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Abstract: An integrated method using data envelopment analysis and fuzzy preference relation model is one of the 

models in data envelopment analysis widely used by DEA people and practitioners. However, in many real applications, 

data is often imprecise. A successful method to address uncertainty in data is replacing deterministic data by random 

variables, leading to stochastic DEA. Therefore, in this paper, An integrated method using  data envelopment analysis 

and fuzzy preference relations model is developed in stochastic data envelopment analysis, and its deterministic 

equivalent which is a nonlinear program is derived. Moreover, it is shown that the deterministic equivalent of the 

stochastic model can be converted to a quadratic program. Finally, a numerical example for illustration purpose is 

presented. 
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Introduction 

Performance evaluation is of great importance for effective decision-making. The foundation of efficiency 

evaluation is faithfully to identify the corresponding production possibility set. 

 

Decision and decide one of the most sensitive tasks managers and organizations are aware there is always the 

decision of an issue for managers is challenging. While effective managers’ important addition, by seeking opportunities 

that are provided with the main objectives of the organization to achieve competitive advantages and increase take 

effective steps. 

 

Note that we know data envelopment analysis methodology has many advantages, such as no requirement for a 

priori weights or explicit specification of functional relations among the multiple inputs and outputs. However, there is a 
weakness in conventional DEA models; in fact, original DEA models do not allow stochastic variations in input and 

output such as data entry errors. As a result, DEA efficiency measurement may be sensitive to such variations. A DMU, 

which is measured as efficient relative to other DMUs, may turn inefficient if such random variations are considered. 

Stochastic input and output variations into DEA have been studied by, for example, Cooper, Deng, Huang, and Li [3], 

Land, Lovell, and Thore[9], and Olesen and Petersen [12], Morita and Seiford[10], Khodabakhshi and Asgharian [7], 

Khodabakhshi[6,8]. Although original DEA models such as CCR or BCC models have been extended in stochastic data 

envelopment analysis, the research on ranking stochastic DMUs solely have been done in deterministic DEA. To close 

this gap, in this paper, an integrated method using data envelopment analysis and fuzzy preference relations model is 

developed in stochastic data envelopment analysis which allows stochastic variations in output data.  

 

The concept of chance constrained programming approach introduced by Cooper et al.[3]. More recently, 
Asgharian, Khodabakhshi, and Neralic[1] and Khodabahshi[6,7,8] have studied stochastic input and output variations 

into DEA. See also Kall[5] for discussion on linear programming programs. Moreover, deterministic equivalent of the 

stochastic model is obtained to solve the stochastic model. Furthermore, as an empirical example, the proposed approach 

is applied on data of Iranian electricity distribution units.  

 

Therefore, in this paper one ranking method is proposed based on DEA and fuzzy preference relation. The rest 

of the paper is organized as follows: in section 2, Stochastic DEA. In section 3, methodology for ranking of stochastic 

DMUs.  Methods have been widely employed in Iranian electricity distribution units are collected into the last section4. 

Finally, in section 5 the conclusion and some remarks put forward. 

 

Stochastic DEA 
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In many important situations inputs or outputs of the DMUs are often considered to be random, so efficiency 

conclusions upon a deterministic DEA can be misleading because of a high sensivity of the efficiency scores to the 

realized levels of inputs or outputs. Stochastic DEA methods have therefore been designed to deal with the problems 

which are introduced by uncertainty. 

 

We assume that there are n DMUs to be evaluated. For each DMU𝑗  (j=1, 2,…, n) , 𝑥 𝑗 =   𝑥 1𝑗 ,𝑥 2𝑗 ,… ,𝑥 𝑚𝑗  ,𝑦 𝑗 =

  𝑦 1𝑗 ,𝑦 2𝑗 ,… ,𝑦 𝑠𝑗   represent m, s random input and output vectors, Respectively. In this paper, the inputs are considered 

as deterministic variables and the outputs are considered as stochastic variables. Mathematicaly, the DEA model has the 

following formulation: 

                    

                          𝑀𝑎𝑥              𝐸  𝑢𝑟𝑦 𝑟𝑑
𝑠
𝑟=1                                                                                                        

                   𝑠. 𝑡.                𝑣𝑖𝑥𝑖𝑑
𝑚
𝑖=1 = 1                 1                                       

 𝑝𝑟  
 𝑢𝑟𝑦 𝑟𝑗
𝑠
𝑟=1

 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≤ 𝛽𝑗  ≥ 1− 𝛼𝑗            𝑗 = 1,2,… , 𝑛 

𝑢𝑟 ≥ 0,        𝑟 = 1,2,… , 𝑠 
    𝑣𝑖 ≥ 0          𝑖 = 1,2,… ,𝑚.   

 

The above model is designed to measure the performance (DEA efficiency) of the specific dth DMU.  The symbols 

(𝑢𝑟 ,𝑣𝑖) reperesnt weight multipliers related to the rth output and ith input. Pr stands for a probability and the superscript 

"~" indicates a stochastic variable. 

The constraint 𝑝𝑟  
 𝑢𝑟𝑦 𝑟𝑗
𝑠
𝑟=1

 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≤ 𝛽𝑗  ≥ 1− 𝛼𝑗   is equivalent to: 

pr  ur y rj

s

r=1

≤ β
j
  vixij

m

i=1

  ≥ 1− αj 

 

For j=1,2,…,n. Minus and divide both sides of inequality inside n parentheses by fix term yield: 

 

pr 
 ur (y rj − y rj )

s
r=1

 vj

≤
β

j
  vixij

m
i=1  −  ur j

y rj
s
r=1

 vj

 ≥ 1− αj 

 

Where y rj  is the expected value of  y rj  and 𝑣𝑗   indicates the variance-covariance matrix of the jth DMU. Assume new 

variable 𝑧 𝑗  is defined as bellows: 

 

𝑧 𝑗 =
 ur (y rj − y rj )

s
r=1

 vj

        j = 1,2,… , n 

 

Which follows the standard normal distribution with zero mean and unit variance, because we assume y j  for j=1,2,…,n 

has normal distribution. Thus can write as follows: 

 

pr 𝑧 𝑗 ≤
β

j
  vixij

m
i=1  −  ur j

y rj
s
r=1

 vj

 ≥ 1 − αj          j = 1,2,… , n 

 

Since 𝑧 𝑗  follows the standard normal distribution, the invariability of (1) is executed as follows: 

 

 
β

j
  vixij

m
i=1  −  ur j

y rj
s
r=1

 vj

 ≥ 𝐹−1 1− 𝛼𝑗           𝑗 = 1,2,… ,𝑛 

 

Here, F stands for a cumulative distribution function of the normal distribution and 𝐹−1 indicates its inverse function. So 

model (1) can be written as: 

 

𝑀𝑎𝑥              𝐸  𝑢𝑟𝑦 𝑟𝑑
𝑠
𝑟=1                                                                                    

𝑠. 𝑡.                𝑣𝑖𝑥𝑖𝑑

𝑚

𝑖=1

= 1                                 (2)                                     
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                  β
j
  vixij

m

i=1

 − ur j
y rj

s

r=1

≥  vj𝐹
−1 1− 𝛼𝑗        𝑗 = 1,2,… ,𝑛 

 

𝑢𝑟 ≥ 0,        𝑟 = 1,2,… , 𝑠 
    𝑣𝑖 ≥ 0          𝑖 = 1,2,… ,𝑚.   

 

To obtain a linear programming  equivalent to (2), this research  assumes that a stochastic variable y rj  of reach output is 

expressed by y rj = y rj + brj ε for  r=1,2,…,s and j=1,2,…,n , where brj  is its standard deviation. Also, it is assumed that a 

single random variable (ε) follows a normal distribution 𝑁 0, 𝜎2 . 
 

Under such an assumption, and properties of variance and covariance that expressed as below: 

If 𝑥1, 𝑥2,…, 𝑥𝑛be stochastic variables and  

𝑦1 =  𝑎𝑖𝑥𝑖

𝑛

𝑖=1

                     , 𝑦2 =  𝑏𝑖𝑥𝑖

𝑛

𝑖=1

                       

 

Where 𝑎𝑖  ,𝑏𝑖 for i=1,…,n are constant, then: 

 

𝑣𝑎𝑟 𝑦1 =  𝑎𝑖
2  𝑣𝑎𝑟 𝑥𝑖 +  2   𝑎𝑖𝑎𝑗 𝑐𝑜𝑣(𝑥𝑖

𝑖<𝑗

,𝑥𝑗 )

𝑛

𝑖=1

 

𝑣𝑎𝑟 𝑦2 =  𝑏𝑖
2  𝑣𝑎𝑟 𝑥𝑖 +  2   𝑏𝑖𝑏𝑗 𝑐𝑜𝑣(𝑥𝑖

𝑖<𝑗

,𝑥𝑗 )

𝑛

𝑖=1

 

𝑐𝑜𝑣(𝑦1 ,𝑦2) =  𝑎𝑖 𝑏𝑖  𝑣𝑎𝑟 𝑥𝑖 +  2   (𝑎𝑖𝑏𝑗 + 𝑎𝑗𝑏𝑖)𝑐𝑜𝑣(𝑥𝑖
𝑖<𝑗

,𝑥𝑗 )

𝑛

𝑖=1

 

 

So 𝑣𝑗  becomes 

𝑣𝑗 =  ( 𝑢𝑟𝑏𝑟𝑗 𝜎
𝑠
𝑟=1 )2   (3) 

 

Incorporating (3) in (2) provides: 

 

𝑀𝑎𝑥              𝐸  𝑢𝑟𝑦 𝑟𝑑
𝑠
𝑟=1                                                                                    

𝑠. 𝑡.                𝑣𝑖𝑥𝑖𝑑

𝑚

𝑖=1

= 1                                                 (4)                      

            β
j
  vixij

m

i=1

 − ur j
y rj

s

r=1

≥ ( 𝑢𝑟𝑏𝑟𝑗 𝜎

𝑠

𝑟=1

) 𝐹−1 1− 𝛼𝑗        𝑗 = 1,2,… ,𝑛 

𝑢𝑟 ≥ 0,        𝑟 = 1,2,… , 𝑠 
    𝑣𝑖 ≥ 0          𝑖 = 1,2,… ,𝑚.   

 

Next paying attention to  y rj = y rj + brj ε , we reformulate the objective of (4) as follows: 

 

𝐸  𝑢𝑟𝑦 𝑟𝑑

𝑠

𝑟=1

 = 𝐸   𝑢𝑟(𝑦 𝑟𝑑 + 𝑏𝑟𝑑 𝜀)

𝑠

𝑟=1

  

= 𝐸   𝑢𝑟𝑦 𝑟𝑑
𝑠
𝑟=1  + 𝐸   𝑢𝑟𝑏𝑟𝑑𝜀

𝑠
𝑟=1   

=  𝐸   𝑢𝑟𝑦 𝑟𝑑

𝑠

𝑟=1

  

Because of  𝐸  𝑢𝑟𝑦 𝑟𝑑
𝑠
𝑟=1  =   𝑢𝑟𝑦 𝑟𝑑

𝑠
𝑟=1  and  𝐸 𝜀 = 0 .  consequently, (4) can be formulated as the following linear 

programming model that is equivalent to (1): 

 

𝑀𝑎𝑥            𝑢𝑟𝑦 𝑟𝑑
𝑠
𝑟=1                                                                                
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𝑠. 𝑡.                𝑣𝑖𝑥𝑖𝑑

𝑚

𝑖=1

= 1                                            (5)                          

            β
j
  vixij

m

i=1

 − ur j
y rj

s

r=1

≥ ( 𝑢𝑟𝑏𝑟𝑗 𝜎

𝑠

𝑟=1

) 𝐹−1 1− 𝛼𝑗        𝑗 = 1,2,… ,𝑛 

𝑢𝑟 ≥ 0,        𝑟 = 1,2,… , 𝑠 
    𝑣𝑖 ≥ 0          𝑖 = 1,2,… ,𝑚.   

That, we used this model in our method to ranking DMUs. 

    

The proposed method 

In this section, the preference relation is constructed by implementing a three-stage methodology as Wu et.al 

were stated in [16]. Note that we argue in the introduction that a preference relation is actually constructed based on a 

self-rated scheme and sexton model, thus we need to establish self-rated and cross-rated problem by use of  SDEA at 

first. Hence, of the three stages, first we yield pairwise efficiency scores using two DEA models: the CCR model and the 

sexton  model. The resulting pairwise efficiency scores are then utilized to construct the fuzzy preference relations at the 

second stage. At the last stage, by use of the row wise summation technique, the priority vector for ranking DMUs is 

obtained. 

 

For simplicity, we suppose n DMUs peer for evaluation, DMUs produces multiple stochastic outputs yrj (r = 1,2, 
. . . ,s) by utilizing multiple inputs xij (i= 1, 2, . . . ,m).  

 

Step 1: The multiplier CCR model for DMUs by is as follows, the inputs are considered as deterministic variables and 

the outputs are considered as stochastic variables. 

𝑀𝑎𝑥            𝑢𝑟𝑦 𝑟𝑑
𝑠
𝑟=1                                                                                

𝑠. 𝑡.                𝑣𝑖𝑥𝑖𝑑

𝑚

𝑖=1

= 1                                                                      

            β
j
  vixij

m

i=1

 − ur j
y rj

s

r=1

≥ ( 𝑢𝑟𝑏𝑟𝑗 𝜎

𝑠

𝑟=1

) 𝐹−1 1− 𝛼𝑗        𝑗 = 1,2,… ,𝑛 

𝑢𝑟 ≥ 0,        𝑟 = 1,2,… , 𝑠 
    𝑣𝑖 ≥ 0          𝑖 = 1,2,… ,𝑚.   

 

The process of obtaining this model from SDEA has been discussed in last section. 

Step2: By using Sexton [14] commute the value of djE . 

jd

jd

dj
Xv

Yu
E

*

*

          (6)           .,...,2,1, njd               

Step3: Fuzzy preference relation was proposed by Nurmi [11]; Fan et al.[ 4]; Xu and Da [17]; Saaty [13]; Yager and 

Kacprzyk [18]; Chiclana et al [2]. 

 

Definition 1. Let 𝑅 = (𝑟𝑑𝑗 )𝑛×𝑛 , be a preference relation (matrix), then R is called a fuzzy preference relation, 

𝑟𝑖𝑗 𝜖  0,1 ; 𝑟𝑖𝑗 + 𝑟𝑗𝑖 = 1; 𝑟𝑖𝑖 = 0.5  for all 𝑖, 𝑗𝜖 {1,2, ...,n}.A value of 0.5 for 𝑟𝑖𝑗  or 𝑟𝑗𝑖  indicates an indifference 

between alternative i and j and a value of 1 for 𝑟𝑖𝑗  or a value of 0 for  𝑟𝑗𝑖  indicates that alternative i is unanimously 

preferred to j. Similarly, a value between 0.5 and 1 for 𝑟𝑖𝑗  or a value between 0 and 0.5 for 𝑟𝑗𝑖  stands for that 

alternative i is preferred to j. 

 

Definition 2 :Tanino [15].  Let 𝑅 = (𝑟𝑑𝑗 )𝑛×𝑛 be a fuzzy preference relation (matrix), then R is called a additive 

transitive  consistency  fuzzy  preference  relation,  if  𝑟𝑖𝑗 𝜖  0,1 ; 𝑟𝑖𝑗 = 𝑟𝑖𝑘 − 𝑟𝑘𝑗 + 0.5  for all 𝑖, 𝑗,𝑘 𝜖 {1,2, ...,n}. 

 

Definition 3:Tanino [15]. Let 𝑅 = (𝑟𝑑𝑗 )𝑛×𝑛  be a fuzzy preference relation (matrix), then R is called a product transitive 

consistency fuzzy preference relation, if 𝑟𝑖𝑗 𝜖  0,1 ; 𝑟𝑖𝑗 𝑟𝑗𝑘 𝑟𝑘𝑖 =  𝑟𝑗𝑖 𝑟𝑘𝑗 𝑟𝑖𝑘  for all 𝑖, 𝑗,𝑘 𝜖 {1,2,…,n}. 

We construct the pair wise comparison fuzzy preference relation (matrix) 𝑅 = (𝑟𝑑𝑗 )𝑛×𝑛   for every pair of units d and j. 

 



 

Ranjbar H., Sch.  J. Eng. Tech., 2013; 1(4):232-237 

    236 
    

 

 

(7)                   n.1,2,...,j                  5.0, 



 jj

jjdjjddd

jddd

dj r
EEEE

EE
r  

 

Step 4: A fuzzy preference relation 𝑅 = (𝑟𝑑𝑗 )𝑛×𝑛  can be transformed to an additive transitive consistency fuzzy 

preference relation 𝐵 = (𝑏𝑑𝑗 )𝑛×𝑛  by the following two formulas: 

 

(9)                                         5.0
)1(2

(8)                   n         1,2,...,i          
1










n

rr
b

rr

ji

ij

n

j

iji

 

Step5: The consistency fuzzy preference relation B provides a ranking order of the alternatives. This is accomplished by 

using the row wise summation technique as follows. The ranking weight (score) 𝑤𝑑  given to 𝐷𝑀𝑈𝑑  is calculated: 

(10)                                  

1 1

1





 




n

d

n

j

dj

n

j

dj

d

b

b

w

 
 

Step 6: Rank the DMUs in the descending order of ranking scores 𝑤𝑑  (d = 1, 2, . . . n). The most desirable DMU is 
the one with the highest score. 

 

APPLICATION 

   As an empirical example, the proposed method is applied using some actual data of  Iranian electricity distribution 

units. The Iranian electricity distribution units are public and act under the supervision of TAVANIR. The result are 

documented in Table1. 

 

Table1. Scores by proposed model 

DMU Company Stocha. Score, 

𝛼 = 0.5 

Rank 

1 Azarbaijan 

Gharbi 

0.5010 11 

2 Esfahan 09573 4 
3 Hamedan 0.5254 10 

4 Khozestan 0.9600 3 

5 Zanjan 0.4971 12 

6 Fars 0.8407 5 

7 Ardabil 0.6713 7 

8 Markazi 0.5368 9 

9 Ghazvin 0.9760 2 

10 Semnan 0.9891 1 

11 Hormozgan 0.5422 8 

12 Yazd 0.7516 6 

 

 

CONCLUSION 
Stochastic models may be better suited for DEA when there is uncertainty associated with the inputs and/or 

outputs of DMUs or when an analyst may be wondering how much change can be incurred in the ranking of DMUs if 

some inputs and/or outputs change. In this paper we have discussed how to construct a preference relation using DEA, 

and derive the priority vector of the preference by a row wise summation technique in a multi attribute decision-making 

context, and then use the derived priority vector to better rate DMUs. 
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