Scholars Journal of Engineering and Technology (SJET)
 Sch. J. Eng. Tech., 2014; 2(2A):152-155

Research Article

Observations on the hyberbola $x^{2}=19 y^{2}-3^{t}$

M.A.Gopalan ${ }^{1}$, G.Sumathi ${ }^{2 *}$, S.Vidhyalakshmi ${ }^{3}$

${ }^{1,2,3}$ Professors, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamil Nadu, India

*Corresponding author

```
G. Sumathi
Email: bdepacharangemailcom
```

```
Abstract: The binary quadratic equation \(x^{2}=19 y^{2}-3^{t}\) is considered and a few interesting properties among the solutions are presented. Employing the integral solutions of the equation under consideration, a few patterns of Pythagorean triangles and rectangles are observed
Keywords: Binary quadratic, integral solutions
```


INTRODUCTION

The binary quadratic equation of the form $y^{2}=D x^{2}+1$ where D is non-square positive integer has been studied by various mathematicians for its non-trivial integral solutions when D takes different integral values [1,2,3,4] .In [5] infinitely many Pythogorean triangles in each of which hypotenuse is four times the product of the generators added with unity are obtained by employing the non-integral solutions of binary quadratic equation $y^{2}=3 x^{2}+1$. In [6], a special Pythogorean triangle is obtained by employing the integral solutions of $y^{2}=10 x^{2}+1$. In [7], different patterns of infinitely many Pythogorean triangles are obtained by employing the non-integral solutions of $y^{2}=12 x^{2}+1$.In this context one may also refer [8-14]. These results have motivated us to search for the integral solutions of yet another binary quadratic equation $x^{2}=19 y^{2}-3^{t}$ representing a hyberbola. A few interesting properties among the solutions are presented.

METHOD OF ANALYSIS

The binary non-homogeneous quadratic Diophantine equation represents a hyberbola to be solved for its non-zero integral solutions is

$$
\begin{equation*}
x^{2}=19 y^{2}-3^{2 t+1} \tag{1}
\end{equation*}
$$

whose initial solution is $x_{0}=7\left(3^{t-1}\right), y_{0}=2\left(3^{t-1}\right), t \geq 1$
To find the other solutions of (1),consider the pellian equation of (1) given by

$$
\begin{equation*}
x^{2}=19 y^{2}+1 \tag{3}
\end{equation*}
$$

Whose general solution $\left(x_{n}, y_{n}\right)$ is represented by

$$
\left.\begin{array}{l}
\tilde{x_{n}}=\frac{f_{n}}{2} \tag{4}\\
\tilde{y_{n}}=\frac{g_{n}}{2 \sqrt{19}}
\end{array}\right\}
$$

where

$$
\left.\begin{array}{l}
f_{n}=\frac{1}{2}\left[(170+39 \sqrt{19})^{n+1}+(170+39 \sqrt{19})^{n+1}\right] \\
g_{n}=\left[(170+39 \sqrt{19})^{n+1}-(170+39 \sqrt{19})^{n+1}\right]
\end{array}\right\}
$$

where $n=0,1,2$,
Employing the lemma of Brahamagupta between the solution $\left(x_{0}, y_{0}\right)$ and $\left(x_{n}, y_{n}\right)$.The general solution of (1) is found to be

$$
\left.\begin{array}{l}
x_{n+1}=\left(3^{t-1}\right)\left[\frac{7}{2} f_{n}+\sqrt{19} g_{n}\right] \\
y_{n+1}=\left(3^{t-1}\right)\left[f_{n}+\frac{7}{2} \frac{g_{n}}{\sqrt{19}}\right], n \geq 0,1,2,3 \ldots \tag{5}
\end{array}\right\} .
$$

A few numerical examples are presented in the table below:

n	x_{n}	y_{n}
0	$7\left(3^{t-1}\right)$	$2\left(3^{t-1}\right)$
1	$2672\left(3^{t-1}\right)$	$613\left(3^{t-1}\right)$
2	$908473\left(3^{t-1}\right)$	$208418\left(3^{t-1}\right)$
3	$308878148\left(3^{t-1}\right)$	$70861507\left(3^{t-1}\right)$

A few interesting properties are given below:

1. $x_{2 n+1} \equiv 0(\bmod 2)$
2. The recurrence relations satisfied by the values of x_{n+1} and y_{n+1} are respectively

$$
\begin{aligned}
& x_{n+3}-340 x_{n+2}+x_{n+1}=0, x_{0}=7\left(3^{t-1}\right), x_{1}=2672\left(3^{t-1}\right) \\
& y_{n+3}-340 y_{n+2}+y_{n+1}=0, y_{0}=2\left(3^{t-1}\right), x_{1}=613\left(3^{t-1}\right)
\end{aligned}
$$

3. A few interesting relations among the solutions are exhibited below:
(a) $x_{n+2}=741 y_{n+1}+170 x_{n+1}$
(b) $x_{n+3}=251940 y_{n+1}+57799 x_{n+1}$
(c) $y_{n+2}=170 y_{n+1}+39 x_{n+1}$
(d) $y_{n+3}=57799 y_{n+1}+13260 x_{n+1}$
4. $6\left[\frac{4}{3^{t+2}}\left(19 y_{2 n+2}-\frac{7}{2} y_{2 n+2}\right)+2\right]$ is a nasty number
5. $\frac{4}{3^{t+2}}\left(19 y_{3 n+3}-\frac{7}{2} x_{3 n+3}+57 y_{n+1}-\frac{21}{2} x_{n+1}\right)$ is a cubical integer
6. Employing the solutions of (1),each of the following among the special Polygonal,Pyramidal,Star number,Centered Pyramidal number and Pronic numbers is congruent to zero under modulo $3^{2 t+1}$
(a) $\left(\frac{3 P_{x-2}^{3}}{t_{3, x-2}}\right)^{2}-19\left(\frac{6 P_{y-1}^{4}}{t_{3,2 y-2}}\right)^{2}$
(b) $\left(\frac{P_{x}^{5}}{t_{3, x}}\right)^{2}-19\left(\frac{4 P_{y}^{5}}{C t_{4, y}-1}\right)^{2}$
(c) $\left(\frac{18 P_{x-2}^{3}}{C t_{6, x-2}-1}\right)^{2}-19\left(\frac{6 P_{y-1}^{5}}{C t_{6, y}-1}\right)^{2}$
(d) $\left(\frac{6 P_{x}^{3}}{\operatorname{Pr}_{x}}\right)^{2}-19\left(\frac{6 P_{y}^{5}}{S_{y+1}-1}\right)^{2}$
(7) The solutions of (1) interms of special integers namely, Generalized Lucas $G L_{n}$ and Fibonacci $G F_{n}$ numbers are exhibited below:

$$
\begin{aligned}
& \tilde{x_{n}}=\frac{G L_{n+1}}{2}(340,-1) \\
& \tilde{y_{n}}=39 G F_{n+1}(340,-1)
\end{aligned}
$$

Remark:

It is worth to note that (1) may also be satisfied by $x_{0}=4\left(3^{t}\right), y_{0}=3^{t}, t \geq 0$
Following the analysis Presented above ,the sequence of integer solutions of (1) are obtained as

$$
\begin{aligned}
& x_{n+1}=\left(3^{t}\right)\left[2 f_{n}+\frac{\sqrt{19}}{2} g_{n}\right] \\
& y_{n+1}=\left(3^{t}\right)\left[\frac{1}{2} f_{n}+\frac{2}{\sqrt{19}} g_{n}\right], n \geq 0,1,2,3 .
\end{aligned}
$$

CONCLUSION

In this paper, we have presented non-zero distinct integer solutions of the pell equation $x^{2}=19 y^{2}-3^{t}$ when t is odd. It is to be noted that the above pell equation has no integer solutions when t is even since the negative pell equation $x^{2}=19 y^{2}-1$ has no integer solutions.

To conclude, one may search for other choices of negative pell equations for finding their integer solutions.

Mathematics Subject Classification:11D09

Notations

$t_{m, n} \quad: \quad$ Polygonal number of rank n with size m
$P_{n}^{m} \quad: \quad$ Pyramidal number of rank n with size m
$\operatorname{Pr}_{n} \quad: \quad$ Pronic number of rank n
$S_{n} \quad$: Star number of rank n
$C t_{m, n}$: Centered Pyramidal number of rank n with size m
$G F_{n}(k, s)$: Generalized Fibonacci Sequences of rank n
$G L_{n}(k, s)$: Generalized Lucas Sequences of rank n

REFERENCES

1. Dickson LE; History of Theory of numbers,Vol.2,Chelsea publishing company,Newyork,1952.
2. Mordel LJ; Diophantine Equations, Academic press,Newyork,1969.
3. Telang SJ; Number theory, Tata Mcgraw Hill Publishing Company Limited, New Delhi,2000.
4. David Burton; Elementary Number Theory, Tata Mcgraw Hill Publishing Company Limited, New Delhi,2002.
5. Gopalan MA ,Janaki G; Observation on $y^{2}=3 x^{2}+1$. Acta Ciancia Indica, 2008; XXXIVM(2):693-696.
6. Gopalan MA, Sangeetha GA; Remarkable Observation on $Y^{2}=10 X^{2}+1$. Impact Journal of Sciences and Technology, 2010;.4:103-106
7. Gopalan MA, Palanikumar R; Observation on $Y^{2}=12 X^{2}+1$. Antarctica J. Math, 2011 8(2), 2011,149-152.
8. Gopalan M.A,Srividhya.G,Relations among M-gonal Number through the equation $Y^{2}=2 X^{2}+1$, Antarctica J.Math., 2010;7(3):,363-369.
9. Gopalan M.A,Vijayasankarar R; Observation on the integral solutions of $Y^{2}=5 X^{2}+1$. Impact Journal of Science and Technology, 2010;.4: 125-129.
10. Gopalan MA, Yamuna RS; Remarkable Observation on the binary Quadratic Equation $Y^{2}=\left(k^{2}+1\right) X^{2}+1$, $k \in Z-\{0\}$. Impact Journal of Science and Technology, 2010; .4:61-65.
11. Gopalan MA, Sivagami B; Observation on the integral solutions of $Y^{2}=7 X^{2}+1$. Antarctica J. Math 2010;7(3):291-296.
12. Gopalan MA, Vijayalakshmi R; Special Pythogorean triangles generated through the integral solutions of the equation $Y^{2}=\left(k^{2}-1\right) X^{2}+1$, Antarctica Journal of Mathematics, 2010; 795:503-507.
13. Gopalan MA, Vidhyalakshmi S, Devibala S; On the Diophantine Equation $3 x^{2}+x y=14$, Acta Ciencia Indica, 2007; XXXIII M(2):645-648.
14. Gopalan MA, Vidhyalakshmi S, Usha rani TR, Mallika S; Observations on $y^{2}=12 x^{2}-3$, Bessel J. Math, 2012; 2(3):153-158.
