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INTRODUCTION 

 

Let X be a nonempty  set and let d : X × X → [0, ∞) be a functiion  satisfying  the following conditions  : 
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dtt , for all x, y, z ∈ X . 

 

Then  d is called a dislocated  quasi-metric  on X .  If d satisfies  

),(

)(

xxd

o

dtt  0, then  it is called a quasi-metric  

on X . If d satisfies d(x, y) = d(y, x), then  it is called a dislocated  metric. 

 

Definition 1.1  Let X be a nonempty set and p : X × X → [0, ∞) be a function. We say p is a 

partial metric  on X if it satisfies the following axioms: 

 

(i)  x = y if and only if p(x, x) = p(x, y) = p(y, y), (ii)  p(x, x) ≤ 

p(x, y) 

(iii)  p(x, y) = p(y, x) 

 

(iv)  p(x, z) ≤ p(x, y) + p(y, z) − p(y, y) 

for all x, y, z ∈ X 

 

Observe that any partial metric is a dislocated metric.  Ultra metric d on X is a metric on X 

with condition   
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yzd

o

dtt .  The study  of partial metric  spaces and generalized 

ultra metric spaces have application in theoretical computer science[2, 3]. The notion of the dislocated 

topologies is useful in the context of logic programming. Recently, Zeyada et al.[1] have  established  a fixed point  

theorem  in a complete  dislocated  quasi-metric  (dq-metric) space, as stated in the following lemma and 

theorem. 

Lemma 1.1  Let (X, d) be a dq-metric  space.  If f : X → X is a contraction  function, then 

{(f n (x
0
))} is a cauchy sequence for each x

0 ∈ X . 
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Theorem 1.1  Let (X, d) be a complete dq-metric  space and let f : X → X be a continuous contraction  

function. Then  f has a unique fixed point. 

 

PRELIMINARIES 

 

Definition2.1 A sequence {Xn } in a dq-metric space (dislocated quasi-metric  space) (X, d) 

is called Cauchy if for given > 0, ∃ n
0   ∈ N  such that  ∀ m, n ≥ n

0
,  implies 
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  In   the    above   definition    if   we   replace    
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the sequence {xn} is called “bi” Cauchy.Note that every bi Cauchy sequence is Cauchy.  

 

Definition 2.2  A sequence { Xn } dislocated quasi-converges to x if 
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  In this case x is called a dq-limit of { xn }. 

 

Proposition  2.1  .  Every  convergent  sequence in a dq-metric  space is ‘bi ’Cauchy. 

 

Proof. Let { xn } be a convergent sequence in a dq-metric  space (X, d) and  x ∈ X be its dq-limit.  That is, 
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Hence { xn } is bi Cauchy. 

Converse of proposition 2.1 may not be true. Proof of the following lemma is obvious 

 

Lemma 2.1 . Every subsequence of dq-convergent sequence to a point x0 is dq-convergent to x0. 

 

 

Definition 2.3 A dq-metric space  (X; d) is called complete if every Cauchy 

sequence in it is a dq-convergent. 
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Definition 2.4  .   Let  (X, d1)  and  (Y, d2)  be dq-metric  spaces and  let f : X → Y  be a function.  Then  f is 

continuous  if for each sequence { xn } which is d1q- convergent  to x
0 in X , the sequence { f (xn ) } is d2q-

convergent  to f (x
0
) in Y . 

 

 

MAIN RESULTS 

 

Theorem 3.1  Let (X, d) be a complete dq-metric space and suppose there exist non negative constants  α1, α2, α3 

, α4, α5 with α1+α2+α3+2(α4+α5) <1.   Let  f : X → X be a continuous  mapping  satisfying 

 

for all x, y ∈ X .  Then  f has a unique fixed point. 

Proof: Let { xn } be a sequence in X , defined as follows. Let x
0  ∈ X, f (x

0 ) = x
1
, f (x

1
) = 

x
2
, . . . , f (x

n ) = x
n+1 

, . . . . 
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Since 0 ≤ λ < 1, so for n → ∞, λn → ∞ we have d(xn , xn+1) → 0. Hence { xn } is a Cauchy sequence in the 
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complete  dislocated  quasi-metric  space X , so there  is a point t0  ∈ X , such that xn  → t0. Since f is 

continuous, 

 

f (t
0
) = limf (x

n ) = limx
n+1 

= t
0
. 

 

Thus f (t
0
) = t

0
, so f has a fixed point. 

 

Uniqueness: If x ∈ X is a fixed point of f , then  by (3.1) 
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which is true only if d(x, x) = 0,since 0 ≤ α1 + α2 + α3 +2(α4+α5) < 0 and d(x, x) ≥ 0. Thus d(x, x) = 0 for a 

fixed-point x of f . 

Let x, y be fixed point of f . Then  by (3.1) 
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 and  from  this  it  follows that d(x, y)  = 0,  since  d(x, y)  ≥ 0, 

0 ≤ (α1 +2 α5)< 1.  Similarly  d(y, x) = 0.  Hence x = y, i.e.  uniqueness  of the  fixed point follows. 

 

Note: If α2   = 0 = α3   in (3.1),  then  f becomes a contraction map  and  this  shows that theorem  3.1 is a 

generalization of Theorem  1.1. Thus Theorem  3.1 is generalization of Banach contraction principle. 

Theorem 3.2 

Let (X, d) be a complete dq-metric  space and let f : X → X be a continu- ous mapping  satisfying 
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for all x, y ∈ X .  If 0 ≤ α,   < 1 such that  α+2  < 1     then f has a unique fixed point. 
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Proof: Let{xn}be a sequence in X,defined as follows. Let x
0 ∈X,f(x

0
)=x

1
,f(x

1
)= 

x
2
,...,f(x

n
)=x

n+1
,.... 
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Since 0≤ <1,as n→∞,  n
→∞. Hence {xn} isa dq-cauchy sequence in X. Thus 

{xn} dislocated quasi-converges to some t
0
.Since f is continuous, we  have                                            
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)=limx
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Thus  f(t
0
)= t0  that is f has a fixed point t0. 

 

Case-2 
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Uniqueness: Let x be a fixed point of f, then by (3.2) 
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which gives d(x; x) = 0, since 0 ≤ <1 and d(x; x) ≥0. Thus 

d(x; x) = 0 if x is a fixed point of f. 

Let x; y є X be fixed points of f. That is ,fx= x; fy= y. Then by (3.2), 
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which is true only if d(x; y) = 0   since d(x; x) = 0 = d(y; y); 0≤ <1. 

Similarly d(y; x) = 0 and hence x = y. 

Thus a ¯fixed point of f is unique 

 

 

 

Note: If d is a partial metric on X , then (X; d) becomes a dq-metric space. Hence we consider (X; d) in Theorem 3.1 and 

3.2 as a partial metric space, then the conclusion follows. 

.. 

 

Theorem 3.3 Let (X; d) be a complete partial metric space and let f :X →X be a continuous mapping satisfying 
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for all x; y є X. If 0≤α,  <1 such that α+2  <1 then f has a unique fixed point. 

 

It can be proved easily. 
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