©Scholars Academic and Scientific Publisher
(An International Publisher for Academic and Scientific Resources)
www.saspublisher.com

Research Article

Integer Points on the Hyperbola $x^{2}-6 x y+y^{2}+4 x=0$

K.Meena ${ }^{1}$, S.Vidhyalakshmi ${ }^{2}$, S.Aarthy Thangam ${ }^{3}$, E.Premalatha ${ }^{4}$, M.A.Gopalan ${ }^{5 *}$

${ }^{1}$ Former VC, Bharathidasan University, Trichy - 620 024, Tamil Nadu, India.
${ }^{2,5}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002,Tamil Nadu, India
${ }^{3}$ M.Phil student, Department of Mathematics, Shrimati Indira Gandhi College,Trichy-620002, Tamil Nadu, India
${ }^{4}$ Assistant Professor, Department of Mathematics, National College, Trichy-620 001, Tamil Nadu, India

*Corresponding author

Dr. M. A.Gopalan
Email: mayilgopalan@gmail.com

Abstract

The binary quadratic equation $x^{2}-6 x y+y^{2}+4 x=0$ representing hyperbola is considered. Different patterns of solutions are obtained. A few interesting recurrence relations satisfied by x and y are exhibited.

Keywords: binary quadratic, hyperbola, integer solutions

INTRODUCTION:

The binary quadratic equation offers an unlimited field for research because of their variety [1-5]. In this context one may also refer [6-19]. This communication concerns with yet another interesting binary quadratic equation $x^{2}-6 x y+y^{2}+4 x=0$ for determining its infinitely many non-zero integral solutions. Also a few interesting relations are presented.

METHOD OF ANALYSIS

The hyperbola under consideration is

$$
\begin{equation*}
x^{2}-6 x y+y^{2}+4 x=0 \tag{1}
\end{equation*}
$$

Different patterns of solutions for (1) are illustrated below:

Pattern: 1

Introducing the linear transformations $(X \neq T \neq 0)$,

$$
\begin{equation*}
x=X+T \text { and } y=X-T \tag{2}
\end{equation*}
$$

In (1), it becomes

$$
\begin{equation*}
Y^{2}=2 Z^{2}-1 \tag{3}
\end{equation*}
$$

Where, $Y=4 T+1$ and $Z=2 X-1$
The smallest positive integer solution of (3) is

$$
\begin{equation*}
Z_{0}=1 \text { and } Y_{0}=1 \tag{4}
\end{equation*}
$$

To find the other solution of (3), consider the pellian equation

$$
Y^{2}=2 Z^{2}+1
$$

whose general solution $\left(\overline{Y_{n}}, \overline{Z_{n}}\right)$ is given by

$$
\begin{aligned}
& \overline{Y_{n}}=\frac{1}{2}\left[(3+2 \sqrt{2})^{n+1}+(3-2 \sqrt{2})^{n+1}\right] \\
& \overline{Z_{n}}=\frac{1}{2 \sqrt{2}}\left[(3+2 \sqrt{2})^{n+1}-(3-2 \sqrt{2})^{n+1}\right]
\end{aligned}
$$

Applying Brahmagupta Lemma between $\left(Y_{0}, Z_{0}\right)$ and $\left(\overline{Y_{n}}, \overline{Z_{n}}\right)$, the general solutions to (3) are given by,

$$
\begin{aligned}
& Y_{n+1}=Y_{0} Y_{n}+2 Z_{0} Z_{n} \\
& Z_{n+1}=Z_{0} Y_{n}+Y_{0} Z_{n}
\end{aligned}
$$

In view of (4), we have

$$
\begin{aligned}
& X_{n+1}=\frac{1}{2}\left(Y_{n}+Z_{n}+1\right) \\
& T_{n+1}=\frac{1}{4}\left(Y_{n}+2 Z_{n}-1\right)
\end{aligned}
$$

Employing (2), the values of x and y satisfying (1) are given by

$$
\begin{aligned}
& x_{n+1}=\frac{1}{8}\left[(3+2 \sqrt{2})^{n+2}+(3-2 \sqrt{2})^{n+2}\right]+\frac{1}{4}, n=1,3,5, \ldots \ldots \\
& y_{n+1}=\frac{1}{8}\left[(3+2 \sqrt{2})^{n+1}+(3-2 \sqrt{2})^{n+1}\right]+\frac{3}{4}, n=1,3,5, \ldots \ldots
\end{aligned}
$$

Properties

- $4 x_{n+4}-140 x_{n+2}+24 x_{n+1}=-28$
- $6 x_{n+2}-x_{n+1}-x_{n+3}=1$
- $34 x_{n+3}-x_{n+5}-x_{n+1}=8$
- $6 x_{n+4}-x_{n+3}-x_{n+5}=1$
- $y_{n+5}-34 y_{n+3}+y_{n+1}=-24$
- $70 y_{n+2}-2 y_{n+4}-12 y_{n+1}=48$
- $y_{n+4}+y_{n+2}-6 y_{n+3}=-3$
- $y_{n+5}-6 y_{n+4}+y_{n+3}=3$
- Each of the expressions represents a Nasty Number:

$$
\begin{aligned}
& \div \quad 48 x_{2 n}+18 \\
& \div \quad 48 y_{2 n+2}-24
\end{aligned}
$$

- Each of the expressions represents a cubical integer:

$$
\begin{aligned}
& * \quad 8 x_{3 n+5}+24 x_{n+1}-8 \\
& \leftarrow \quad 8 y_{3 n+3}+24 y_{n+1}-24
\end{aligned}
$$

- Each of the expressions represents a bi-quadratic integer:

$$
\begin{aligned}
& 夫 8 x_{4 n+7}+256 x_{n+1}^{2}-128 x_{n+1}+12 \\
& 夫 8 y_{4 n+4}+256 y_{n+1}^{2}-384 y_{n+1}-136
\end{aligned}
$$

Note

Instead of (2), if we consider the linear transformations $(X \neq T \neq 0)$,

$$
x=X-T \text { and } y=X+T
$$

Then, the corresponding integer solutions to (1) are obtained as,

$$
\begin{aligned}
& x_{n+1}=\frac{1}{8}\left[(3+2 \sqrt{2})^{n+2}+(3-2 \sqrt{2})^{n+2}\right]+\frac{3}{4}, \quad n=0,2,4, \ldots \ldots \\
& y_{n+1}=\frac{1}{8}\left[(3+2 \sqrt{2})^{n+1}+(3-2 \sqrt{2})^{n+1}\right]+\frac{1}{4}, \quad n=0,2,4, \ldots \ldots
\end{aligned}
$$

The recurrence relations satisfied by x and y are given by

$$
\begin{array}{ll}
x_{n+1}+3=6 x_{n+2}-x_{n+3} ; & x_{1}=5, x_{3}=145 \\
y_{n+1}+1=6 y_{n+2}-y_{n+3} ; & y_{1}=1, y_{3}=25
\end{array}
$$

Some numerical examples of x and y satisfying (1) is given in the following table:

n	x_{n+1}	y_{n+1}
0	5	1
2	145	25
4	4901	841
6	166465	28561

8	5654885	970225
10	192099601	32959081
12	6525731525	1119638521

From the above table relations observed are as follows:

- x_{n+1} and y_{n+1} are always odd
- $y_{6 n-5}$ and $y_{6 n-1}$ are perfect squares
- $6 y_{6 n-1}$ is a Nasty number
- $\quad x_{6 n-5} \equiv 0(\bmod 5)$
- $y_{6 n-3} \equiv 0(\bmod 5)$
- $\quad x_{6 n-3} \equiv 0(\bmod 5)$

Pattern: 2

Treating (1) as a quadratic in x and solving for x , we get

$$
\begin{equation*}
x=3 y-2 \pm 2 \sqrt{2 y^{2}-3 y+1} \tag{5}
\end{equation*}
$$

Let $\alpha^{2}=2 y^{2}-3 y+1$
Substituting $y=\frac{Y+3}{4}$
In (6), we have

$$
Y^{2}=8 \alpha^{2}+1
$$

whose general solution is given by,

$$
\begin{align*}
& Y_{n}=\frac{1}{2}\left[(3+2 \sqrt{2})^{n+1}+(3-2 \sqrt{2})^{n+1}\right] \tag{8}\\
& \alpha_{n}=\frac{1}{4 \sqrt{2}}\left[(3+2 \sqrt{2})^{n+1}-(3-2 \sqrt{2})^{n+1}\right] \tag{9}
\end{align*}
$$

From (7) and (8), we have

$$
\begin{equation*}
y_{n}=\frac{1}{8}\left[(3+2 \sqrt{2})^{n+1}+(3-2 \sqrt{2})^{n+1}\right]+\frac{3}{4} \tag{10}
\end{equation*}
$$

Substituting (9) and (10) in (5) and taking the positive sign, the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
x_{n}= & \frac{1}{8}\left[(3+2 \sqrt{2})^{n+2}+(3-2 \sqrt{2})^{n+2}\right]+\frac{1}{4}, n=1,3,5, \ldots \ldots \\
& y_{n}=\frac{1}{8}\left[(3+2 \sqrt{2})^{n+1}+(3-2 \sqrt{2})^{n+1}\right]+\frac{3}{4}, n=1,3,5, \ldots \ldots
\end{aligned}
$$

Properties

- $48 x_{2 n+2}$ is a Nasty Number
- $8 x_{3 n+4}+24 x_{n}-8$ is a Cubical integer
- $8 x_{4 n+6}+256 x_{n}^{2}-128 x_{n}+12$ is a Bi-quadratic integer
- Define $\beta=4 y_{n}-3$ and $\gamma=x_{n}-3 y_{n}+2$. Note that the pair (β, γ) satisfies the hyperbola $\beta^{2}=2 \gamma^{2}+1$
- $2 x_{2 n}=\left(4 y_{n}-3\right)^{2}$

Also, taking the negative sign in (5), the other set of solutions to (1) is given by

$$
x_{n}=\frac{1}{8}\left[(3+2 \sqrt{2})^{n}+(3-2 \sqrt{2})^{n}\right]+\frac{1}{4} \quad, \quad n=1,3,5, \ldots \ldots
$$

$$
y_{n}=\frac{1}{8}\left[(3+2 \sqrt{2})^{n+1}+(3-2 \sqrt{2})^{n+1}\right]+\frac{3}{4}, \quad n=1,3,5, \ldots \ldots
$$

In addition, the above two sets of solutions satisfy the following properties:

- $6 y_{n+2}-y_{n+3}-y_{n+1}=3$
- $140 y_{n+1}-4 y_{n+3}-24 y_{n}=84$
- $y_{n+2}+y_{n}-6 y_{n+1}=-3$
- $34 y_{n+2}-y_{n+4}-y_{n}=24$
- $x_{n+4}+x_{n+2}-6 x_{n+3}=-1$
- $70 x_{n+1}-2 x_{n+3}-12 x_{n}=14$
- $34 x_{n+2}-x_{n+4}-x_{n}=8$
- $x_{n}+x_{n+2}-6 x_{n+1}=-1$
- $48 y_{2 n+1}-24$ is a Nasty Number
- $8 y_{3 n+2}+24 y_{n}-24$ is a Cubical integer
- $8 y_{4 n+3}+256 y_{n}^{2}-384 y_{n}-136$ is a Bi-quadratic integer

Pattern: 3

Treating (1) as a quadratic in y and solving for y , we get

$$
\begin{equation*}
y=3 x \pm 2 \sqrt{2 x^{2}-x} \tag{11}
\end{equation*}
$$

Let $\alpha^{2}=2 x^{2}-x$
Substituting $x=\frac{X+1}{4}$
In (12), we have

$$
X^{2}=8 \alpha^{2}+1
$$

whose general solution is given by,

$$
\begin{align*}
& X_{n}=\frac{1}{2}\left[(3+2 \sqrt{2})^{n+1}+(3-2 \sqrt{2})^{n+1}\right] \tag{14}\\
& \alpha_{n}=\frac{1}{4 \sqrt{2}}\left[(3+2 \sqrt{2})^{n+1}-(3-2 \sqrt{2})^{n+1}\right] \tag{15}
\end{align*}
$$

From (13) and (14), we have

$$
\begin{equation*}
x_{n}=\frac{1}{8}\left[(3+2 \sqrt{2})^{n+1}+(3-2 \sqrt{2})^{n+1}\right]+\frac{1}{4} \tag{16}
\end{equation*}
$$

Substituting (15) and (16) in (11) and taking the positive sign, the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x_{n}=\frac{1}{8}\left[(3+2 \sqrt{2})^{n+1}+(3-2 \sqrt{2})^{n+1}\right]+\frac{1}{4}, n=0,2,4, \ldots \ldots \\
& y_{n}=\frac{1}{8}\left[(3+2 \sqrt{2})^{n+2}+(3-2 \sqrt{2})^{n+2}\right]+\frac{3}{4}, n=0,2,4, \ldots \ldots
\end{aligned}
$$

Properties

$$
\begin{aligned}
& \neq 48 y_{2 n+2}-24 \text { is a Nasty Number } \\
& 夫 8 y_{3 n+4}+24 y_{n}-24 \text { is a Cubical integer } \\
& \star 8 y_{4 n+6}+256 y_{n}^{2}-384 y_{n}+136_{\text {is a Bi-quadratic integer }} \\
& \star \quad 2 y_{2 n}-1=\left(4 x_{n}-1\right)^{2}
\end{aligned}
$$

Also, taking the negative sign in (11), the other set of solutions to (1) is given by

$$
\begin{aligned}
& x_{n}=\frac{1}{8}\left[(3+2 \sqrt{2})^{n+1}+(3-2 \sqrt{2})^{n+1}\right]+\frac{1}{4}, n=0,2,4, \ldots \ldots \\
& y_{n}=\frac{1}{8}\left[(3+2 \sqrt{2})^{n}+(3-2 \sqrt{2})^{n}\right]+\frac{3}{4} \quad, n=0,2,4, \ldots \ldots
\end{aligned}
$$

In addition, the above two sets of solutions satisfy the following properties:

- $48 x_{2 n+1}$ is a Nasty Number
- $8 x_{3 n+2}+24 x_{n}-8$ is a Cubical integer
- $8 x_{4 n+3}+256 x_{n}^{2}-128 x_{n}+12$ is a Bi-quadratic integer

CONCLUSION

As the binary quadratic equations are rich in variety, one may consider other choices of hyperbolas and search for their non-trivial distinct integral solutions along with the corresponding properties.

REFERENCES

1. Dickson LE; History of Theory of Numbers, Volume 2, Chelsea Publishing company, New York, 1952.
2. Mordell lj; Diophantine Equations, Academic Press, London, 1969.
3. Andre weil, Number Theory: An Approach Through History: from Hammurapi to Legendre \Andre weil: Boston (Birkahasuser boston), 1983.
4. Nigel p. Smart, the algorithmic Resolutions of Diophantine equations, Cambridge university press, 1999.
5. Smith DE; History of mathematics. Volume I and II, Dover publications, New York, 1953.
6. Gopalan MA, Vidyalakshmi S, Devibala S; On the Diophantine equation $3 x^{2}+x y=14$. Acta Ciencia Indica, 2007; XXXIIIM (2): 645-646.
7. Gopalan M A, Janaki G; Observations on $\boldsymbol{Y}^{2}=3 \boldsymbol{X}^{2}+\mathbf{1}$. Acta ciencia Indica, 2008; XXXIVM (2): 693-696.
8. Gopalan MA, Vijayalakshmi R; Special Pythagorean triangles generated through the integral solutions of the equation $y^{2}=\left(K^{2}+\mathbf{1}\right) x^{2}+\mathbf{1}$. Antarctica J Math, 2010; 7(5):503-507.
9. Gopalan MA, Sivagami B; Observations on the integral solutions of $y^{2}=7 x^{2}+\mathbf{1}$. Antartica J Math, 2010; 7(3): 291-296.
10. Gopalan MA, Vijayalakshmi R; Observation on the integral solutions of $y^{2}=5 x^{2}+1$. Impact J Sci Tech., 2010; 4(4): 125-129.
11. Gopalan MA, Sangeetha G; A remarkable observation on $y^{2}=\mathbf{1 0} \boldsymbol{x}^{2}+\mathbf{1}$. Impact J Sci Tech., 2010; 4(1): 103106.
12. Gopalan MA, Parvathy G; Integral points on the Hyperbola $x^{2}+4 x y+y^{2}-2 x-10 y+24=0$. Antarctica J Math, 2010; 7(2): 149-155.
13. Gopalan MA, Palanikumar R; Observations on $y^{2}=12 x^{2}+1$. Antarctica J Math, 2011; 8(2): 149-152.
14. Gopalan MA, Devibala S, Vijayalakshmi R; Integral points on the hyperbola $2 x^{2}-3 y^{2}=5$. American Journal of Applied Mathematics and Mathematical Sciences, 2012; I(1):1-4.
15. Gopalan MA, Vidyalakshmi S, Usha Rani TR, Mallika S; Observations on $y^{2}=12 x^{2}-3$. Bessel J Math, 2012; 2(3):153-158.
16. Gopalan MA, Vidyalakshmi S, Sumathi G, Lakshmi K; Integral points on the Hyperbola $x^{2}+6 x y+y^{2}+40 x+8 y+40=0$. Bessel J Math, 2012; 2(3): 159-164.
17. Gopalan MA, Geetha K; Observations on the Hyperbola $y^{2}=18 x^{2}+1$. Retell, 2012; 13(1): 81-83.
18. Gopalan MA, Sangeetha G, Manju Somanath; Integral points on the Hyperbola $(a+2) x^{2}-a y^{2}=4 a(k-1)+2 k^{2}$. Indian Journal of Science, 2012; I(2): 125-126.
19. Gopalan MA, Vidyalakshmi S, Kavitha A; Observations on the Hyperbola $a x^{2}-(a+1) y^{2}=3 a-1$. Discovery, 2013; 4(10): 22-24.
