
Scholars Journal of Engineering and Technology (SJET) ISSN 2321-435X

Sch. J. Eng. Tech., 2013; 1(4):218-225
©Scholars Academic and Scientific Publisher

(An International Publisher for Academic and Scientific Resources)
www.saspublisher.com

 218

Review Article

Review on Parallel and Distributed Computing
Inderpal Singh

Computer Science and Engineering Department, DAV Institute of Engineering and Technology, Jalandhar, India

*Corresponding author

Inderpal Singh

Email:

Abstract: Parallel and distributed computing is a complex and fast evolving research area. In its short 50-year history,

the mainstream parallel computer architecture has evolved from Single Instruction Multiple Data stream (SIMD) to
Multiple Instructions Multiple Data stream (MIMD), and further to loosely coupled computer cluster; now it is about to

enter the Computational Grid era. The algorithm research has also changed accordingly over the years. However, the

basic principles of parallel computing, such as inter-process and inter-processor communication schemes, parallelism

methods and performance model, remain the same. In this paper, a short introduction of parallel and distributed

computing will be given, which will cover the definition, motivation, various types of models for abstraction, and recent

trend in mainstream parallel computing.

Keywords: Single Instruction Multiple Data stream (SIMD), Multiple Instructions Multiple Data stream (MIMD), inter-

processor communication and loosely coupled

INTRODUCTION

Distributed And Parallel Computing

Distributed computing is the process of

aggregating the power of several computing entities,

which are logically distributed and may even be
geologically distributed, to collaboratively run a single

computational task in a transparent and coherent way,

so that they appear as a single, centralized system.

Parallel computing is the simultaneous

execution of the same task on multiple processors in

order to obtain faster results. It is widely accepted that

parallel computing is a branch of distributed computing,

and puts the emphasis on generating large computing

power by employing multiple processing entities

simultaneously for a single computation task. These

multiple processing entities can be a multiprocessor
system, which consists of multiple processors in a

single machine connected by bus or switch networks, or

a multicomputer system, which consists of several

independent computers interconnected by

telecommunication networks or computer networks.

Besides in parallel computing, distributed

computing has also gained significant development in

enterprise computing. The main difference between

enterprise distributed computing and parallel distributed

computing is that the former mainly targets on
integration of distributed resources to collaboratively

finish some task, while the later targets on utilizing

multiple processors simultaneously to finish a task as

fast as possible. In this thesis, because we focus on high

performance computing using parallel distributed

computing, we will not cover enterprise distributed

computing, and we will use the term “Parallel

Computing”.

Motivation Of Parallel Computing

Parallel computing is widely used to reduce

the computation time for complex tasks. Many
industrial and scientific research and practice involve

complex large- scale computation, which without

parallel computers would take years and even tens of

years to compute. It is more than desirable to have the

results available as soon as possible, and for many

applications, late results often imply useless results. A

typical example is weather forecast, which features

uncommonly complex computation and large dataset. It

also has strict timing requirement, because of its

forecast nature.

Parallel computers are also used in many areas to

achieve larger problem scale. Take Computational Fluid
Dynamics (CFD) for an example. While a serial

computer can work on one unit area, a parallel

computer with N processors can work on N units of

area, or to achieve N times of resolution on the same

unit area. In numeric simulation, larger resolution will

help reduce errors, which are inevitable in floating point

calculation; larger problem domain often means more

analogy with realistic experiment and better simulation

result.

As predicted by Moore's Law [1], the
computing capability of single processor has

experienced exponential increase. This has been shown

in incredible advancement in microcomputers in the last

few decades. Performance of a today desktop PC

costing a few hundred dollars can easily surpass that of

million-dollar parallel supercomputer built in the 1960s.

It might be argued that parallel computer will phase out

http://www.saspublisher.com/

Singh I., Sch. J. Eng. Tech., 2013; 1(4):218-225

 219

with this increase of single chip processing capability.

However, 3 main factors have been pushing parallel

computing technology into further development.

First, although some commentators have

speculated that sooner or later serial computers will
meet or exceed any conceivable need for computation,

this is only true for some problems. There are others

where exponential increases in processing power are

matched or exceeded by exponential increases in

complexity as the problem size increases. There are also

new problems arising to challenge the extreme

computing capacity. Parallel computers are still the

widely used and often only solutions to tackle these

problems.

Second, at least with current technologies, the

exponential increase in serial computer performance
cannot continue forever, because of physical limitations

to the integration density of chips. In fact, the

foreseeable physical limitations will be reached soon

and there is already a sign of slow down in pace of

single-chip performance growth. Major microprocessor

venders have run out of room with most of their

traditional approaches to boosting CPU performance-

driving clock speeds and straight-line instruction

throughput higher. Further improvement in performance

will rely more on architecture innovation, including

parallel processing. Intel and AMD have already
incorporated hyperthreading and multicore architectures

in their latest offering [2].

Finally, generating the same computing power,

single-processor machine will always be much more

expensive then parallel computer. The cost of single

CPU grows faster than linearly with speed. With recent

technology, hardware of parallel computers are easy to

build with off-the-shelf components and processors,

reducing the development time and cost. Thus parallel

computers, especially those built from off-the-shelf

components, can have their cost grow linearly with
speed. It is also much easier to scale the processing

power with parallel computer. Most recent technology

even supports to use old computers and shared

component to be part of parallel machine and further

reduces the cost. With the further decrease in

development cost of parallel computing software, the

only impediment to fast adoption of parallel computing

will be eliminated.

Theoretical Model Of Parallel Computing

A machine model is an abstract of realistic
machines ignoring some trivial issues, which usually

differ from one machine to another. A proper

theoretical model is important for algorithm design and

analysis, because a model is a common platform to

compare different algorithms and because algorithms

can often be shared among many physical machines

despite their architectural differences. In the parallel

computing context, a model of parallel machine will

allow algorithm designers and implementers to ignore

issues such as synchronization and communication

methods and to focus on exploitation of concurrency.

The widely-used theoretic model of parallel
computers is Parallel Random Access Machine

(PRAM). A simple PRAM capable of doing add and

subtract operation is described in Fortune's paper [3]. A

PRAM is an extension to traditional Random Access

Machine (RAM) model used to serial computation. It

includes a set of processors, each with its own PC

counter and a local memory and can perform

computation independently. All processors

communicate via a shared global memory and processor

activation mechanism similar to UNIX process forking.

Initially only one processor is active, which will

activate other processors; and these new processors will
further activate more processors. The execution finishes

when the root processor executes a HALT instruction.

Readers are advised to read the original paper for a

detailed description.

Such a theoretic machine, although far from

complete from a practical perspective, provides most

details needed for algorithm design and analysis. Each

processor has its own local memory for computation,

while a global memory is provided for inter-processor

communication. Indirect addressing is supported to
largely increase the flexibility. Using FORK instruction,

a central root processor can recursively activate a

hierarchical processor family; each newly created

processor starts with a base built by its parent processor.

Since each processor is able to read from the input

registers, task division can be accomplished. Such a

theoretical model inspires many realistic hardware and

software systems, such as PVM [4] introduced later in

this thesis.

Architectural Models Of Parallel Computer

Despite a single standard theoretical model,
there exist a number of architectures for parallel

computer. Diversity of models is partially shown in

Figure 1-1. This subsection will briefly cover the

classification of parallel computers based on their

hardware architectures. One classification scheme,

based on memory architecture, classifies parallel

machines into Shared Memory architecture and

Distributed Memory architecture; another famous

scheme, based on observation of instruction and data

streams, classifies parallel machines according to

Flynn's taxonomy.

Singh I., Sch. J. Eng. Tech., 2013; 1(4):218-225

 220

Figure 1-1 A simplified view of the parallel

computing model hierarchy

Shared Memory And Distributed Memory

Shared Memory architecture features a central

memory bank, with all processors and this memory

bank inter-connected through high-speed network, as

shown in Figure 1-2. Shared Memory shares a lot of

properties with PRAM model, because of which it was

favoured by early algorithm designers and

programmers. Furthermore, because the memory

organization is the same as in the sequential

programming models and the programmers need not

deal with data distribution and communication details,

shared memory architecture has certain advantage in
programmability. However, no realistic shared-memory

high-performance machine have been built, because no

one has yet designed a scalable shared memory that

allows large number of processors to simultaneously

access different locations in constant time. Having a

centralized memory bank implies that no processor can

access it with high speed.

Figure 1-2 Diagram illustration of shared-memory

architecture

In Distributed Memory architecture, every

processor has its own memory component that it can

access via very high speed, as shown in Figure 1-3.

Accessing memory owned by other processor requires

explicit communication with the owner processor.

Distributed Memory architecture uses message-passing

model for programming. Since it allows programs to be

optimized to take advantage of locality, by putting
frequently-used data in local memory and reducing

remote memory access, programs can often acquire

very high performance. However, it imposes a heavy

burden on the programmers, who is responsible for

managing all details of data distribution and task

scheduling, as well as communication between tasks.

Figure 1-3 Diagram illustration of distributed

memory architecture

To combine the performance advantage of
Distributed Memory architecture to the ease of

programming of Shared Memory architecture, Virtual

Shared Memory, or Distributed Shared Memory (DSM)

system, is built on top of Distributed Memory

architecture and exposes a Shared Memory

programming interface. DSM virtualizes the distributed

memory as an integrated shared memory for upper layer

applications. Mapping from remote memory access to

message passing is done by communication library, and

thus programmers are hidden from message

communication details underneath. Nevertheless, for

the foreseeable future, use of such paradigm is
discouraged for efficiency-critical applications. Hiding

locality of memory access away from programmers will

lead to inefficient access to memory and poor

performance until significant improvements have been

gained in optimization.

The most common type of parallel computers,

computer clusters, belongs to the distributed memory

family. With different programming tools, the

programmers might be exposed to a distributed memory

system or a shared memory system. For example, using
message passing programming paradigm, the

programmers will have to do inter-process

communication explicitly by sending and receiving

message, andare based on the distributed memory

architecture; but when a distributed shared memory

library such as TreadMarks is used, the distributed

memory nature will be hidden from the programmer. As

discussed above, we would suggest the use of message

Singh I., Sch. J. Eng. Tech., 2013; 1(4):218-225

 221

passing over distributed shared memory, because

communication overhead can be more significant in

computer clusters. It is advantageous to allow the

programmer to control the details of communication in

a message passing system.

Flynn’s Taxonomy

Another classification scheme is based on

taxonomy of computer architecture firstly proposed by

Michael Flynn [5] in 1966. Flynn differentiated parallel

computer architectures with respect to number of data

streams and that of instruction streams. According to

Flynn, computer architectures can be classified into 4

categories, namely Single Instruction Single Data

Stream (SISD), Single Instruction Multiple Data Stream

(SIMD), Multiple Instruction Single Data Stream

(MISD), and Multiple Instruction Multiple Data Stream

(MIMD). This work was later referred to as Flynn's
taxonomy.

In Flynn's taxonomy, normal sequential von

Neumann architecture machine, which has dominated

computing since its inception, is classified as SISD.

MISD is a theoretical architecture with no realistic

implementation. SIMD machine consists of a number of

identical processors proceeding in a lock step

synchronism, executing the same instruction on their

own data. SIMD was the major type of parallel

computer before 1980s, when the computing capability
of asingle processor is very limited. Nowadays, SIMD

computing is only seen inside general-

purposeprocessors, as an extension to carry out vector

computation commonly used, for example, in

multimedia applications.

MIMD is the most commonly used parallel

computers now, and covers a wide range of

interconnection schemes, processor types, and

architectures. The basic idea of MIMD is that each

processor operates independent of the others,

potentially running different programs and
asynchronous progresses. MIMD may not necessarily

mean writing multiple programs for multiple

processors. The Single Program Multiple Data (SPMD)

style of parallel computing is widely used in MIMD

computers. Using SPMD, a single program is deployed

to multiple processors on MIMD computers. Although

these processors run the same program, they may not

necessarily be synchronized at instruction level; and

different environments and different data to work on

may possibly result in instruction streams being carried

out on different processors. Thus SPMD is simply a
easy way to write programs for MIMD computers.

It is obvious that computer cluster is a type of

MIMD computer. Most parallel programs on computer

cluster are developed in the SPMD style. The same

program image is used on each parallel processor, and

each processor goes through a different execution path

based on its unique processor ID.

A relevant topic is the concept of granularity

of parallelism, which describes the size of a

computational unit being a single “atom” of work

assigned to a processor. In modern MIMD system, the
granularity is much coarser, driven by the desire to

reduce the relatively expensive communication.

Performance Models Of Parallel Computing

Systems Speedup, Efficiency And Scalability

In order to demonstrate the effectiveness of

parallel processing for a problem on some platform,

several concepts have been defined. These concepts will

be used in later chapters to evaluate the effectiveness of

parallel programs. These include speedup, which

describes performance improvement in terms of time

savings, efficiency, which considers both benefit and
cost, and scalability, which represents how well an

algorithm or piece of hardware performs as more

processors are added.

Speedup is a first-hand performance

evaluation. However, it is a controversial concept,

which can be defined in a variety of ways. Generally

speaking, speedup describes performance achievement

by comparing the time needed to solve the problem on

N processors with the time needed on a single

processor. This is shown as:

S(n) = T(1) / T(n);

where S(n) is the speedup achieved with n processors,

T(1) is the time required on a single processor, and T(n)

is the time required on N processors. The discrepancies

arise as to how the timings should be measured, and

what algorithms to be used for different numbers of

processors. A widely accepted method is to use optimal

algorithms for any number of processors. However, in

reality, optimal algorithm is hard to implement; even if

it is implemented, the implementation may not
performoptimally because of other machine-dependent

and realistic factors, such as cache efficiency inside

CPU.

A typical speedup curve for a fixed size

problem is shown in Figure 1-4. As the number of

processors increases, speedup also increases until a

saturation point is reached. Beyond this point, adding

more processors will not bring further performance

gain. This is the combined result of 1) reduced

computation on participating node, and 2) increased
duplicate computation and synchronization and

communication overhead.

The concept of efficiency is defined as

E(n) = S(n) / n.

Singh I., Sch. J. Eng. Tech., 2013; 1(4):218-225

 222

Figure 1-4 Typical speedup curve

It measures how much speedup is brought per

additional processor. Based on the typical speedup

curve shown in the figure above, it is evident that

typically efficiency will be decreased upon increase in

the number of processors.

The concept of scalability cannot be computed

but evaluated. A parallel system is said to be scalable
when the algorithm and/or the hardware can easily

incorporate and take advantage of more processors.

This term is viewed as nebulous [6], since it depends on

the target problem, algorithm applied, hardware, current

system load, and numerous other factors. Generally,

programs and hardware are said to be scalable when

they can take advantage of hundreds or even thousands

of processors.

In practice, the computable speedup and

efficiency can be much more complex. Both values are

affected by many factors, which can be algorithmic and
practical. Take superlinear speedup as an example.

Superlinear speedup is defined as the speedup that

exceeds the number of processors used. It is proved that

superlinear speedup is not achievable in homogeneous

parallel computers. However, when heterogeneous

parallel computers are used, it is possible to achieve it

[7]. An example of practical factors that may lead to

superlinear speedup is cache performance: when a large

number of processors are used, problem scale on a

single node is largely reduced, which may result in

higher cache hit ratio, fast execution, and finally
probably superlinear speedup even if communication

overhead is not negligible. When the parallel computer

is not dedicated to a single parallel computing task, load

difference among the computing nodes will imply

heterogeneity and consequently the possibility of

superlinear speedup. That is what we will encounter in

later chapters.

AMDAHL’S LAW

As shown in the previous subsection,

efficiency gets reduced as more processors are added.

This effect implies the limit of parallel performance:

when the number of processors reaches some threshold,

adding more processors will no longer generate further

performance improvement and will even result in

performance degradation, due to decrease in time

saving brought by further division of task and increase
in overhead of interprocess communication and

duplicate computation. Gene Amdahl presents a fairly

simple analysis on this [8], which is later referred to as

Amdahl’s Law.

Amdahl gave the speedup of a parallel program as:

where p is the fraction of code that is parallelizable, and

s=1-p, is that requires serial execution. This inequality

implies that superlinear speedup is not achievable and

themaximal ideal speedup cannot exceed
1s

, where s is

the ratio of serial code (i.e., the code that requires serial
execution) out of the whole program.

Amdahl’s Law is a rough method to evaluate

how parallel computing can be effective for a specific

problem. Amdahl’s Law has resulted in pessimistic

view of parallel processing. For example, if 10% of the

task must be computed using serialcomputation, the

maximal ideal speedup is 10. Since 1967, Amdahl’s

Law was used as an argument against massively parallel

processing (MPP).

Gustafson’s discovery [9] on loophole of

Amdahl’s law has led the parallel computing field out

of pessimism and skepticism. Since then, the so-called

Gustafson’s Law has been used to justify MPP. Amdahl

assumed the problem size to be fixed as the number of

processors changes, and thus s and p to be constants. In

many scientific applications, problem size is flexible,

and when more processors are available, problem size

can be increased in order to achieve finer result such as

higher resolution or higher precision. To quote

Gustafson, “speedup should be measured by scaling the

problem to the number of processors, not fixing
problem size.” When problem size is changed, s and p

are no longer constants, and the limit set by Amdahl’s

Law is broken.

According to Gustafson’s observation, the

amount of work that can be done in parallel varies

linearly with the number of processors and the amount

of serial work, mostly vector startup, program loading,

serial bottlenecks and I/O, does not grow with problem

size. Use s' and p' to represent execution time associated

with serial code and parallel code, rather than ratio,
spent on the parallel system with n homogeneous

processors, then if this task is to be computed on a

Singh I., Sch. J. Eng. Tech., 2013; 1(4):218-225

 223

single processor, the time needed can be represented as:

T(1) = s' + np'

and the scaled speedup can be written as:

if s'' is defined as s'/(s'+p'). s'' is the ratio of serial code,
but has different meaning from the ratio s in Amdahl’s

Law: s'' is the ratio of serial code with reference to

whole program executed on one processor in a parallel

execution, while s is with reference to all code in the

whole program for the problem [10]. It must also be

noted that s is a constant that is only relevant to the

computation problem, under the precondition that

problem scale is fixed; while s'' is a constant under the

precondition of problem scale changes as Gustafson

described. Under Gustafson’s Law, the speedup can be

linearly increased with the number of processors hired
in the computation.

In the context of computational bioengineering,

Gustafson’s Law makes more sense than Amdahl’s

Law, because with larger computing capability, it is

desirable to acquire better result, in terms of resolution

in image processing and simulation and in terms of

higher precision in many numerical applications. When

the problem size is fixed, Amdahl’s Law has told us to

reduce the fraction of code that has to be executed in

serial. Essentially, we have to reduce the fraction of

code whose execution time cannot be reduced by
introducing more processors. Since communication

code has this feature, we will look into the techniques to

optimize inter-processor communication.

Interconnection Schemes Of Parallel Computing

Systems

Both Amdahl’s Law and Gustafson’s Law

acknowledge the significance of serial code in affecting

the parallel computer performance. Another important

factor that is closely related to parallel program

performance is inter-process communication and
synchronization. Especially with modern technology,

processing capability of single chip has been

tremendously increased; however, inter-process

communication has received relatively small

improvement, and thus become the bottleneck of overall

performance. That also explains the trend of coarser-

granularity parallelism. High- performance parallel

computers, especially those able to scale to thousands

of processors, have been using sophisticated

interconnection schemes. Here we cover the major

interconnection schemes listed in Figure 1-5 in brief.

Figure 1-5 Illustrations of Simple interconnection

schemes

Figure 1-5(A) illustrates the line scheme,

which is the simplest connection scheme. In this

illustration, circle represents a computing node and line

represents direct communication channel between

nodes. Computing nodes are arranged on and connected
with a single line. Except for the nodes at the two ends,

vertex degrees are all 2 and thus the implementation of

network interface is simple; routing is simple and the

topology can be viewed as recursive. However,

communication between any two non-neighbor nodes

needs the help of other nodes; the connectivity is only 1

and fault at any node will make the whole system break;

and diameter of this corresponding graph is n-1, where

n is the number of nodes, which implies that the latency

could be very high. To summarize, this scheme is

simple and low-cost, but will not be able to generate
high performance or reliability; and as system scales,

the performance degrades rapidly.

Figure 1-5(B) illustrates the ring scheme,

which is an enhanced line topology, with an extra

connection between the two ends of the line. This

increases theconnectivity to 2 and decreases the

diameter to half of the corresponding line topology.

However, basic characteristics are still the same.

The other extreme is probably the fully-

connected topology, in which there is a direct
connection between any two computing nodes. Fully-

connected topology is shown in Figure 1-5(C). The

corresponding graph representation has an edge

between any two vertices, and distance between any

two vertices is 1. Thus the diameter is 1, and it

generates the minimal communication latency, if the

physical link implementation is fixed, as well as the

maximal connectivity. However, the degree of nodes

changes with the number of processors and thus the

implementation of network interface must be very

complex; and it is hard to be recursive, adding another
layer of complexity of implementation and reducing the

Singh I., Sch. J. Eng. Tech., 2013; 1(4):218-225

 224

scalability. To summarize, this scheme will generate the

highest performance possible, but due to the complexity

and thus cost, it can hardly be scalable: with larger

scale, although performance will not degradeatall,

complexitywillclimbveryfastatthelevelofO(n2).

Similar to fully-connected network, bus

network, illustrated in Figure 1-5(E), has direct

connection between any two nodes. In fact, bus

topology shares the same logical graph representation

with fully-connected topology and. Consequently; static

characteristics of bus topology are exactly the same as

those of fully-connected topology. But connection

between any pair of nodes is not dedicated but shared:

interconnection is implemented via a shared bus. This

reduces the complexity significantly. In fact, its

complexity is similar to that of line and ring topology.

However, the dynamic characteristics, such as data
transfer speed, are more inferior to those of fully-

connected counterpart. Although collective

communication is now very easy to implement, this

single shared bus prevents more than one pair of nodes

tocarry out point-to-point communication. As a result,

the system does not scale very well.

An intuitive improvement on bus network is to

change the bus to eliminate the constraint that only two

nodes can communicate at any time. The result is the

star network, where a communication switch node is
added to replace the shared bus, as shown in Figure 1-

5(D). If we treat this switch node as a non-computing

node and ignore it in the graph representation, then star

network corresponds to the same fully- connected graph

as bus network, while the implementation does not have

the constraint of bus network; if switch node is viewed

as normal computing node, then the corresponding

graph has a diameter of 2, supports easy

implementation of collective communication with the

help of the central switch node, and allows recursive

expansion. Except for the switch node, all other nodes

have a constant vertex degree of 1. The critical
disadvantage is that the connectivity is 1: failure at the

switch node will cause the whole system to fail.

For computer clusters, most are built with a

star structured interconnection network around a central

switch. For better fault tolerance or easier setup, the

other interconnection scheme might also be used.

Parallel program using message passing might be

rewritten to better adapt to different interconnection

network.

There are other types of more sophisticated

topology schemes, such as tree, mesh, and hypercube,

which are widely used in parallel computers with

thousands of processors or more. These schemes often

scale better to larger scale network with good

performance. Readers are advised to [11] for more

information about this.

Programming Models Of Parallel Computing

Systems
Programming models are high-level abstract

views of technologies and applications that hide most

architectural details with programmers as the main
audience. For MIMD machine like a computer cluster,

the most important models include shared-memory

model, message-passing model, and object-oriented

model.

In the shared-memory model, multiple tasks

run in parallel. These tasks communicate with one

another by writing to and reading from a shared

memory. Shared-memory programming is comfortable

for the programmers, because the memory organization

is similar as in the familiar sequential programming

models, and programmers need not deal with data
distribution or communication details. Popularity of this

model was also promoted by its similarity to the

theoretical PRAM model. Practice of programming on

this model originated from concurrent programming on

transparency of data and task placement determines

that, besides the simplicity of programming, the

performance cannot be predicted or controlled on

hardware platform with Non-Uniform Memory

Architecture (NUMA) or distributed memory. This

performance problem is evident especially on large-

scale multiprocessor systems, in which access time to
memory at different locations varies significantly and

thus memory locality plays critical role in determining

overall system performance.

Message passing model is becoming the prevailing

programming model for parallel computing system,

thanks to the trend to large-scale multiprocessors

systems,including computer clusters. In this model,

several processes run in parallel and communicate and

synchronize with one another by explicitly sending and

receiving message. These processes do not have access

to a shared memory or a global address space. Although
harder to program compared to previous models, it

allows programs to explicitly guide the execution by

controlling data and task distribution details. Since

everything is under the programmer’s control, the

programmer can achieve close to optimum performance

if enough effort has been spent on performance tuning.

Besides this performance advantage, message passing

model is also versatile. Being a relatively low-level

model, it is capable of implementing many higher-level

models. A typical example is the widely-used SPMD

data model, which fits in with many naturally data-
parallel scientific applications. Very low-level message

passing systems, such as Active Message, are even used

to implement shared-memory system by emulating a

shared memory. These systems, while allowing easy

high-level algorithm design with the help of more

friendly high-level models, expose enough low-level

details to support and encourage the programmers to

Singh I., Sch. J. Eng. Tech., 2013; 1(4):218-225

 225

manually control and tune the performance. Wide

deployment of multicomputers and loosely-coupled

computer clusters, which feature expensive

communication, promotes the popularity of message

passing systems. Message Passing Interface (MPI) [12]

and Parallel Virtual Machine (PVM) [4] are the 2 major
programming libraries used to build message passing

system.

CONCLUSION:

In this paper, we have reviewed some basic

concepts in parallel computing systems. Parallel

computing is the simultaneous execution of the same

task onmultiple processors in order to obtain faster

results. Computer cluster belongs to distributed memory

MIMD computers.

REFERENCE
1. Gordon Moore; Cramming more

components onto integrated circuits.

Electronics Magazine, 19 April 1965.

2. Herb Sutter; The free lunch is over: a

fundamental turn toward concurrency in

software. Dr. Dobb's Journal, 2005:30(3).

3. Steven F, Wyllie J; “Parallelism in

random access machines,” in Proceedings

of the tenth annual ACM symposium on

Theory of computing, San Diego,

California, United States, 1978:114-118.
4. Sunderam VS; PVM: a framework for

parallel distributed computing.

Concurrency: Practice and

Experience,1990; 2(4):315-339.

5. Michael J. Flynn, “Very high-speed

computing systems,” in Proceedings of the

IEEE, 1966;54:1901-1909.

6. Lou Baker, Bradley J. Smith; Parallel

Programming, New York, McGraw- Hill,

1996.

7. Donaldson V; Parallel speedup in

heterogeneous computing network.
Journal of Parallel Distributed Computing,

1994; 21:316-322.

8. Amdahl GM; “Validity of the single

processor approach to achieving large

scale computer capability” in Proceedings

of AFIPS Spring Joint Computer

Conference, pp. 30, Atlantic City, New

Jersey, United States, 1967.

9. Gustafson JL; Reevaluating Amdahl’s

law. Communications of ACM, 1988;

31(5):532-533.
10. Yuan Shi. Reevaluating Amdahl’s law and

Gustafson’s law.

Available:http://joda.cis.temple.edu/~shi/d

ocs/amdahl/amdahl.html

11. David C, Singh JP, Anoop Gupta; Parallel

Computer Architecture : A

Hardware/Software Approach. Morgan

Kaufmann, 1998.

12. Message Passing Interface Forum, MPI: A

message-passing interface standard, May

1994.

