong edges around the colour flowers, but finds almost 

no edges in the middle of the green leafy region. It also 

misses the table entirely. The Multi-flash edge detector 

finds most of the geometry in the scene but misses parts 

of the table. If the background is too far away from the 

objects, the drop shadows will not be sharp enough to 

detect a discontinuity. The inventors of this algorithm 

supplement the edge detection with a step that finds the 
colour difference between the object and its 

background. 

 

3.3 Relative advantage and disadvantages of various 

edge detection operators 

It was found during our analysis that there was no 

optimal algorithm which would give the best result in 

all possible cases. However, each one of these operators 

had their own advantages and disadvantages. We 

tabularised these details as follows:  
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Table: 1. Relative Advantage and Disadvantages of 

Edge Detection Operators 

 

4. DISCUSSION  

The Boolean edge detector performs surprisingly 

similarly to the Canny edge detector even though they 

both take drastically different approaches. Canny‟s 

method is still preferred since it produces single pixel 

thick, continuous edges. The Boolean edge detector‟s 

edges are often spotty. Colour edge detection seems like 

it should be able to outperform grayscale edge detectors 

since it has more information about the image. In the 

case of the Canny‟s colour edge detector, it usually 

finds more edges than the grayscale version. Finding 
the optimal way to combine the three colour challenges 

may improve this method. The other colour edge 

detection scheme we implemented, the Euclidian 

Distance/Vector Angle detector, did a decent job of 

identifying the borders between regions, but misses fine 

grained detail. If the direction of the edge were known, 

a non-maximal suppression on the colour edge 

detector‟s output may help the granularity of its output. 

 

Multi-flash edge detection shows some promise as it 

strives to produce photographs that will be easy to edge 

detect, rather than running on an arbitrary image. One 
problem inherent to the Multi-flash edge detector is that 

it will have difficulty finding edges between objects that 

are at almost the same depth or are at depths which are 

very far away. For example, the Multi-flash method 

would not work at all on an outdoor scene such as the 

shoreline. 

 

 5. CONCLUSION  

Since edge detection is the initial step in object 

recognition, it is important to know the differences 

between edge detection techniques. In this paper we 

studied the most commonly used edge detection 

techniques of Gradient-based and Laplacian based Edge 

Detection. Gradient-based algorithms such as the 

Prewitt filter have a major drawback of being very 

sensitive to noise. 

 

The size of the kernel filter and coefficients are fixed 

and cannot be adapted to a given image. An adaptive 

edge-detection algorithm is necessary to provide a 
robust solution that is adaptable to the varying noise 

levels of these images to help distinguish valid image 

contents from visual artifacts introduced by noise. The 

performance of the Canny algorithm depends heavily 

on the adjustable parameters, _, which is the standard 

deviation for the Gaussian filter, and the threshold 

values, „T1‟ and „T2‟. _ also controls the size of the 

Gaussian filter. The bigger the value for _, the larger the 

size of the Gaussian filter becomes. This implies more 

blurring, necessary for noisy images, as well as 

detecting larger edges. As expected, however, the larger 
the scale of the Gaussian, the less accurate is the 

localization of the edge. Smaller values of _ imply a 

smaller Gaussian filter which limits the amount of 

blurring, maintaining finer edges in the image. The user 

can tailor the algorithm by adjusting these parameters to 

adapt to different environments. Canny‟s edge detection 

algorithm is computationally more expensive compared 

to Sobel, Prewitt and Robert‟s operator. However, the 

Canny‟s edge detection algorithm performs better than 

all these operators under almost all scenarios. 

Evaluation of the images showed that under noisy 

conditions, Canny, LoG, Sobel, Prewitt, Roberts‟s 
exhibit better performance, respectively.  
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