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INTRODUCTION 

The Diophantine equations offer an unlimited field for research due to their variety [1-2] In particular, one may refer [3-

14]for cubic equation with three unknowns. In [15-17] cubic equations with four unknowns are studied for its non-trival 

integral solution.This communication concerns with the problem of obtaining non-zero integral solutions of the cubic 

equation with four variables is given by )()( 233 wzwzyx  .  A few properties among the solutions and 

special numbers are presented. 

 

Notations:                                                                                                                
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METHOD OF ANALYSIS

 The cubic diophantine equation with four unknowns to be solved for getting non-zero integral solutions is 

)()( 233 wzwzyx                    (1) 

It is noted that is to noted that )2,4,22,42( 22  kkkkkk  where k is an integer is a solution of the 

given problem. However, we have other patterns of solutions to (1) which are discussed below. 

 
On substituting the linear transformations 

x=u+v, y=u-v, z=u+p, w=u-p, u p, v p,              (2) 

 

in (1), it leads to 

=
222 43)2( pvpu                                                                      (3) 

 

Five different patterns of integral solutions to (1) through solving (3) are illustrated as follows: 

 

Pattern 1: 

Equation (3) is satisfied by 
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Since our aim is to find integral solutions both „a‟ and „b‟ should be either even (or) odd. 

 

Case i: Suppose both a and b are even 

Let a=2A and b=2B 
Substituting the values of a and b in (4) and simplifying, we get 
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In view (2), the non-zero distinct integral solutions to (1) are given by 
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Properties: 

1) ]264)1,()1,([4 16

,5  AA CPtAyAz  is a cubical integer. 

2) Each of the following is a nasty number 

(i) )),(),((2 BAyBAx   

(ii) )),(),((2 BAwBAz   

3) )9,()9,()9,( AAwAAzAAx   is a perfect square 

4) 8)1,()1,(  AyAx  is written as 8 times difference of consecutive squares 

5) ]64)1,()1,([36 ,4 AtAyAx   is a biquadratic integer 

 

Case ii:   Suppose both „a‟ and „b‟ are odd. 

Let a=2A+1, b=2B+1.  Proceeding as in case (i) the non-zero distinct integral solutions to (1) are 
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Properties: 

1) )48(mod48),2(),2(),2(2 ,10  AtAAwAAzAAx  

2) 13)2(14
4

),1(
,4,6 


AA tt

AAx
 is 2 times an odd square 

3) )),(),((2 BAyBAx   and )),(),((2 BAwBAz   is a nasty number 

4) 036)1,(5)1,(3  AwAz  

5) 
]46[224),(),( 53

1 BAB PPRPBAwBAz    
 

Pattern 2: 

In (3) take 

                                                      
22 3bap                 (5a) 

 and write  „ 4‟ as        
                                                   4=(1+i√3)(1-i√3)

                                                          (5b) 

Substituting (5a) and (5b) in (3) and employing the method of factorization, define 

2)3)(31(32 biaivipu   

Equating real and imaginary parts on both sides we get 

                 
22 362 babapu                     (6) 

                 
22 32 babav                       (7) 

Substituting (5a) in (6) we get 

                 abbau 633 22                      (8) 

From (5a),(7),(8) and (2) the distinct integral solutions to (1) are expressed by 
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Properties: 

1) )35(26)1,()1,( ,5 aa Gnotayaz   

2)  (i) )],(2),(3[2 bawbax   is a perfect square 

(ii) )),(),(2),(),((2 baybaxbawbaz   is a perfect square 

3) )8(mod22),1(),1(),1(),1( bSbwbzbybx b   

4) (i) )8)1,()1,((3 2aawax   is a nasty number 

(ii) )(2 wzyx   is a nasty number 

5) ]105236[8)1,()1,( ,4,6,3

14

6,,4 aaaaa tttCPFawax   

 

Pattern 3: 

Instead of (5b), write „4‟ as 
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4
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Proceeding as in Pattern 2 and replacing a by 7A and b by 7B, the corresponding non-zero distinct integer solutions to (1) 

are given by 
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1) )624(28))1(,( 5

5,,4 AA CPFAAAx   

2) )6(mod3
112
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,5 At

AAxAAy
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3) )14483(21)1,2( 24

2  nn

n Jjw  

4) (i) 882)1,(3)1,(3  AwAz  is a nasty number 

(ii) )),(),((84 BAyBAx  is a nasty number 

 

Pattern 4: 

Taking 

                                         u-2p=2X, v=2V                 (9) 

in (3), it becomes 

                                         
222 3 pVX                  (9a) 

which  is satisfied by 

           
2222 3,2,3 bapabVbaX               (10)  

In the view of (10),(9) and (2) the distinct integral solutions of (1) are given by 
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Properties 

1) )),(),((3 baybax   and )),(),((3 bawbaz   are nasty numbers. 

2)  (i) ),(2),(),( 222 aayaawaaz   is a cubical integer. 

(ii) ),(),( 22 aayaax   is a cubical integer. 

3) )3312(16)1,()1,( 1

8

4,,4  aaa aGnoCPFayax  

4) aaaa PRtCPFawazayax  ,4

9

6,,4 11269)1,()1,()1,()1,(  

 

Pattern 5: 

Re-write (9a) as 

                      1*3 222 XVp                        (11) 

and write 

                  „1‟ ,)32)(32( 
,

22 3baX 
 (12) 

Substituting (12) in (11) and using method of factorization, define 
2)3)(32()3( bavp   

Equating rational and irrational parts on both sides we obtain 

abbap 6)3(2 22   

abbav 43 22                            (13) 
22 3baX                               (14) 

From (9),(13) and (14) we have 
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In view of (2) the non-zero distinct integral solutions to (1) are 
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Properties: 

1) )2(mod044),(),(),( 9222 aPRCPaazaayaax aa  , 

2)  (i) 6[3y(a,b) -2w(a,b)] is a nasty number. 

(ii) ]4),1(3),1([2  bwbz  is a nasty number.                                                                                                                                     

 

3) ]122623[2))1,()1,()(1,( ,4,3,10

8

aaaa tttCPayawaz   

4) ]18948[2)),1(( 64

4,,4 aaaa CPSOCPFaaax   
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CONCLUSION 

One may search for other patterns of solutions and their corresponding properties. 
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