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Abstract: The binary quadratic Diophantine equation represented by
tyx 1115 22   , t odd is analysed for its non-

zero distinct integer solutions.  Employing the lemma of Brahmagupta, infinitely many integral solutions of the above 

Pell equation are obtained.  The recurrence relations on the solutions are also presented.  A few interesting relations 

among the solutions are given.  Further, there exist no integer solutions when t is even. 
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INTRODUCTION 

It is well known that the Pell equation 1Dyx 22  , (D>0 and square free) has always positive integer 

solutions. When 1N  , the Pell equation NDyx 22   may not have any positive integer solutions.  For example 

the equations 1y3x 22   and 4y7x 22  have no positive integer solutions.  When k is a positive integer and 

 1k,4kD 22  , positive integer solutions of the equations 4Dyx 22   and 1Dyx 22   have been 

investigated by Jones in [4].  The same or similar equations are investigated in [3,6,9,10].  In [1,2,5,7,8,11,12,13] some 

specific Pell equation and their integer solutions are considered.  In [14], the integer solutions of Pell  equation 

t222 2y)kk(x   has been considered.  In [15], the Pell equation 
t222 2y)kk(x   is analyzed for the 

integer solutions.  

       

 This communication concerns with the Pell equation 
tyx 1115 22  and   infinitely many positive integer 

solutions are obtained when t is odd  The recurrence relations on the solutions are also given. Further, it is observed that,  

when t is even there exist no integer solutions of the considered Pell equation  

 

METHOD OF ANALYSIS: 

The Pell equation to be solved is 
 

12,1115 22  mtyx t
                              (1)                               

First, we consider the Pell equation 
 

1115 22  yx
                                  (2)                   

whose fundamental solution is ).1,2()~,~( 00 yx
                              

 

The other solutions of (2) can be derived from the relations   
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Now, we consider the general equation 

1,1115 1222   myx m
                                                (3) 

The initial solution of (3) is  

1
1 11*13  mX

    ,      
1

1 11*10  mY
 

 Applying the lemma of Bramagupta between ),( 11 YX  and the solutions of the classical pell equation 115 22  yx , 

the other solutions of (3) can be obtained from the relations
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The recurrence relations satisfied by the solution of (1) are found to be  

08 234   nnn XXX
 

08 234   nnn YYY
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A few interesting properties satisfied by the solutions of (1) are exhibited below: 

223 4)(   nnn YXYi
 

223 154)(   nnn YXXii
 

224 318)(   nnn YXYiii
 

224 12031)(   nnn YXXiv
 

334 4)(   nnn YXYv
 

334 154)(   nnn YXXvi
 

33
2

24
2 240)(   nnnn YXXXvii

  
 
Each of the following triples forms an A.P  

),4,)(( 432  nnn XXXa
   

 
),2,)(( 233  nnn YYXb

  

 
),15,)(( 432  nnn XYXc

  
 

 

 

 

APPLICATIONS: 
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1. Define 
2

Y
Xr 2n

2n


  , 
2

Y
s 2n  where )Y,X( 2n2n  is any solution of (1).  Note that   r, s are 

integers and r>s>0.  Treat r and s as the generators of the Pythagorean triangle ),,(T  , where ,rs2    

,sr 22   
22 sr  .  Let A and P represented its area and perimeter respectively.  Then, this Pythagorean 

triangle T is such that  

)11(mod02930)( ta    

)11(mod0
120

31)( t

P

A
b    

2. Let x and y be taken as the sides of a rectangle R whose length of the diagonal, perimeter and area are denoted by L, 

P and A respectively.  Note that  

]11[6)( 2 tLi   is a nasty number 

22 48)( LAPii   

 

CONCLUSION 

In this paper, the integer solutions of the Pell equation
 

tyx 1115 22   where t odd are obtained.  For the 

case t  even, we find that there is no integer solution as the negative Pell equation 115 22  yx  has no integer 

solution. To conclude, one may search for integer solutions of other choices of negative Pell equations     
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