Scholars Journal of Engineering and Technology (SJET)
 Sch. J. Eng. Tech., 2014; 2(2B):264-269

©Scholars Academic and Scientific Publisher
(An International Publisher for Academic and Scientific Resources)
www.saspublisher.com

Research Article

On the cubic Equation with four unknowns $x^{3}+y^{3}=(z+w)^{2}(z-w)$

M.A.Gopalan ${ }^{1}$, S.Vidhyalakshmi ${ }^{2}$, T.R,UshaRani ${ }^{3 *}$

${ }^{1,2,3}$ Professors, Department of Mathematics, Shrimati Indira Gandhi college, Trichy-620002, Tamil Nadu, India

*Corresponding author

T.R. Usha Rani

Email: trichy usha 15 @uyhoo com

```
Abstract: The sequences of integral solutions to the cubic equation with four variables \(x^{3}+y^{3}=(z+w)^{2}(z-w)\)
are obtained. A few properties among the solutions are also presented.
```

Keywords: Cubic equation with four unknowns, integral solutions, polygonal numbers.

M.sc subject classification:11D25

INTRODUCTION

The Diophantine equations offer an unlimited field for research due to their variety [1-2] In particular, one may refer [314]for cubic equation with three unknowns. In [15-17] cubic equations with four unknowns are studied for its non-trival integral solution.This communication concerns with the problem of obtaining non-zero integral solutions of the cubic equation with four variables is given by $x^{3}+y^{3}=(z+w)^{2}(z-w)$. A few properties among the solutions and special numbers are presented.

Notations:

$t_{m, n}=n\left[1+\frac{(n-1)(m-2)}{2}\right]$
$P_{n}^{m}=\frac{n(n+1)}{6}[(m-2) n+(5-m)]$
$P R_{n}=n(n+1)$
$G n o_{n}=2 n-1$
$S_{n}=6 n(n-1)+1$
$S O_{n}=n\left(2 n^{2}-1\right)$
$j_{n}=2^{n}+(-1)^{n}$
$J_{n}=\frac{1}{3}\left[2^{n}+(-1)^{n}\right]$
$C P_{n}^{6}=-n^{3}$
$C P_{n}^{8}=\frac{n\left(4 n^{2}-1\right)}{3}$

$$
\begin{aligned}
& C P_{n}^{9}=\frac{n\left(3 n^{2}-1\right)}{2} \\
& C P_{n}^{14}=\frac{n\left(7 n^{2}-4\right)}{3} \\
& C P_{n}^{16}=\frac{n\left(8 n^{2}-5\right)}{3} \\
& F_{4, n, 4}=\frac{n(n+1)^{2}(n+2)}{6} \\
& F_{4, n, 6}=\frac{n^{2}(n+1)(n+2)}{6}
\end{aligned}
$$

METHOD OF ANALYSIS

The cubic diophantine equation with four unknowns to be solved for getting non-zero integral solutions is

$$
\begin{equation*}
x^{3}+y^{3}=(z+w)^{2}(z-w) \tag{1}
\end{equation*}
$$

It is noted that is to noted that $\left(2 k+4,-2 k+2, k^{2}+k+4,-k^{2}-k+2\right)$ where k is an integer is a solution of the given problem. However, we have other patterns of solutions to (1) which are discussed below.

On substituting the linear transformations
$\mathrm{x}=\mathrm{u}+\mathrm{v}, \mathrm{y}=\mathrm{u}-\mathrm{v}, \mathrm{z}=\mathrm{u}+\mathrm{p}, \mathrm{w}=\mathrm{u}-\mathrm{p}, \mathrm{u} \neq \mathrm{p}, \mathrm{v} \neq \mathrm{p}$,
in (1), it leads to
$=(u-2 p)^{2}+3 v^{2}=4 p^{2}$

Five different patterns of integral solutions to (1) through solving (3) are illustrated as follows:

Pattern 1:

Equation (3) is satisfied by

$$
\left.\begin{array}{l}
u-2 p=3 a^{2}-b^{2} \tag{4}\\
v=2 a b \\
p=\frac{3 a^{2}+b^{2}}{2}
\end{array}\right\}
$$

Since our aim is to find integral solutions both ' a ' and ' b ' should be either even (or) odd.
Case i: Suppose both a and b are even
Let $\mathrm{a}=2 \mathrm{~A}$ and $\mathrm{b}=2 \mathrm{~B}$
Substituting the values of a and b in (4) and simplifying, we get

$$
\begin{aligned}
& u=24 A^{2}, \\
& v=8 A B \\
& p=6 A^{2}+2 B^{2}
\end{aligned}
$$

In view (2), the non-zero distinct integral solutions to (1) are given by

$$
\begin{aligned}
& x=8\left(3 A^{2}+A B\right) \\
& y=8\left(3 A^{2}-A B\right) \\
& z=2\left(15 A^{2}+B^{2}\right) \\
& w=2\left(9 A^{2}-B^{2}\right)
\end{aligned}
$$

Properties:

1) $4\left[z(A, 1)-y(A, 1)-4 t_{5, A}+6 C P_{A}^{16}-2\right]$ is a cubical integer.
2) Each of the following is a nasty number
(i) $\quad 2(x(A, B)+y(A, B))$
(ii) $\quad 2(z(A, B)+w(A, B))$
3) $x(A, 9 A)+z(A, 9 A)+w(A, 9 A)$ is a perfect square
4) $x(A, 1)-y(A, 1)+8$ is written as 8 times difference of consecutive squares
5) $36\left[x(A, 1) y(A, 1)+64 t_{4, A}\right]$ is a biquadratic integer

Case ii: Suppose both ' a ' and ' b ' are odd.
Let $\mathrm{a}=2 \mathrm{~A}+1, \mathrm{~b}=2 \mathrm{~B}+1$. Proceeding as in case (i) the non-zero distinct integral solutions to (1) are

$$
\begin{aligned}
& x=4\left(6 A^{2}+2 A B+7 A+B+2\right) \\
& y=4\left(6 A^{2}-2 A B+5 A-B+1\right) \\
& z=2\left(15 A^{2}+B^{2}+15 A+B+4\right) \\
& w=2\left(9 A^{2}-B^{2}+9 A-B+2\right)
\end{aligned}
$$

Properties:

1) $2 x(2 A, A)-z(2 A, A)-w(2 A, A)-8 t_{10, A} \equiv 4(\bmod 48)$
2) $\frac{x(A+1, A)}{4}+14\left(t_{6, A}-2 t_{4, A}\right)-13$ is 2 times an odd square
3) $2(x(A, B)+y(A, B))$ and $2(z(A, B)+w(A, B))$ is a nasty number
4) $3 z(A, 1)-5 w(A, 1)-36=0$
5) $z(A, B)-w(A, B)+24 P_{B-1}^{3}=2\left[6 P R_{A}+4 P_{B}^{5}\right]$

Pattern 2:

In (3) take

$$
\begin{equation*}
p=a^{2}+3 b^{2} \tag{5a}
\end{equation*}
$$

and write ' 4 ' as

$$
\begin{equation*}
4=(1+i \sqrt{ } 3)(1-i \sqrt{ } 3) \tag{5b}
\end{equation*}
$$

Substituting (5a) and (5b) in (3) and employing the method of factorization, define
$u-2 p+i \sqrt{3} v=(1+i \sqrt{3})(a+i \sqrt{3} b)^{2}$
Equating real and imaginary parts on both sides we get

$$
\begin{align*}
& u-2 p=a^{2}-6 a b-3 b^{2} \tag{6}\\
& v=a^{2}+2 a b-3 b^{2} \tag{7}
\end{align*}
$$

Substituting (5a) in (6) we get

$$
\begin{equation*}
u=3 a^{2}+3 b^{2}-6 a b \tag{8}
\end{equation*}
$$

From (5a),(7),(8) and (2) the distinct integral solutions to (1) are expressed by

$$
\begin{aligned}
& x(a, b)=4\left(a^{2}-a b\right) \\
& y(a, b)=2\left(a^{2}+3 b^{2}-4 a b\right) \\
& z(a, b)=2\left(2 a^{2}-3 a b+3 b^{2}\right) \\
& w(a, b)=2\left(a^{2}-3 a b\right)
\end{aligned}
$$

Properties:

1) $z(a, 1)+y(a, 1)-6=2\left(5 t_{5, a}-3 G n o_{a}\right)$
2) (i) $2[3 x(a, b)-2 w(a, b)]$ is a perfect square
(ii) $2(z(a, b)-w(a, b)+2 x(a, b)-y(a, b))$ is a perfect square
3) $x(1, b)-y(1, b)-z(1, b)+w(1, b)+2 S_{b} \equiv 2(\bmod 8 b)$
4) (i) $3\left(x(a, 1) w(a, 1)+8 a^{2}\right)$ is a nasty number
(ii) $2(x+y+z+w)$ is a nasty number
5) $\quad x(a, 1) w(a, 1)=8\left[6 F_{4, a, 6}-3 C P_{a}^{14}+2 t_{3, a}+5 t_{6, a}-10 t_{4, a}\right]$

Pattern 3:

Instead of (5b), write ' 4 ' as

$$
4=\frac{(2+8 i \sqrt{3})(2-8 i \sqrt{3})}{7^{2}}
$$

Proceeding as in Pattern 2 and replacing a by 7A and b by 7B, the corresponding non-zero distinct integer solutions to (1) are given by

$$
\begin{aligned}
& x(A, B)=14\left(12 A^{2}-22 A B+6 B^{2}\right) \\
& y(A, B)=14\left(4 A^{2}-26 A B+30 B^{2}\right) \\
& z(A, B)=7\left(23 A^{2}-48 A B+57 B^{2}\right) \\
& w(A, B)=7\left(9 A^{2}-48 A B+15 B^{2}\right)
\end{aligned}
$$

Properties

1) $\quad x(A, A(A+1))=28\left(24 F_{4, A, 5}-6 C P_{A}^{5}\right)$
2) $\frac{y(A, A+1)-x(A, A+1)}{112}-t_{5, A} \equiv 3(\bmod 6 A)$
3) $w\left(2^{2 n}, 1\right)=21\left(3 j_{4 n}-48 J_{2 n}-14\right)$
4) (i) $3 z(A, 1)-3 w(A, 1)-882$ is a nasty number
(ii) $84(x(A, B)+y(A, B))$ is a nasty number

Pattern 4:

Taking

$$
\begin{equation*}
u-2 p=2 X, v=2 v \tag{9}
\end{equation*}
$$

in (3), it becomes

$$
\begin{equation*}
X^{2}+3 V^{2}=p^{2} \tag{9a}
\end{equation*}
$$

which is satisfied by

$$
\begin{equation*}
X=a^{2}-3 b^{2}, V=2 a b, p=a^{2}+3 b^{2} \tag{10}
\end{equation*}
$$

In the view of (10),(9) and (2) the distinct integral solutions of (1) are given by

$$
\begin{aligned}
& x(a, b)=4\left(a^{2}+a b\right) \\
& y(a, b)=4\left(a^{2}-a b\right) \\
& z(a, b)=5 a^{2}+3 b^{2} \\
& w(a, b)=3\left(a^{2}-b^{2}\right)
\end{aligned}
$$

Properties

1) $3(x(a, b)+y(a, b))$ and $3(z(a, b)+w(a, b))$ are nasty numbers.
2) (i) $z\left(a, a^{2}\right)+w\left(a, a^{2}\right)-2 y\left(a, a^{2}\right)$ is a cubical integer.
(ii) $x\left(a, a^{2}\right)+y\left(a, a^{2}\right)$ is a cubical integer.
3) $x(a, 1) y(a, 1)=16\left(12 F_{4, a, 4}-3 C P_{a}^{8}-3 a G n o_{a+1}\right)$
4) $x(a, 1) y(a, 1)-z(a, 1) w(a, 1)-9=6 F_{4, a, 6}-2 C P_{a}^{9}-11 t_{4, a}-P R_{a}$

Pattern 5:

Re-write (9a) as

$$
\begin{equation*}
p^{2}-3 V^{2}=X^{2} * 1 \tag{11}
\end{equation*}
$$

and write

$$
\begin{equation*}
{ }^{\prime} 1 \text { ' }=(2+\sqrt{3})(2-\sqrt{3}), \quad X=a^{2}-3 b^{2} \tag{12}
\end{equation*}
$$

Substituting (12) in (11) and using method of factorization, define $(p+\sqrt{3} v)=(2+\sqrt{3})(a+\sqrt{3} b)^{2}$
Equating rational and irrational parts on both sides we obtain

$$
\begin{align*}
& p=2\left(a^{2}+3 b^{2}\right)+6 a b \\
& v=a^{2}+3 b^{2}+4 a b \tag{13}\\
& X=a^{2}=3 b^{2} \tag{14}
\end{align*}
$$

From (9),(13) and (14) we have
$u=6 a^{2}+12 a b+6 b^{2}$
$v=2 a^{2}+8 a b+6 b^{2}$
$p=2 a^{2}+6 a b+6 b^{2}$
In view of (2) the non-zero distinct integral solutions to (1) are

$$
\begin{aligned}
& x=2\left(4 a^{2}+10 a b+6 b^{2}\right) \\
& y=2\left(2 a^{2}+2 a b\right) \\
& z=2\left(4 a^{2}+9 a b+6 b^{2}\right) \\
& w=2\left(2 a^{2}+3 a b\right)
\end{aligned}
$$

Properties:

1) $x\left(a, a^{2}\right)+y\left(a, a^{2}\right)-z\left(a, a^{2}\right)-4 C P_{a}^{9}-4 P R_{a} \equiv 0(\bmod 2 a)$,
2) (i) $6[3 \mathrm{y}(\mathrm{a}, \mathrm{b})-2 \mathrm{w}(\mathrm{a}, \mathrm{b})]$ is a nasty number.
(ii) $2[z(1, b)-3 w(1, b)+4]$ is a nasty number.
3) $z(a, 1)(w(a, 1)-y(a, 1))=2\left[3 C P_{a}^{8}+2 t_{10, a}+26 t_{3, a}-12 t_{4, a}\right]$
4) $x(a(a+1), a)=2\left[48 F_{4, a, 4}+C P_{a}^{4}+9 S O_{a}+18 C P_{a}^{6}\right]$

One may search for other patterns of solutions and their corresponding properties.

REFERENCES

1. Dickson LE; History of the theory numbers, Vol.2: Diophantine Analysis, New York:Dover, 2005
2. Carmichael RD; The theory of numbers and Diophantine Analysis, New York: Dover, 1959
3. Gopalan MA, Somanath M, Vanitha N; On Ternary Cubic Diophantine Equation $x^{2}+y^{2}=2 z^{3}$ ",Advances in Theoretical and Applied Mathematics, 2006; 1(3):227-231.
4. Gopalan MA, Somanath M, Vanitha N; On Ternary Cubic Diophantine Equation $X^{2}-Y^{2}=z^{3}$ ", Acta Ciencia Indica, 2007; XXXIIIM(3):705-707.
5. Gopalan MA, Anbuselvi R; Integral solution of ternary cubic Diophantine equation $x^{2}+y^{2}+4 N=z x y$ ", Pure and Applied Mathematics Sciences, 2008; LXVII(1-2):107-111.
6. Gopalan MA, Somanath M, Vanitha N; Note on the equation $x^{3}+y^{3}=a\left(x^{2}-y^{2}\right)+b(x+y)$ ", International Journal of Mathematics, Computer Sciences and Information Technologies,2008; 1(1):135-136.
7. Gopalan MA, Pandichelvi V; Integral Solutions of Ternary Cubic Equation $x^{2}-x y+y^{2}=\left(k^{2}-2 k+4\right) z^{3}$. Pacific-Asian Journal of Mathematics ,2008; 2(1-2):91-96.
8. Gopalan MA, KaligaRani J; Integral solutions of $x^{2}-x y+y^{2}=\left(k^{2}-2 k z+4\right) z^{3}(\alpha \succ 1)$ and α is square free. Impact J.Sci. Tech., 2008; 2(4): 201-204
9. Gopalan MA, Devibala S, Somanath M; Integral solutions of $x^{3}+x+y^{3}+y=4(z-2)(z+2)$. Impact J. Sci. Tech., 2008;2(2):65-69.
10. Gopalan MA, Somanath M, Vanitha N; On Ternary Cubic Diophantine Equation $2^{2 \alpha-1}\left(x^{2}+y^{2}\right)=z^{3}$ ", Acta Ciencia Indica, 2008; XXXIVM(3):135-137.
11. Gopalan MA, Kaliga Rani J; Integral Solutions of $x^{3}+y^{3}+8 k(x+y)=(2 k+1) z^{3}$, "Bulletin of pure and Applied Sciences, 2010; 29E(1):95-99.
12. Gopalan MA, Janaki G; Integral solutions of $x^{2}-y^{2}+x y=\left(m^{2}-5 n^{2}\right) z^{3}$. Antartica J.Math., 2010; 7(1):63-67.
13. Gopalan MA, Shanmuganantham P; On the Equation $x^{2}+x y-y^{2}=\left(n^{2}+4 n-1\right) z^{3}$, "Bulletin of pure and Applied Sciences, 2010; 29E(2):231-235.
14. Gopalan MA, Vijayasankar A; Integral Solutions of Ternary Cubic Equation $x^{2}+y^{2}-x y+2(x+y+2)=z^{3}$. Antartica J.Math., 2010; 7(4):455-460.
15. Gopalan MA, Pandichelvi V; Observation on the cubic equation with four unknowns $x^{2}-y^{2}=z^{3}+w^{3}$. Advances in Mathematics Scientific Developments and Engineering Applications, Narosa Publishing house, Chennai, 2009; 177-187
16. Gopalan MA, Vidhyalakshmi S, Sumathi G; On the homogeneous cubic equation with four unknowns $x^{3}+y^{3}=14 z^{3}-3 w^{2}(x+y)$. Discovery J. Maths, 2012; 2(4):17-19.
17. Gopalan MA, Sumathi G, Vidhyalakshmi S; On the homogeneous cubic equation with four unknowns $x^{3}+y^{3}=z^{3}+w^{2}(x+y)$. Diophantus J.Maths, 2013;2(2):99-103.
