Sch. J. Eng. Tech., 2014; 2(1):91-96 ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com

Research Article

Some Results Of Fixed Point Theorem In Dislocated Quasi-Metric Spaces Of Integral Type

Shailesh T. Patel, Vijay C. Makwana, Chirag R. Patel

S. P. B. Patel Engineering College, Linch, Dist - Mehsana, Gujarat - 384 435, India

GEC, Patan, Gujarat, India

*Corresponding author Shailesh Patel Email: stpatel34@yahoo.co.in

Abstract: The purpose of this paper is to the study of fixed point theorems in dislocated quasi- metric spaces of integral type and obtain some new results in it. Also the paper contains generalized fixed point theorems of F. M. Zeyada et al., C.T. Aage & J.N. Salunke in dislocated quasi-metric space in integral type **Keywords:** Fixed point theorem, Continuous Mapping, Complete metric space

INTRODUCTION

Let X be a nonempty set and let $d: X \times X \to [0, \infty)$ be a function satisfying the following conditions : d(x,y) = d(y,x)

(i)
$$\int_{o}^{o} \xi(t)dt = \int_{o}^{o} \xi(t)dt = 0 \implies x = y$$

(ii)
$$\int_{o}^{d(x,y)} \xi(t)dt \le \int_{o}^{d(x,z)} \xi(t)dt + \int_{o}^{d(y,z)} \xi(t)dt =, \text{ for all } x, y, z \in X.$$

Then *d* is called a dislocated quasi-metric on *X*. If *d* satisfies $\int_{0}^{d(x,x)} \xi(t) dt = 0$, then it is called a quasi-metric on *X*. If *d* satisfies d(x, y) = d(y, x), then it is called a dislocated metric.

Definition 1.1 Let X be a nonempty set and $p: X \times X \rightarrow [0, \infty)$ be a function. We say p is a partial metric on X if it satisfies the following axioms:

- (i) x = y if and only if p(x, x) = p(x, y) = p(y, y), (ii) $p(x, x) \le p(x, y)$
- (*iii*) p(x, y) = p(y, x)
- (iv) $p(x, z) \leq p(x, y) + p(y, z) p(y, y)$ for all x, y, z $\in X$

Observe that any partial metric is a dislocated metric. Ultra metric d on X is a metric on X

with condition $\int_{0}^{d(x,y)} \xi(t)dt \leq \int_{0}^{d(x,z)} \xi(t)dt, \int_{0}^{d(z,y)} \xi(t)dt$. The study of partial metric spaces and generalized

ultra metric spaces have application in theoretical computer science[2, 3]. The notion of the dislocated topologies is useful in the context of logic programming. Recently, Zeyada et al.[1] have established a fixed point theorem in a complete dislocated quasi-metric (dq-metric) space, as stated in the following lemma and theorem.

Lemma 1.1 Let (X, d) be a dq-metric space. If $f: X \to X$ is a contraction function, then $\{(f^n(x_0))\}$ is a cauchy sequence for each $x_0 \in X$.

Theorem 1.1 Let (X, d) be a complete dq-metric space and let $f: X \to X$ be a continuous contraction function. Then f has a unique fixed point.

PRELIMINARIES

Definition 2.1 A sequence $\{X_n\}$ in a dq-metric space (dislocated quasi-metric space) (X, d) is called Cauchy if for given $\in > 0, \exists n_0 \in N$ such that $\forall m, n \ge n_0$, implies

$$\int_{o}^{d(x_{m},x_{m})} \xi(t)dt < \in \int_{o}^{d(x_{m},x_{n})} \xi(t)dt < \in$$

i.e.
$$\int_{o}^{\min\{d(x_n, x_m), d(x_m, x_n)\}} \xi(t) dt < \epsilon$$

In the above definition if we replace $\int_{o}^{d(x_n,x_m)} \xi(t) dt < \in \int_{o}^{d(x_m,x_n)} \xi(t) dt < \in$

By
$$\int_{o}^{\max\{d(x_n, x_m), d(x_m, x_n)\}} \xi(t) dt < \in$$

the sequence $\{x_n\}$ is called "bi" Cauchy.Note that every bi Cauchy sequence is Cauchy.

Definition 2.2 A sequence $\{X_n\}$ dislocated quasi-converges to x if

$$\lim_{n\to\infty}\int_{o}^{d(x,x_n)}\xi(t)dt=\lim_{n\to\infty}\int_{o}^{d(x_n,x)}\xi(t)dt=0$$

In this case x is called a dq-limit of $\{x_n\}$.

Proposition 2.1 . Every convergent sequence in a dq-metric space is 'bi 'Cauchy.

Proof. Let $\{x_n\}$ be a convergent sequence in a dq-metric space (X, d) and $x \in X$ be its dq-limit. That is,

$$\lim_{n\to\infty}\int_{o}^{d(x,x_n)}\xi(t)dt = \lim_{n\to\infty}\int_{o}^{d(x_n,x)}\xi(t)dt = 0$$

$$\int_{0}^{d(x_{n},x_{n})} \xi(t)dt < \epsilon/2. \text{ Now } n_{0} = max\{n_{1}; n_{2}\} \in N \text{ is such that } m, n \ge n_{0} = \int_{0}^{d(x_{n},x_{m})} \xi(t)dt \le \epsilon \cdot$$

Then $\epsilon > 0$; $\exists n_1; n_2 \in N$ such that $n \ge n_1 = i \int_{0}^{d(x, x_m)} \xi(t) dt < \epsilon/2$ and $n \ge n_2 = i$

$$\int_{o}^{d(x_n,x_m)} \xi(t)dt + \int_{o}^{d(x_m,x_n)} \xi(t)dt < \epsilon/2 + \epsilon/2 = \epsilon \text{ and } \int_{o}^{d(x_n,x_m)} \xi(t)dt \leq \int_{o}^{d(x,x_n)} \xi(t)dt \int_{o}^{d(x,x_m)} \xi(t)dt < \epsilon/2 + \epsilon/2 = \epsilon$$

Hence $\{x_n\}$ is bi Cauchy.

Converse of proposition 2.1 may not be true. Proof of the following lemma is obvious

Lemma 2.1. Every subsequence of dq-convergent sequence to a point x_0 is dq-convergent to x_0 .

Definition 2.3 A dq-metric space (X; d) is called complete if every Cauchy sequence in it is a dq-convergent.

Definition 2.4. Let (X, d_1) and (Y, d_2) be dq-metric spaces and let $f : X \to Y$ be a function. Then f is continuous if for each sequence $\{x_n\}$ which is d_1q -convergent to x_0 in X, the sequence $\{f(x_n)\}$ is d_2q convergent to $f(x_0)$ in Y.

MAIN RESULTS

Theorem 3.1 Let (X, d) be a complete dq-metric space and suppose there exist non negative constants $\alpha_1, \alpha_2, \alpha_3$, a4, a5 with $\alpha_1 + \alpha_2 + \alpha_{3+2}(\alpha_4 + \alpha_5) < 1$. Let $f: X \to X$ be a continuous mapping satisfying

$$\int_{0}^{d(fx,fy)} \xi(t)dt \le \alpha_{1} \int_{0}^{d(x,y)} \xi(t)dt + \alpha_{2} \int_{0}^{d(x,fx)} \xi(t)dt + \alpha_{3} \int_{0}^{d(y,fy)} \xi(t)dt + \alpha_{4} \int_{0}^{d(x,fx)+d(y,fy)} \xi(t)dt + \alpha_{5} \int_{0}^{d(x,fy)+d(y,fx)} \xi(t)dt + \alpha_{5} \int_{0}^{d(x,fx)+d(y,fx)} \xi(t)dt + \alpha_{5} \int_{0}^{d(x,fx)+d(y,fx)+d(y,fx)} \xi(t)dt + \alpha_{5} \int_{0}^{d(x,fx)+d(y,fx)+d(y,fx)} \xi(t)dt + \alpha_{5} \int_{0}^{d(x,fx)+d(y,fx)+d(y,fx)+d$$

for all $x, y \in X$. Then f has a unique fixed point.

Proof: Let $\{x_n\}$ be a sequence in X, defined as follows. Let $x_0 \in X$, $f(x_0) = x_1$, $f(x_1) = x_1$ $x_2,\ldots,f(x_n)=x_{n+1},\ldots$

$$\int_{0}^{d(Xn,Xn+1)} \int_{0}^{d(fXn-1,fXn)} \int_{0}^{d(fXn-1,fXn)} \int_{0}^{d(Xn-1,fXn-1)} \int_{0}^{d(Xn-1,fXn-1)} \int_{0}^{d(Xn-1,fXn-1)} \int_{0}^{d(Xn-1,fXn-1)} \int_{0}^{d(Xn-1,fXn-1)} \int_{0}^{d(Xn-1,fXn-1)} \int_{0}^{d(Xn-1,fXn-1)} \int_{0}^{d(Xn-1,fXn-1)} \int_{0}^{d(Xn-1,fXn-1)} \int_{0}^{d(Xn-1,fXn)+d(Xn,fXn-1)} \int_{0}^{d(Xn-1,fXn-1)} \int_{0}^{d(Xn-1,fXn-1)} \int_{0}^{d(Xn-1,fXn)+d(Xn,fXn-1)} \int_{0}^{d(Xn-1,fXn)+d(Xn,fXn-1)} \int_{0}^{d(Xn-1,fXn-1)} \int$$

$$\int_{0}^{d(Xn,Xn+1)} \int_{0}^{d(Xn-1,Xn)} \zeta(t)dt \quad \text{where} \qquad \lambda = \frac{\alpha_1 + \alpha_2 + \alpha_4 + \alpha_5}{1 - \alpha_3 - \alpha_4 - \alpha_5}$$
Similly
$$\int_{0}^{d(Xn-1,Xn)} \int_{0}^{d(Xn-2,Xn-1)} \zeta(t)dt \quad \text{where} \qquad \lambda = \frac{\alpha_1 + \alpha_2 + \alpha_4 + \alpha_5}{1 - \alpha_3 - \alpha_4 - \alpha_5}$$
Similly
$$\int_{0}^{d(Xn-1,Xn)} \int_{0}^{d(Xn-2,Xn-1)} \zeta(t)dt \quad \text{where} \qquad \lambda = \frac{\alpha_1 + \alpha_2 + \alpha_4 + \alpha_5}{1 - \alpha_3 - \alpha_4 - \alpha_5}$$
Similly
$$\int_{0}^{d(Xn,Xn+1)} \int_{0}^{d(Xn-2,Xn-1)} \zeta(t)dt \quad \text{where} \qquad \lambda = \frac{\alpha_1 + \alpha_2 + \alpha_4 + \alpha_5}{1 - \alpha_3 - \alpha_4 - \alpha_5}$$
Similly
$$\int_{0}^{d(Xn,Xn+1)} \int_{0}^{d(Xn-2,Xn-1)} \zeta(t)dt \quad \text{where} \qquad \lambda = \frac{\alpha_1 + \alpha_2 + \alpha_4 + \alpha_5}{1 - \alpha_3 - \alpha_4 - \alpha_5}$$
Similly
$$\int_{0}^{d(Xn,Xn+1)} \int_{0}^{d(Xn-2,Xn-1)} \zeta(t)dt \quad \text{where} \qquad \lambda = \frac{\alpha_1 + \alpha_2 + \alpha_4 + \alpha_5}{1 - \alpha_3 - \alpha_4 - \alpha_5}$$
Simily
$$\int_{0}^{d(Xn,Xn+1)} \int_{0}^{d(Xn-2,Xn-1)} \zeta(t)dt \quad \text{where} \qquad \lambda = \frac{\alpha_1 + \alpha_2 + \alpha_4 + \alpha_5}{1 - \alpha_3 - \alpha_4 - \alpha_5}$$
Since $0 \leq \lambda < 1$, so for $n \to \infty$, $\lambda^n \to \infty$ we have $d(x_n, x_{n+1}) \to 0$. Hence $\{x_n\}$ is a Cauchy sequence in the

93

complete dislocated quasi-metric space X, so there is a point $t_0 \in X$, such that $x_n \to t_0$. Since f is continuous,

$$f(t_0) = limf(x_n) = limx_{n+1} = t_0$$

Thus $f(t_0) = t_0$, so f has a fixed point.

Uniqueness: If $x \in X$ is a fixed point of f, then by (3.1)

$$\int_{0}^{d(x,x)} \xi(t) dt = \int_{0}^{d(fx,fx)} \xi(t) dt$$

$$\leq [\alpha_{1} + \alpha_{2} + \alpha_{3} + 2(\alpha_{4} + \alpha_{5})] \int_{0}^{d(x,x)} \xi(t) dt$$

which is true only if d(x, x) = 0, since $0 \le \alpha_1 + \alpha_2 + \alpha_3 + 2(\alpha_4 + \alpha_5) < 0$ and $d(x, x) \ge 0$. Thus d(x, x) = 0 for a fixed-point x of f.

Let x, y be fixed point of f. Then by (3.1)

$$\int_{0}^{d(x,y)} \xi(t)dt = \int_{0}^{d(fx,fy)} \xi(t)dt$$

$$\leq \alpha_{1} \int_{0}^{d(x,y)} \xi(t)dt + \alpha_{2} \int_{0}^{d(x,x)} \xi(t)dt + \alpha_{3} \int_{0}^{d(y,y)} \xi(t)dt + \alpha_{4} \int_{0}^{d(x,x)+d(y,y)} \xi(t)dt + \alpha_{5} \int_{0}^{d(x,y)+d(y,x)} \xi(t)dt$$

$$\int_{0}^{d(x,y)} \xi(t)dt \leq (\alpha_{1} + 2\alpha_{5}) \int_{0}^{d(x,y)} \xi(t)dt$$

$$= 0 \text{ for all init fille of the other $K(x_{0}) = 0$$$

and from this it follows that d(x, y) = 0, since $d(x, y) \ge 0$, $0 \le (\alpha_1 + 2\alpha_5) < 1$. Similarly d(y, x) = 0. Hence x = y, i.e. uniqueness of the fixed point follows.

Note: If $\alpha_2 = 0 = \alpha_3$ in (3.1), then *f* becomes a contraction map and this shows that theorem 3.1 is a generalization of Theorem 1.1. Thus Theorem 3.1 is generalization of Banach contraction principle.

Theorem 3.2

Let (X, d) be a complete dq-metric space and let $f: X \to X$ be a continu- ous mapping satisfying $\int_{0}^{d(fx, fy)} \xi(t)dt \le \alpha \int_{0}^{\max\{d(x, y), d(x, fx), d(y, fy)\}} \int_{0}^{\max\{d(x, fx) + d(y, fy), d(x, fy) + d(y, fx), d(x, y)\}} \int_{0}^{\xi(t)dt} \xi(t)dt + \beta \int_{0}^{\xi(t)dt} \xi(t)dt$

for all x, y $\in X$. If $0 \le \alpha, \beta < 1$ such that $\alpha + 2\beta < 1$ then f has a unique fixed point.

Proof: Let $\{x_n\}$ be a sequence in X, defined as follows. Let $x_0 \in X$, $f(x_0) = x_1$, $f(x_1) = x_2$,..., $f(x_n) = x_{n+1}$,....

Since $0 \le \gamma < 1$, as $n \to \infty$, $\gamma^n \to \infty$. Hence $\{x_n\}$ is a dq-cauchy sequence in X. Thus $\{x_n\}$ dislocated quasi-converges to some t_0 . Since f is continuous, we have $f(t_0) = lim f(x_n) = lim x_{n+1} = t_0$

Thus $f(t_0) = t_0$ that is f has a fixed point t_0 .

Case-2

$$\text{When} \qquad \int_{0}^{\max\{d(Xn-1,Xn+1),d(Xn-1,Xn)\}} d(Xn-1,Xn+1)} \underbrace{\int_{0}^{d(Xn-1,Xn+1)} \xi(t)dt}_{0} = \int_{0}^{d(Xn-1,Xn+1)} \xi(t)dt \\ \leq \int_{0}^{d(Xn-1,Xn)+d(Xn,Xn+1)} \xi(t)dt \\ \int_{0}^{d(Xn,Xn+1)} \underbrace{\int_{0}^{d(Xn-1,Xn)} d(Xn-1,Xn)}_{0} d(Xn-1,Xn) + d(Xn,Xn+1)}_{0} \\ \int_{0}^{d(Xn,Xn+1)} \underbrace{\int_{0}^{d(Xn,Xn+1)} \xi(t)dt}_{0} \leq \underbrace{\int_{0}^{d(Xn-1,Xn)} \xi(t)dt}_{0} \\ \leq (1-\beta) \int_{0}^{d(Xn,Xn+1)} \underbrace{\int_{0}^{d(Xn,Xn+1)} \xi(t)dt}_{0} \leq (\alpha+\beta) \int_{0}^{d(Xn-1,Xn)} \xi(t)dt$$

$$\int_{0}^{d(Xn,Xn+1)} \xi(t)dt \leq \left(\frac{\alpha+\beta}{1-\beta}\right) \int_{0}^{d(Xn-1,Xn)} \xi(t)dt$$

$$\int_{0}^{d(Xn,Xn+1)} \xi(t)dt \leq \delta \int_{0}^{d(Xn-1,Xn)} \xi(t)dt \quad \text{Where} \quad \delta = \frac{\alpha+\beta}{1-\beta} < 1$$

Uniqueness: Let *x* be a fixed point of *f*, then by (3.2)

$$\int_{0}^{l(x,x)} \xi(t) dt = \int_{0}^{d(fx,fx)} \xi(t) dt \leq \lambda' \int_{0}^{\max d(x,x)} \xi(t) dt$$

$$\int_{0}^{d(x,x)} \xi(t) dt \leq \lambda' \int_{0}^{d(x,x)} \xi(t) dt$$
Where $\lambda' = \alpha + 2\beta$

which gives d(x; x) = 0, since $0 \le \gamma < 1$ and $d(x; x) \ge 0$. Thus

d(x; x) = 0 if x is a fixed point of f. Let x; y $\in X$ be fixed points of f. That is fx = x; fy = y. Then by (3.2),

$$\int_{0}^{d(x,y)} \xi(t)dt = \int_{0}^{d(fx,,fy)} \xi(t)dt \le \alpha \int_{0}^{\max\{d(x,y),d(x,x),d(y,y)\}} \int_{0}^{\max\{d(x,x),d(y,y)\}} \int_{0}^{\max\{d(x,x)+d(y,y),d(x,y)+d(y,x),d(x,y)\}} = (\alpha + 2\beta) \int_{0}^{d(x,y)} \xi(t)dt$$

which is true only if d(x; y) = 0 since d(x; x) = 0 = d(y; y); $0 \le \gamma < 1$. Similarly d(y; x) = 0 and hence x = y. Thus a -fixed point of *f* is unique

Note: If *d* is a partial metric on *X*, then (X; d) becomes a dq-metric space. Hence we consider (X; d) in Theorem 3.1 and 3.2 as a partial metric space, then the conclusion follows.

Theorem 3.3 Let (X; d) be a complete partial metric space and let $f: X \rightarrow X$ be a continuous mapping satisfying

$$\int_{0}^{d(fx,,fy)} \xi(t)dt \le \alpha \int_{0}^{\max\{d(x,y),d(x,fx),d(y,fy),d(y,fx)\}} \xi(t)dt + \beta \int_{0}^{\max\{d(fx,x)+d(fy,y),d(x,fy)+d(y,fx),d(x,y)\}} \xi(t)dt$$

for all x; $y \in X$. If $0 \le \alpha$, $\beta < 1$ such that $\alpha + 2\beta < 1$ then f has a unique fixed point.

It can be proved easily.

REFERENCES

..

i.e.

- 1. Zeyada FM, Hassan GH, Ahmed MA; A Generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces, The Arabian Journal for science and engineering, 2005; 31: 111-114
- Hitzler P; Generalized Metrics and Topology in Logic Programming Semantics, Ph.D. Thesis, National University of Ireland, (University College, Cork), 2001.
- 3. Hitzler P, Seda AK; Dislocated Topologies, J. Electr. Engin., (2000; 51 (12/s): 3-7.
- 4. Aage CT, Salunke JN; A Generalization of a fixed point theorem. in dislocated quasi-metric space. 2008; 9(2):1-5