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Abstract: The binary quadratic Diophantine equation represented by
tyx 1115 22   , t odd is analysed for its non-

zero distinct integer solutions.  Employing the lemma of Brahmagupta, infinitely many integral solutions of the above 

Pell equation are obtained.  The recurrence relations on the solutions are also presented.  A few interesting relations 

among the solutions are given.  Further, there exist no integer solutions when t is even. 
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INTRODUCTION 

It is well known that the Pell equation 1Dyx 22  , (D>0 and square free) has always positive integer 

solutions. When 1N  , the Pell equation NDyx 22   may not have any positive integer solutions.  For example 

the equations 1y3x 22   and 4y7x 22  have no positive integer solutions.  When k is a positive integer and 

 1k,4kD 22  , positive integer solutions of the equations 4Dyx 22   and 1Dyx 22   have been 

investigated by Jones in [4].  The same or similar equations are investigated in [3,6,9,10].  In [1,2,5,7,8,11,12,13] some 

specific Pell equation and their integer solutions are considered.  In [14], the integer solutions of Pell  equation 

t222 2y)kk(x   has been considered.  In [15], the Pell equation 
t222 2y)kk(x   is analyzed for the 

integer solutions.  

       

 This communication concerns with the Pell equation 
tyx 1115 22  and   infinitely many positive integer 

solutions are obtained when t is odd  The recurrence relations on the solutions are also given. Further, it is observed that,  

when t is even there exist no integer solutions of the considered Pell equation  

 

METHOD OF ANALYSIS: 

The Pell equation to be solved is 
 

12,1115 22  mtyx t
                              (1)                               

First, we consider the Pell equation 
 

1115 22  yx
                                  (2)                   

whose fundamental solution is ).1,2()~,~( 00 yx
                              

 

The other solutions of (2) can be derived from the relations   
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Now, we consider the general equation 

1,1115 1222   myx m
                                                (3) 

The initial solution of (3) is  

1
1 11*13  mX

    ,      
1

1 11*10  mY
 

 Applying the lemma of Bramagupta between ),( 11 YX  and the solutions of the classical pell equation 115 22  yx , 

the other solutions of (3) can be obtained from the relations
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The recurrence relations satisfied by the solution of (1) are found to be  
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A few interesting properties satisfied by the solutions of (1) are exhibited below: 

223 4)(   nnn YXYi
 

223 154)(   nnn YXXii
 

224 318)(   nnn YXYiii
 

224 12031)(   nnn YXXiv
 

334 4)(   nnn YXYv
 

334 154)(   nnn YXXvi
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Each of the following triples forms an A.P  

),4,)(( 432  nnn XXXa
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APPLICATIONS: 
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1. Define 
2

Y
Xr 2n

2n


  , 
2

Y
s 2n  where )Y,X( 2n2n  is any solution of (1).  Note that   r, s are 

integers and r>s>0.  Treat r and s as the generators of the Pythagorean triangle ),,(T  , where ,rs2    

,sr 22   
22 sr  .  Let A and P represented its area and perimeter respectively.  Then, this Pythagorean 

triangle T is such that  

)11(mod02930)( ta    

)11(mod0
120

31)( t

P

A
b    

2. Let x and y be taken as the sides of a rectangle R whose length of the diagonal, perimeter and area are denoted by L, 

P and A respectively.  Note that  

]11[6)( 2 tLi   is a nasty number 

22 48)( LAPii   

 

CONCLUSION 

In this paper, the integer solutions of the Pell equation
 

tyx 1115 22   where t odd are obtained.  For the 

case t  even, we find that there is no integer solution as the negative Pell equation 115 22  yx  has no integer 

solution. To conclude, one may search for integer solutions of other choices of negative Pell equations     
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