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Abstract: Parallel and distributed computing is a complex and fast evolving research area. In its short 50-year history, 

the mainstream parallel computer architecture has evolved from Single Instruction Multiple Data stream (SIMD) to 
Multiple Instructions Multiple Data stream (MIMD), and further to loosely coupled computer cluster; now it is about to 

enter the Computational Grid era. The algorithm research has also changed accordingly over the years. However, the 

basic principles of parallel computing, such as inter-process and inter-processor communication schemes, parallelism 

methods and performance model, remain the same. In this paper, a short introduction of parallel and distributed 

computing will be given, which will cover the definition, motivation, various types of models for abstraction, and recent 

trend in mainstream parallel computing. 
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INTRODUCTION 

Distributed And Parallel Computing 

Distributed computing is the process of 

aggregating the power of several computing entities, 

which are logically distributed and may even be 
geologically distributed, to collaboratively run a single 

computational task in a transparent and coherent way, 

so that they appear as a single, centralized system. 

 

Parallel computing is the simultaneous 

execution of the same task on multiple processors in 

order to obtain faster results. It is widely accepted that 

parallel computing is a branch of distributed computing, 

and puts the emphasis on generating large computing 

power by employing multiple processing entities 

simultaneously for a single computation task. These 

multiple processing entities can be a multiprocessor 
system, which consists of multiple processors in a 

single machine connected by bus or switch networks, or 

a multicomputer system, which consists of several 

independent computers interconnected by 

telecommunication networks or computer networks. 

 

Besides in parallel computing, distributed 

computing has also gained significant development in 

enterprise computing. The main difference between 

enterprise distributed computing and parallel distributed 

computing is that the former mainly targets on 
integration of distributed resources to collaboratively 

finish some task, while the later targets on utilizing 

multiple processors simultaneously to finish a task as 

fast as possible. In this thesis, because we focus on high 

performance computing using parallel distributed 

computing, we will not cover enterprise distributed 

computing, and we will use the term “Parallel 

Computing”. 

 

Motivation Of Parallel Computing 

Parallel computing is widely used to reduce 

the computation time for complex tasks. Many 
industrial and scientific research and practice involve 

complex large- scale computation, which without 

parallel computers would take years and even tens of 

years to compute. It is more than desirable to have the 

results available as soon as possible, and for many 

applications, late results often imply useless results. A 

typical example is weather forecast, which features 

uncommonly complex computation and large dataset. It 

also has strict timing requirement, because of its 

forecast nature. 

Parallel computers are also used in many areas to 

achieve larger problem scale. Take Computational Fluid 
Dynamics (CFD) for an example. While a serial 

computer can work on one unit area, a parallel 

computer with N processors can work on N units of 

area, or to achieve N times of resolution on the same 

unit area. In numeric simulation, larger resolution will 

help reduce errors, which are inevitable in floating point 

calculation; larger problem domain often means more 

analogy with realistic experiment and better simulation 

result. 

 

As predicted by Moore's Law [1], the 
computing capability of single processor has 

experienced exponential increase. This has been shown 

in incredible advancement in microcomputers in the last 

few decades. Performance of a today desktop PC 

costing a few hundred dollars can easily surpass that of 

million-dollar parallel supercomputer built in the 1960s. 

It might be argued that parallel computer will phase out 
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with this increase of single chip processing capability. 

However, 3 main factors have been pushing parallel 

computing technology into further development. 

 

First, although some commentators have 

speculated that sooner or later serial computers will 
meet or exceed any conceivable need for computation, 

this is only true for some problems. There are others 

where exponential increases in processing power are 

matched or exceeded by exponential increases in 

complexity as the problem size increases. There are also 

new problems arising to challenge the extreme 

computing capacity. Parallel computers are still the 

widely used and often only solutions to tackle these 

problems. 

 

Second, at least with current technologies, the 

exponential increase in serial computer performance 
cannot continue forever, because of physical limitations 

to the integration density of chips. In fact, the 

foreseeable physical limitations will be reached soon 

and there is already a sign of slow down in pace of 

single-chip performance growth. Major microprocessor 

venders have run out of room with most of their 

traditional approaches to boosting CPU performance-

driving clock speeds and straight-line instruction 

throughput higher. Further improvement in performance 

will rely more on architecture innovation, including 

parallel processing. Intel and AMD have already 
incorporated hyperthreading and multicore architectures 

in their latest offering [2]. 

 

Finally, generating the same computing power, 

single-processor machine will always be much more 

expensive then parallel computer. The cost of single 

CPU grows faster than linearly with speed. With recent 

technology, hardware of parallel computers are easy to 

build with off-the-shelf components and processors, 

reducing the development time and cost. Thus parallel 

computers, especially those built from off-the-shelf 

components, can have their cost grow linearly with 
speed. It is also much easier to scale the processing 

power with parallel computer. Most recent technology 

even supports to use old computers and shared 

component to be part of parallel machine and further 

reduces the cost. With the further decrease in 

development cost of parallel computing software, the 

only impediment to fast adoption of parallel computing 

will be eliminated. 

 

Theoretical Model Of Parallel Computing 

A machine model is an abstract of realistic 
machines ignoring some trivial issues, which usually 

differ from one machine to another. A proper 

theoretical model is important for algorithm design and 

analysis, because a model is a common platform to 

compare different algorithms and because algorithms 

can often be shared among many physical machines 

despite their architectural differences. In the parallel 

computing context, a model of parallel machine will 

allow algorithm designers and implementers to ignore 

issues such as synchronization and communication 

methods and to focus on exploitation of concurrency. 

 

The widely-used theoretic model of parallel 
computers is Parallel Random Access Machine 

(PRAM). A simple PRAM capable of doing add and 

subtract operation is described in Fortune's paper [3]. A 

PRAM is an extension to traditional Random Access 

Machine (RAM) model used to serial computation. It 

includes a set of processors, each with its own PC 

counter and a local memory and can perform 

computation independently. All processors 

communicate via a shared global memory and processor 

activation mechanism similar to UNIX process forking. 

Initially only one processor is active, which will 

activate other processors; and these new processors will 
further activate more processors. The execution finishes 

when the root processor executes a HALT instruction. 

Readers are advised to read the original paper for a 

detailed description. 

 

Such a theoretic machine, although far from 

complete from a practical perspective, provides most 

details needed for algorithm design and analysis. Each 

processor has its own local memory for computation, 

while a global memory is provided for inter-processor 

communication. Indirect addressing is supported to 
largely increase the flexibility. Using FORK instruction, 

a central root processor can recursively activate a 

hierarchical processor family; each newly created 

processor starts with a base built by its parent processor. 

Since each processor is able to read from the input 

registers, task division can be accomplished. Such a 

theoretical model inspires many realistic hardware and 

software systems, such as PVM [4] introduced later in 

this thesis. 

 

Architectural Models Of Parallel Computer 

Despite a single standard theoretical model, 
there exist a number of architectures for parallel 

computer. Diversity of models is partially shown in 

Figure 1-1. This subsection will briefly cover the 

classification of parallel computers based on their 

hardware architectures. One classification scheme, 

based on memory architecture, classifies parallel 

machines into Shared Memory architecture and 

Distributed Memory architecture; another famous 

scheme, based on observation of instruction and data 

streams, classifies parallel machines according to 

Flynn's taxonomy. 
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Figure 1-1 A simplified view of the parallel 

computing model hierarchy 

 

Shared Memory And Distributed Memory 

Shared Memory architecture features a central 

memory bank, with all processors and this memory 

bank inter-connected through high-speed network, as 

shown in Figure 1-2. Shared Memory shares a lot of 

properties with PRAM model, because of which it was 

favoured by early algorithm designers and 

programmers. Furthermore, because the memory 

organization is the same as in the sequential 

programming models and the programmers need not 

deal with data distribution and communication details, 

shared memory architecture has certain advantage in 
programmability. However, no realistic shared-memory 

high-performance machine have been built, because no 

one has yet designed a scalable shared memory that 

allows large number of processors to simultaneously 

access different locations in constant time. Having a 

centralized memory bank implies that no processor can 

access it with high speed. 

 

 
Figure 1-2 Diagram illustration of shared-memory 

architecture 
 

In Distributed Memory architecture, every 

processor has its own memory component that it can 

access via very high speed, as shown in Figure 1-3. 

Accessing memory owned by other processor requires 

explicit communication with the owner processor. 

Distributed Memory architecture uses message-passing 

model for programming. Since it allows programs to be 

optimized to take advantage of locality, by putting 
frequently-used data in local memory and reducing 

remote memory access, programs can often acquire 

very high performance. However, it imposes a heavy 

burden on the programmers, who is responsible for 

managing all details of data distribution and task 

scheduling, as well as communication between tasks. 

 

 
Figure 1-3 Diagram illustration of distributed 

memory architecture 

 

To combine the performance advantage of 
Distributed Memory architecture to the ease of 

programming of Shared Memory architecture, Virtual 

Shared Memory, or Distributed Shared Memory (DSM) 

system, is built on top of Distributed Memory 

architecture and exposes a Shared Memory 

programming interface. DSM virtualizes the distributed 

memory as an integrated shared memory for upper layer 

applications. Mapping from remote memory access to 

message passing is done by communication library, and 

thus programmers are hidden from message 

communication details underneath. Nevertheless, for 

the foreseeable future, use of such paradigm is 
discouraged for efficiency-critical applications. Hiding 

locality of memory access away from programmers will 

lead to inefficient access to memory and poor 

performance until significant improvements have been 

gained in optimization. 

 

The most common type of parallel computers, 

computer clusters, belongs to the distributed memory 

family. With different programming tools, the 

programmers might be exposed to a distributed memory 

system or a shared memory system. For example, using 
message passing programming paradigm, the 

programmers will have to do inter-process 

communication explicitly by sending and receiving 

message, andare based on the distributed memory 

architecture; but when a distributed shared memory 

library such as TreadMarks is used, the distributed 

memory nature will be hidden from the programmer. As 

discussed above, we would suggest the use of message 
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passing over distributed shared memory, because 

communication overhead can be more significant in 

computer clusters. It is advantageous to allow the 

programmer to control the details of communication in 

a message passing system.  

 

Flynn’s Taxonomy 

Another classification scheme is based on 

taxonomy of computer architecture firstly proposed by 

Michael Flynn [5] in 1966. Flynn differentiated parallel 

computer architectures with respect to number of data 

streams and that of instruction streams. According to 

Flynn, computer architectures can be classified into 4 

categories, namely Single Instruction Single Data 

Stream (SISD), Single Instruction Multiple Data Stream 

(SIMD), Multiple Instruction Single Data Stream 

(MISD), and Multiple Instruction Multiple Data Stream 

(MIMD). This work was later referred to as Flynn's 
taxonomy. 

 

In Flynn's taxonomy, normal sequential von 

Neumann architecture machine, which has dominated 

computing since its inception, is classified as SISD. 

MISD is a theoretical architecture with no realistic 

implementation. SIMD machine consists of a number of 

identical processors proceeding in a lock step 

synchronism, executing the same instruction on their 

own data. SIMD was the major type of parallel 

computer before 1980s, when the computing capability 
of asingle processor is very limited. Nowadays, SIMD 

computing is only seen inside general-

purposeprocessors, as an extension to carry out vector 

computation commonly used, for example, in 

multimedia applications. 

 

MIMD is the most commonly used parallel 

computers now, and covers a wide range of 

interconnection schemes, processor types, and 

architectures. The basic idea of MIMD is that each 

processor operates independent of the others, 

potentially running different programs and 
asynchronous progresses. MIMD may not necessarily 

mean writing multiple programs for multiple 

processors. The Single Program Multiple Data (SPMD) 

style of parallel computing is widely used in MIMD 

computers. Using SPMD, a single program is deployed 

to multiple processors on MIMD computers. Although 

these processors run the same program, they may not 

necessarily be synchronized at instruction level; and 

different environments and different data to work on 

may possibly result in instruction streams being carried 

out on different processors. Thus SPMD is simply a 
easy way to write programs for MIMD computers. 

 

It is obvious that computer cluster is a type of 

MIMD computer. Most parallel programs on computer 

cluster are developed in the SPMD style. The same 

program image is used on each parallel processor, and 

each processor goes through a different execution path 

based on its unique processor ID. 

 

A relevant topic is the concept of granularity 

of parallelism, which describes the size of a 

computational unit being a single “atom” of work 

assigned to a processor. In modern MIMD system, the 
granularity is much coarser, driven by the desire to 

reduce the relatively expensive communication. 

 

Performance Models Of Parallel Computing 

Systems Speedup, Efficiency And Scalability 

In order to demonstrate the effectiveness of 

parallel processing for a problem on some platform, 

several concepts have been defined. These concepts will 

be used in later chapters to evaluate the effectiveness of 

parallel programs. These include speedup, which 

describes performance improvement in terms of time 

savings, efficiency, which considers both benefit and 
cost, and scalability, which represents how well an 

algorithm or piece of hardware performs as more 

processors are added. 

 

Speedup is a first-hand performance 

evaluation. However, it is a controversial concept, 

which can be defined in a variety of ways. Generally 

speaking, speedup describes performance achievement 

by comparing the time needed to solve the problem on 

N processors with the time needed on a single 

processor. This is shown as: 
 

S(n) = T(1) / T(n); 

 

where S(n) is the speedup achieved with n processors, 

T(1) is the time required on a single processor, and T(n) 

is the time required on N processors. The discrepancies 

arise as to how the timings should be measured, and 

what algorithms to be used for different numbers of 

processors. A widely accepted method is to use optimal 

algorithms for any number of processors. However, in 

reality, optimal algorithm is hard to implement; even if 

it is implemented, the implementation may not 
performoptimally because of other machine-dependent 

and realistic factors, such as cache efficiency inside 

CPU. 

 

A typical speedup curve for a fixed size 

problem is shown in Figure 1-4. As the number of 

processors increases, speedup also increases until a 

saturation point is reached. Beyond this point, adding 

more processors will not bring further performance 

gain. This is the combined result of 1) reduced 

computation on participating node, and 2) increased 
duplicate computation and synchronization and 

communication overhead. 

 

The concept of efficiency is defined as 

E(n) = S(n) / n. 
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Figure 1-4 Typical speedup curve 

 

It measures how much speedup is brought per 

additional processor. Based on the typical speedup 

curve shown in the figure above, it is evident that 

typically efficiency will be decreased upon increase in 

the number of processors. 

 

The concept of scalability cannot be computed 

but evaluated. A parallel system is said to be scalable 
when the algorithm and/or the hardware can easily 

incorporate and take advantage of more processors. 

This term is viewed as nebulous [6], since it depends on 

the target problem, algorithm applied, hardware, current 

system load, and numerous other factors. Generally, 

programs and hardware are said to be scalable when 

they can take advantage of hundreds or even thousands 

of processors. 

 

In practice, the computable speedup and 

efficiency can be much more complex. Both values are 

affected by many factors, which can be algorithmic and 
practical. Take superlinear speedup as an example. 

Superlinear speedup is defined as the speedup that 

exceeds the number of processors used. It is proved that 

superlinear speedup is not achievable in homogeneous 

parallel computers. However, when heterogeneous 

parallel computers are used, it is possible to achieve it 

[7]. An example of practical factors that may lead to 

superlinear speedup is cache performance: when a large 

number of processors are used, problem scale on a 

single node is largely reduced, which may result in 

higher cache hit ratio, fast execution, and finally 
probably superlinear speedup even if communication 

overhead is not negligible. When the parallel computer 

is not dedicated to a single parallel computing task, load 

difference among the computing nodes will imply 

heterogeneity and consequently the possibility of 

superlinear speedup. That is what we will encounter in 

later chapters. 

 

AMDAHL’S LAW 

As shown in the previous subsection, 

efficiency gets reduced as more processors are added. 

This effect implies the limit of parallel performance: 

when the number of processors reaches some threshold, 

adding more processors will no longer generate further 

performance improvement and will even result in 

performance degradation, due to decrease in time 

saving brought by further division of task and increase 
in overhead of interprocess communication and 

duplicate computation. Gene Amdahl presents a fairly 

simple analysis on this [8], which is later referred to as  

Amdahl’s Law. 

 

Amdahl gave the speedup of a parallel program as: 

 

 
where p is the fraction of code that is parallelizable, and 

s=1-p, is that requires serial execution. This inequality 

implies that superlinear speedup is not achievable and 

themaximal ideal speedup cannot exceed 
1s 

, where s is 

the ratio of serial code (i.e., the code that requires serial 
execution) out of the whole program. 

 

Amdahl’s Law is a rough method to evaluate 

how parallel computing can be effective for a specific 

problem. Amdahl’s Law has resulted in pessimistic 

view of parallel processing. For example, if 10% of the 

task must be computed using serialcomputation, the 

maximal ideal speedup is 10. Since 1967, Amdahl’s 

Law was used as an argument against massively parallel 

processing (MPP). 

 
Gustafson’s discovery [9] on loophole of 

Amdahl’s law has led the parallel computing field out 

of pessimism and skepticism. Since then, the so-called 

Gustafson’s Law has been used to justify MPP. Amdahl 

assumed the problem size to be fixed as the number of 

processors changes, and thus s and p to be constants. In 

many scientific applications, problem size is flexible, 

and when more processors are available, problem size 

can be increased in order to achieve finer result such as 

higher resolution or higher precision. To quote 

Gustafson, “speedup should be measured by scaling the 

problem to the number of processors, not fixing 
problem size.” When problem size is changed, s and p 

are no longer constants, and the limit set by Amdahl’s 

Law is broken. 

 

According to Gustafson’s observation, the 

amount of work that can be done in parallel varies 

linearly with the number of processors and the amount 

of serial work, mostly vector startup, program loading, 

serial bottlenecks and I/O, does not grow with problem 

size. Use s' and p' to represent execution time associated 

with serial code and parallel code, rather than ratio, 
spent on the parallel system with n homogeneous 

processors, then if this task is to be computed on a 
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single processor, the time needed can be represented as: 

T(1) = s' + np' 

 

and the scaled speedup can be written as: 

 
if s'' is defined as s'/(s'+p'). s'' is the ratio of serial code, 
but has different meaning from the ratio s in Amdahl’s 

Law: s'' is the ratio of serial code with reference to 

whole program executed on one processor in a parallel 

execution, while s is with reference to all code in the 

whole program for the problem [10]. It must also be 

noted that s is a constant that is only relevant to the 

computation problem, under the precondition that 

problem scale is fixed; while s'' is a constant under the 

precondition of problem scale changes as Gustafson 

described. Under Gustafson’s Law, the speedup can be 

linearly increased with the number of processors hired 
in the computation. 

 

In the context of computational bioengineering, 

Gustafson’s Law makes more sense than Amdahl’s 

Law, because with larger computing capability, it is 

desirable to acquire better result, in terms of resolution 

in image processing and simulation and in terms of 

higher precision in many numerical applications. When 

the problem size is fixed, Amdahl’s Law has told us to 

reduce the fraction of code that has to be executed in 

serial. Essentially, we have to reduce the fraction of 

code whose execution time cannot be reduced by 
introducing more processors. Since communication 

code has this feature, we will look into the techniques to 

optimize inter-processor communication. 

 

Interconnection Schemes Of Parallel Computing 

Systems 

Both Amdahl’s Law and Gustafson’s Law 

acknowledge the significance of serial code in affecting 

the parallel computer performance. Another important 

factor that is closely related to parallel program 

performance is inter-process communication and 
synchronization. Especially with modern technology, 

processing capability of single chip has been 

tremendously increased; however, inter-process 

communication has received relatively small 

improvement, and thus become the bottleneck of overall 

performance. That also explains the trend of coarser-

granularity parallelism. High- performance parallel 

computers, especially those able to scale to thousands 

of processors, have been using sophisticated 

interconnection schemes. Here we cover the major 

interconnection schemes listed in Figure 1-5 in brief. 

 

 
Figure 1-5 Illustrations of Simple interconnection 

schemes 

 

Figure 1-5(A) illustrates the line scheme, 

which is the simplest connection scheme. In this 

illustration, circle represents a computing node and line 

represents direct communication channel between 

nodes. Computing nodes are arranged on and connected 
with a single line. Except for the nodes at the two ends, 

vertex degrees are all 2 and thus the implementation of 

network interface is simple; routing is simple and the 

topology can be viewed as recursive. However, 

communication between any two non-neighbor nodes 

needs the help of other nodes; the connectivity is only 1 

and fault at any node will make the whole system break; 

and diameter of this corresponding graph is n-1, where 

n is the number of nodes, which implies that the latency 

could be very high. To summarize, this scheme is 

simple and low-cost, but will not be able to generate 
high performance or reliability; and as system scales, 

the performance degrades rapidly. 

 

Figure 1-5(B) illustrates the ring scheme, 

which is an enhanced line topology, with an extra 

connection between the two ends of the line. This 

increases theconnectivity to 2 and decreases the 

diameter to half of the corresponding line topology. 

However, basic characteristics are still the same. 

 

The other extreme is probably the fully-

connected topology, in which there is a direct 
connection between any two computing nodes. Fully-

connected topology is shown in Figure 1-5(C). The 

corresponding graph representation has an edge 

between any two vertices, and distance between any 

two vertices is 1. Thus the diameter is 1, and it 

generates the minimal communication latency, if the 

physical link implementation is fixed, as well as the 

maximal connectivity. However, the degree of nodes 

changes with the number of processors and thus the 

implementation of network interface must be very 

complex; and it is hard to be recursive, adding another 
layer of complexity of implementation and reducing the 
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scalability. To summarize, this scheme will generate the 

highest performance possible, but due to the complexity 

and thus cost, it can hardly be scalable: with larger 

scale, although performance will not degradeatall, 

complexitywillclimbveryfastatthelevelofO(n2). 

 
Similar to fully-connected network, bus 

network, illustrated in Figure 1-5(E), has direct 

connection between any two nodes. In fact, bus 

topology shares the same logical graph representation 

with fully-connected topology and. Consequently; static 

characteristics of bus topology are exactly the same as 

those of fully-connected topology. But connection 

between any pair of nodes is not dedicated but shared: 

interconnection is implemented via a shared bus. This 

reduces the complexity significantly. In fact, its 

complexity is similar to that of line and ring topology. 

However, the dynamic characteristics, such as data 
transfer speed, are more inferior to those of fully-

connected counterpart. Although collective 

communication is now very easy to implement, this 

single shared bus prevents more than one pair of nodes 

tocarry out point-to-point communication. As a result, 

the system does not scale very well. 

 

An intuitive improvement on bus network is to 

change the bus to eliminate the constraint that only two 

nodes can communicate at any time. The result is the 

star network, where a communication switch node is 
added to replace the shared bus, as shown in Figure 1-

5(D). If we treat this switch node as a non-computing 

node and ignore it in the graph representation, then star 

network corresponds to the same fully- connected graph 

as bus network, while the implementation does not have 

the constraint of bus network; if switch node is viewed 

as normal computing node, then the corresponding 

graph has a diameter of 2, supports easy 

implementation of collective communication with the 

help of the central switch node, and allows recursive 

expansion. Except for the switch node, all other nodes 

have a constant vertex degree of 1. The critical 
disadvantage is that the connectivity is 1: failure at the 

switch node will cause the whole system to fail. 

 

For computer clusters, most are built with a 

star structured interconnection network around a central 

switch. For better fault tolerance or easier setup, the 

other interconnection scheme might also be used. 

Parallel program using message passing might be 

rewritten to better adapt to different interconnection 

network. 

 
There are other types of more sophisticated 

topology schemes, such as tree, mesh, and hypercube, 

which are widely used in parallel computers with 

thousands of processors or more. These schemes often 

scale better to larger scale network with good 

performance. Readers are advised to [11] for more 

information about this. 

 

Programming Models Of Parallel Computing 

Systems 
Programming models are high-level abstract 

views of technologies and applications that hide most 

architectural details with programmers as the main 
audience. For MIMD machine like a computer cluster, 

the most important models include shared-memory 

model, message-passing model, and object-oriented 

model. 

 

In the shared-memory model, multiple tasks 

run in parallel. These tasks communicate with one 

another by writing to and reading from a shared 

memory. Shared-memory programming is comfortable 

for the programmers, because the memory organization 

is similar as in the familiar sequential programming 

models, and programmers need not deal with data 
distribution or communication details. Popularity of this 

model was also promoted by its similarity to the 

theoretical PRAM model. Practice of programming on 

this model originated from concurrent programming on 

transparency of data and task placement determines 

that, besides the simplicity of programming, the 

performance cannot be predicted or controlled on 

hardware platform with Non-Uniform Memory 

Architecture (NUMA) or distributed memory. This 

performance problem is evident especially on large-

scale multiprocessor systems, in which access time to 
memory at different locations varies significantly and 

thus memory locality plays critical role in determining 

overall system performance. 

 

Message passing model is becoming the prevailing 

programming model for parallel computing system, 

thanks to the trend to large-scale multiprocessors 

systems,including computer clusters. In this model, 

several processes run in parallel and communicate and 

synchronize with one another by explicitly sending and 

receiving message. These processes do not have access 

to a shared memory or a global address space. Although 
harder to program compared to previous models, it 

allows programs to explicitly guide the execution by 

controlling data and task distribution details. Since 

everything is under the programmer’s control, the 

programmer can achieve close to optimum performance 

if enough effort has been spent on performance tuning. 

Besides this performance advantage, message passing 

model is also versatile. Being a relatively low-level 

model, it is capable of implementing many higher-level 

models. A typical example is the widely-used SPMD 

data model, which fits in with many naturally data-
parallel scientific applications. Very low-level message 

passing systems, such as Active Message, are even used 

to implement shared-memory system by emulating a 

shared memory. These systems, while allowing easy 

high-level algorithm design with the help of more 

friendly high-level models, expose enough low-level 

details to support and encourage the programmers to 
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manually control and tune the performance. Wide 

deployment of multicomputers and loosely-coupled 

computer clusters, which feature expensive 

communication, promotes the popularity of message 

passing systems. Message Passing Interface (MPI) [12] 

and Parallel Virtual Machine (PVM) [4] are the 2 major 
programming libraries used to build message passing 

system. 

 

CONCLUSION: 

In this paper, we have reviewed some basic 

concepts in parallel computing systems. Parallel 

computing is the simultaneous execution of the same 

task onmultiple processors in order to obtain faster 

results. Computer cluster belongs to distributed memory 

MIMD computers.  
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