Scholars Journal of Engineering and Technology (SJET)

Sch. J. Eng. Tech., 2014; 2(2A):152-155 ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com

ISSN 2321-435X (Online) ISSN 2347-9523 (Print)

Research Article

Observations on the hyberbola $x^2 = 19y^2 - 3^t$

M.A.Gopalan¹, G.Sumathi^{2*}, S.Vidhyalakshmi³

^{1,2,3}Professors, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamil Nadu, India

*Corresponding author

G. Sumathi Email: b.deepacharan@gmail.com

Abstract: The binary quadratic equation $x^2 = 19y^2 - 3^t$ is considered and a few interesting properties among the solutions are presented. Employing the integral solutions of the equation under consideration, a few patterns of Pythagorean triangles and rectangles are observed **Keywords:** Binary quadratic, integral solutions

INTRODUCTION

The binary quadratic equation of the form $y^2 = Dx^2 + 1$ where D is non-square positive integer has been studied by various mathematicians for its non-trivial integral solutions when D takes different integral values [1,2,3,4] .In [5] infinitely many Pythogorean triangles in each of which hypotenuse is four times the product of the generators added with unity are obtained by employing the non-integral solutions of binary quadratic equation $y^2 = 3x^2 + 1$. In [6],a special Pythogorean triangle is obtained by employing the integral solutions of $y^2 = 10x^2 + 1$. In [7], different patterns of infinitely many Pythogorean triangles are obtained by employing the non-integral solutions of $y^2 = 12x^2 + 1$. In this context one may also refer [8-14]. These results have motivated us to search for the integral solutions of yet another binary quadratic equation $x^2 = 19y^2 - 3^t$ representing a hyberbola. A few interesting properties among the solutions are presented.

METHOD OF ANALYSIS

The binary non-homogeneous quadratic Diophantine equation represents a hyberbola to be solved for its non-zero integral solutions is

$$x^2 = 19y^2 - 3^{2t+1} \tag{1}$$

whose initial solution is $x_0 = 7(3^{t-1})$, $y_0 = 2(3^{t-1})$, $t \ge 1$ (2) To find the other solutions of (1),consider the pellian equation of (1) given by

$$x^2 = 19y^2 + 1 \tag{3}$$

Whose general solution (x_n, y_n) is represented by

$$\tilde{x_n} = \frac{f_n}{2}$$

$$\tilde{y_n} = \frac{g_n}{2\sqrt{19}}$$
(4)

where

Sumathi G et al., Sch. J. Eng. Tech., 2014; 2(2A):152-155

$$f_{n} = \frac{1}{2} \left[(170 + 39\sqrt{19})^{n+1} + (170 + 39\sqrt{19})^{n+1} \right]$$
$$g_{n} = \left[(170 + 39\sqrt{19})^{n+1} - (170 + 39\sqrt{19})^{n+1} \right]$$

where n = 0, 1, 2,

Employing the lemma of Brahamagupta between the solution (x_0, y_0) and (x_n, y_n) . The general solution of (1) is found to be

$$x_{n+1} = (3^{t-1}) \left[\frac{7}{2} f_n + \sqrt{19} g_n \right]$$

$$y_{n+1} = (3^{t-1}) \left[f_n + \frac{7}{2} \frac{g_n}{\sqrt{19}} \right], n \ge 0, 1, 2, 3... \right]$$
.....(5)

A few numerical examples are presented in the table below:

п	<i>x</i> _{<i>n</i>}	Уn
0	$7(3^{t-1})$	$2(3^{t-1})$
1	$2672(3^{t-1})$	$613(3^{t-1})$
2	$908473(3^{t-1})$	208418(3 ^{<i>t</i>-1})
3	308878148(3 ^{<i>t</i>-1})	70861507(3 ^{<i>t</i>-1})

A few interesting properties are given below:

1. $x_{2n+1} \equiv 0 \pmod{2}$

2. The recurrence relations satisfied by the values of x_{n+1} and y_{n+1} are respectively

$$x_{n+3} - 340x_{n+2} + x_{n+1} = 0, x_0 = 7(3^{t-1}), x_1 = 2672(3^{t-1})$$
$$y_{n+3} - 340y_{n+2} + y_{n+1} = 0, y_0 = 2(3^{t-1}), x_1 = 613(3^{t-1})$$

- (a) $x_{n+2} = 741y_{n+1} + 170x_{n+1}$
- (b) $x_{n+3} = 251940y_{n+1} + 57799x_{n+1}$
- (c) $y_{n+2} = 170y_{n+1} + 39x_{n+1}$

(d)
$$y_{n+3} = 57799y_{n+1} + 13260x_{n+1}$$

4.
$$6\left[\frac{4}{3^{t+2}}(19y_{2n+2} - \frac{7}{2}y_{2n+2}) + 2\right]$$
 is a nasty number
5. $\frac{4}{2^{t+2}}(19y_{3n+3} - \frac{7}{2}x_{3n+3} + 57y_{n+1} - \frac{21}{2}x_{n+1})$ is a cubical integer

$$3^{t+2}$$
 2 2
6. Employing the solutions of (1), each of the following among the special Polygonal, Pyramidal, Star number, Centered Pyramidal number and Pronic numbers is congruent to zero under modulo 3^{2t+1}

(a)
$$\left(\frac{3P_{x-2}^3}{t_{3,x-2}}\right)^2 - 19 \left(\frac{6P_{y-1}^4}{t_{3,2y-2}}\right)^2$$

(b)
$$\left(\frac{P_x^5}{t_{3,x}}\right)^2 - 19 \left(\frac{4P_y^5}{Ct_{4,y} - 1}\right)^2$$

(c) $\left(\frac{18P_{x-2}^3}{Ct_{6,x-2} - 1}\right)^2 - 19 \left(\frac{6P_{y-1}^5}{Ct_{6,y} - 1}\right)^2$
(d) $\left(\frac{6P_x^3}{Pr_x}\right)^2 - 19 \left(\frac{6P_y^5}{S_{y+1} - 1}\right)^2$

(7) The solutions of (1) interms of special integers namely, Generalized Lucas GL_n and Fibonacci GF_n numbers are exhibited below:

$$\tilde{x_n} = \frac{GL_{n+1}}{2}(340, -1)$$
$$\tilde{y_n} = 39GF_{n+1}(340, -1)$$

Remark:

It is worth to note that (1) may also be satisfied by $x_0 = 4(3^t)$, $y_0 = 3^t$, $t \ge 0$ Following the analysis Presented above, the sequence of integer solutions of (1) are obtained as

$$x_{n+1} = (3^{t}) \left[2f_n + \frac{\sqrt{19}}{2} g_n \right]$$
$$y_{n+1} = (3^{t}) \left[\frac{1}{2} f_n + \frac{2}{\sqrt{19}} g_n \right], n \ge 0, 1, 2, 3..$$

CONCLUSION

In this paper ,we have presented non-zero distinct integer solutions of the pell equation $x^2 = 19y^2 - 3^t$ when t is odd. It is to be noted that the above pell equation has no integer solutions when t is even since the negative pell equation $x^2 = 19y^2 - 1$ has no integer solutions.

To conclude, one may search for other choices of negative pell equations for finding their integer solutions.

Mathematics Subject Classification:11D09

Notations

$t_{m,n}$:	Polygonal number of rank n with size m
P_n^m	:	Pyramidal number of rank n with size m
Pr _n	:	Pronic number of rank <i>n</i>
S_n	: S	tar number of rank <i>n</i>
$Ct_{m,n}$: (Centered Pyramidal number of rank n with size m
$GF_n(k)$, s)	: Generalized Fibonacci Sequences of rank n
$GL_n(k,s)$: Generalized Lucas Sequences of rank n		

Sumathi G et al., Sch. J. Eng. Tech., 2014; 2(2A):152-155

REFERENCES

- 1. Dickson LE; History of Theory of numbers, Vol.2, Chelsea publishing company, Newyork, 1952.
- 2. Mordel LJ; Diophantine Equations, Academic press, Newyork, 1969.
- 3. Telang SJ; Number theory, Tata Mcgraw Hill Publishing Company Limited, New Delhi, 2000.
- 4. David Burton; Elementary Number Theory, Tata Mcgraw Hill Publishing Company Limited, New Delhi, 2002.
- 5. Gopalan MA ,Janaki G; Observation on $y^2 = 3x^2 + 1$. Acta Ciancia Indica, 2008; XXXIVM(2):693-696.
- 6. Gopalan MA, Sangeetha GA; Remarkable Observation on $Y^2 = 10X^2 + 1$. Impact Journal of Sciences and Technology, 2010;.4:103-106
- 7. Gopalan MA, Palanikumar R; Observation on $Y^2 = 12X^2 + 1$. Antarctica J. Math, 2011 8(2), 2011,149-152.
- 8. Gopalan M.A, Srividhya.G, Relations among M-gonal Number through the equation $Y^2 = 2X^2 + 1$, Antarctica J.Math., 2010;7(3):,363-369.
- 9. Gopalan M.A, Vijayasankarar R; Observation on the integral solutions of $Y^2 = 5X^2 + 1$. Impact Journal of Science and Technology, 2010;.4: 125-129.
- 10. Gopalan MA, Yamuna RS; Remarkable Observation on the binary Quadratic Equation $Y^2 = (k^2 + 1)X^2 + 1$, $k \in \mathbb{Z} \{0\}$. Impact Journal of Science and Technology, 2010; .4:61-65.
- 11. Gopalan MA, Sivagami B; Observation on the integral solutions of $Y^2 = 7X^2 + 1$. Antarctica J. Math 2010;7(3):291-296.
- 12. Gopalan MA, Vijayalakshmi R; Special Pythogorean triangles generated through the integral solutions of the equation $Y^2 = (k^2 1)X^2 + 1$, Antarctica Journal of Mathematics, 2010; 795:503-507.
- 13. Gopalan MA, Vidhyalakshmi S, Devibala S; On the Diophantine Equation $3x^2 + xy = 14$, Acta Ciencia Indica, 2007; XXXIII M(2):645-648.
- 14. Gopalan MA, Vidhyalakshmi S, Usha rani TR, Mallika S; Observations on $y^2 = 12x^2 3$, Bessel J. Math, 2012; 2(3):153-158.