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Abstract: The binary quadratic equation 
tyx 319 22   is considered and a few interesting properties among the 

solutions are presented. Employing the integral solutions of the equation under consideration, a few patterns of 
Pythagorean triangles and rectangles are observed  
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INTRODUCTION 

                    The binary quadratic equation of the form 122  Dxy  where D is non-square positive integer has been 

studied by various mathematicians for its non-trivial integral solutions when D takes different integral values ]4,3,2,1[

.In [5] infinitely many Pythogorean triangles in each of which hypotenuse is four times the product of the generators 

added with unity are obtained by employing the non-integral solutions of binary quadratic equation 13 22  xy .In 

[6],a special Pythogorean triangle is obtained by employing the integral solutions of 110 22  xy . In [7], different 

patterns of infinitely many Pythogorean triangles are obtained by employing the non-integral solutions of 

112 22  xy .In this context one may also refer  [8-14]. These results have motivated us to search for the integral 

solutions of yet another binary quadratic equation 
tyx 319 22   representing a hyberbola. A few interesting 

properties  among the solutions are presented. 

  

METHOD OF ANALYSIS     

                   The  binary non-homogeneous quadratic Diophantine equation represents a hyberbola to be solved for its 

non-zero integral solutions is  

 

                                      
1222 319  tyx  (1) 

whose initial solution is )3(7 1
0

 tx , )3(2 1
0

 ty , 1t                               (2) 

To find the other solutions of (1),consider the pellian equation of (1) given by 

                                        119 22  yx   (3) 

Whose general solution ),(
~~

nn yx  is represented by  
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where ,2,1,0n  

Employing the lemma of Brahamagupta between the solution ),( 00 yx  and ),(
~~

nn yx .The general solution of (1) is 

found to be 
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 A few numerical examples are presented in the table below: 

 
n  

nx  ny  

0 
7(3

1t
) 2(3

1t
) 

1 
2672(3

1t
) 613(3

1t
) 

2 
908473(3

1t
) 208418(3

1t
) 

3 
308878148(3

1t
) 70861507(3

1t
) 

 

 

A few interesting properties are given below: 

1. )2(mod012 nx  

2. The recurrence relations satisfied by the values of 1nx  and 1ny  are respectively 
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3. A few interesting relations among the solutions are exhibited below: 

(a) 112 170741   nnn xyx  

(b) 113 57799251940   nnn xyx  

(c) 112 39170   nnn xyy  

(d) 113 1326057799   nnn xyy  
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5. )
2
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1133332 

 nnnnt
xyxy  is a cubical integer  

6. Employing the solutions of (1),each of the following among the special Polygonal,Pyramidal,Star number,Centered 

Pyramidal number and Pronic numbers is congruent to zero under modulo 
123 t
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(7)    The solutions of (1) interms of special integers namely,Generalized Lucas nGL and Fibonacci  nGF  numbers are 

exhibited below: 
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Remark:  

It is worth to note that (1) may also be satisfied by 0,3),3(4 00  tyx tt
 

Following the analysis Presented above ,the sequence of integer solutions of (1) are obtained as  
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CONCLUSION 

                In this paper ,we have presented non-zero distinct integer solutions of the pell equation 
tyx 319 22   

when t is odd. It is to be noted that the above pell equation has no integer solutions when t is even since the negative pell 

equation 119 22  yx  has no integer solutions. 

               

               To conclude, one may search for other choices of negative pell equations for finding their integer solutions. 
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Notations 

nmt ,         :    Polygonal number of rank n  with size m  

m
nP         :    Pyramidal number of rank n  with size m  

nPr         :    Pronic number of rank n  

nS          : Star number of rank n  

nmCt ,      : Centered  Pyramidal number of rank n  with size m                    

),( skGFn  :   Generalized  Fibonacci Sequences of rank n      

),( skGLn  :   Generalized  Lucas Sequences of rank n  
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