Scholars Journal of Engineering and Technology (SJET)
Sch. J. Eng. Tech., 2014; 2(2B):226-230
©Scholars Academic and Scientific Publisher
(An International Publisher for Academic and Scientific Resources)
www.saspublisher.com

Research Article

Integer Points on the Hyperbola $x^{2}-5 x y+y^{2}+3 x=0$
K. Meena ${ }^{1}$, S.Vidhyalakshmi ${ }^{2}$, C.Nithya ${ }^{3}{ }^{\text {* }}$, M.A.Gopalan ${ }^{4}$
${ }^{1}$ Former VC, Bharathidasan University, Trichy-620024, Tamilnadu, India.
${ }^{3}$ M.Phil student, Department of Mathematics, Shrimati Indira Gandhi College,Trichy- 620002, Tamilnadu, India
${ }^{2,4}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamilnadu, India.

*Corresponding author

C.Nithya

Email: chitrabrindsaemailcom

Abstract: The binary quadratic equation $x^{2}-5 x y+y^{2}+3 x=0$ representing hyperbola is considered. Different patterns of solutions are obtained. A few interesting relations satisfied by x and y are exhibited.
Keywords: binary quadratic, hyperbola, integer solutions.

INTRODUCTION:

The binary quadratic equation offers an unlimited field for research because of their variety [1-5]. In this context one may also refer [6-20]. This communication concerns with yet another interesting binary quadratic equation $x^{2}-5 x y+y^{2}+3 x=0$ representing hyperbola for determining its infinitely many non-zero integral solutions. Also a few interesting relations among the solutions are presented.

METHOD OF ANALYSIS:

The hyperbola under consideration is

$$
\begin{equation*}
x^{2}-5 x y+y^{2}+3 x=0 \tag{1}
\end{equation*}
$$

To start with, it is seen that (1) is satisfied by $(1,1),(1,4),(16,4)$ and $(-75,-15)$. However, we have other patterns of solutions for (1) which are illustrated below:

PATTERN: 1

Treating (1) as a quadratic in y and solving for y , we get

$$
\begin{equation*}
y=\frac{1}{2}\left[5 x \pm \sqrt{21 x^{2}-12 x}\right] \tag{2}
\end{equation*}
$$

Let $\alpha^{2}=21 x^{2}-12 x$
Substituting $x=\frac{X+2}{7}$
in (3), we have

$$
\begin{equation*}
3 X^{2}-7 \alpha^{2}=12 \tag{5}
\end{equation*}
$$

Introducing the linear transformations

$$
\begin{equation*}
X=p+7 q \text { and } \alpha=p+3 q \tag{6}
\end{equation*}
$$

in (5), we have

$$
\begin{equation*}
p^{2}=21 q^{2}-3 \tag{7}
\end{equation*}
$$

which is satisfied by $q_{0}=2, p_{0}=9$
To find the other solutions of (7), consider the pellian equation

$$
p^{2}=21 q^{2}+1
$$

whose general solution $\left(\overline{p_{n}}, \overline{q_{n}}\right)$ is given by

$$
\begin{align*}
& \overline{p_{n}}=\frac{1}{2}\left[(55+12 \sqrt{21})^{n+1}+(55-12 \sqrt{21})^{n+1}\right] \\
& \quad \overline{q_{n}}=\frac{1}{2 \sqrt{21}}\left[(55+12 \sqrt{21})^{n+1}-(55-12 \sqrt{21})^{n+1}\right] \tag{8}
\end{align*}
$$

Applying Brahmagupta Lemma between $\left(p_{0}, q_{0}\right)$ and $\left(\overline{p_{n}}, \overline{q_{n}}\right)$, the general solutions to (7) are given by,
$\left.\begin{array}{l}q_{n+1}=2 \bar{p}_{n}+9 \bar{q}_{n} \\ p_{n+1}=9 \bar{p}_{n}+42 \bar{q}_{n}\end{array}\right\}$
In view of (6), we have

$$
\begin{align*}
& X_{n+1}=23 \bar{p}_{n}+105 \bar{q}_{n} \tag{10}\\
& \alpha_{n+1}=15 \bar{p}_{n}+69 \bar{q}_{n}
\end{align*}
$$

Substituting (10) in (4), we get

$$
\begin{equation*}
x_{n+1}=\frac{1}{7}\left\{23 \bar{p}_{n}+105 \bar{q}_{n}+2\right\} \tag{11}
\end{equation*}
$$

Substituting (11) and (12) in (2) and taking the positive sign, it is seen that

$$
\begin{equation*}
y_{n+1}=\frac{1}{14}\left\{220 \bar{p}_{n}+1008 \bar{q}_{n}+10\right\} \tag{13}
\end{equation*}
$$

Substituting (8) in (12) and (13), the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& 14 x_{2 n+1}-4=23 f_{2 n+1}+\frac{105}{\sqrt{21}} g_{2 n+1}, n=0,1,2,3, \ldots \\
& 7 y_{2 n+1}-5=55 f_{2 n+1}+\frac{252}{\sqrt{21}} g_{2 n+1}, n=0,1,2,3, \ldots
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{2 n+1}=\left[(55+12 \sqrt{21})^{2 n+1}+(55-12 \sqrt{21})^{2 n+1}\right] \\
& g_{2 n+1}=\left[(55+12 \sqrt{21})^{2 n+1}-(55-12 \sqrt{21})^{2 n+1}\right]
\end{aligned}
$$

PROPERTIES:

* $x_{2 n+5}-12098 x_{2 n+3}+x_{2 n+1}=-3456$
* $12098 x_{2 n+3}-x_{2 n+5}-x_{2 n+1}$ is a Nasty number
* $y_{2 n+5}-12098 y_{2 n+3}+y_{2 n+1}=-8640$
* $\quad-10 y_{2 n+5}+120980 y_{2 n+3}-10 y_{2 n+1}$ is a Nasty number
- $7\left(12099 y_{2 n+1}-y_{2 n+3}\right)+14\left(12121 x_{2 n+1}-x_{2 n+3}\right)-108970 \equiv 0(\bmod 1166)$
\& $7 x_{2 n+3}+3857 x_{2 n+1}-18480 y_{2 n+1}+12096=0$
\& $7 y_{2 n+3}+18480 x_{2 n+1}-88543 y_{2 n+1}+57960=0$
Now,
Substituting (11) and (12) in (2) and taking the negative sign, the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& 14 x_{2 n+1}-4=23 f_{2 n+1}+\frac{105}{\sqrt{21}} g_{2 n+1}, \quad n=0,1,2,3, \ldots \\
& 14 y_{2 n+1}-10=5 f_{2 n+1}+\frac{21}{\sqrt{21}} g_{2 n+1}, \quad n=0,1,2,3, \ldots
\end{aligned}
$$

where

$$
f_{2 n+1}=\left[(55+12 \sqrt{21})^{2 n+1}+(55-12 \sqrt{21})^{2 n+1}\right]
$$

$$
g_{2 n+1}=\left[(55+12 \sqrt{21})^{2 n+1}-(55-12 \sqrt{21})^{2 n+1}\right]
$$

PROPERTIES:

$$
\begin{array}{ll}
* & 84847 x_{2 n+1}-7 x_{2 n+3}-24240 \equiv 0(\bmod 528) \\
* & x_{2 n+3}+2640 y_{2 n+1}-12649 x_{2 n+1}+1728=0 \\
* & y_{2 n+3}+551 y_{2 n+1}-2640 x_{2 n+1}+360=0 \\
* & 26400 x_{2 n+1}-5510 y_{2 n+1}-10 y_{2 n+3} \text { is a perfect square } \\
* & 25298 x_{2 n+1}-5280 y_{2 n+1}-2 x_{2 n+3} \text { is a Nasty number }
\end{array}
$$

NOTE:

Instead of (6), if we consider the linear transformations

$$
X=p-7 q \text { and } \alpha=p-3 q
$$

then, the corresponding two sets of integer solutions to (1) are obtained as

Set I:

$$
\begin{aligned}
& 14 x_{2 n+1}-4=-5 f_{2 n+1}-\frac{21}{\sqrt{21}} g_{2 n+1}, \quad n=0,1,2,3, \ldots \\
& 14 y_{2 n+1}-10=-23 f_{2 n+1}-\frac{105}{\sqrt{21}} g_{2 n+1}, \quad n=0,1,2,3, \ldots
\end{aligned}
$$

Set II:

$$
\begin{aligned}
& 7 x_{2 n+1}-5=-f_{2 n+1}, \quad n=0,1,2,3, \ldots \\
& 14 y_{2 n+1}-10=-23 f_{2 n+1}-\frac{105}{\sqrt{21}} g_{2 n+1}, \quad n=0,1,2,3, \ldots
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{2 n+1}=\left[(55+12 \sqrt{21})^{2 n+1}+(55-12 \sqrt{21})^{2 n+1}\right] \\
& g_{2 n+1}=\left[(55+12 \sqrt{21})^{2 n+1}-(55-12 \sqrt{21})^{2 n+1}\right]
\end{aligned}
$$

PATTERN: 2

Treating (1) as a quadratic in x and solving for x , we get

$$
\begin{equation*}
x=\frac{1}{2}\left[5 y-3 \pm \sqrt{9+21 y^{2}-30 y}\right] \tag{14}
\end{equation*}
$$

Let $\alpha^{2}=9+21 y^{2}-30 y$
Substituting $y=\frac{Y+5}{7}$
in (15), we have

$$
\begin{equation*}
3 Y^{2}-7 \alpha^{2}=12 \tag{17}
\end{equation*}
$$

Introducing the linear transformations

$$
\begin{equation*}
Y=p+7 q \text { and } \alpha=p+3 q \tag{18}
\end{equation*}
$$

Following the analysis similar to pattern 1, the two sets (set III,set IV) of integer solutions to (1) are represented by

Set III:

$$
\begin{aligned}
& 7 x_{2 n+1}-11=55 f_{2 n+1}+\frac{252}{\sqrt{21}} g_{2 n+1}, \quad n=0,1,2,3, \ldots \\
& 14 y_{2 n+1}-10=23 f_{2 n+1}+\frac{105}{\sqrt{21}} g_{2 n+1}, \quad n=0,1,2,3, \ldots
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{2 n+1}=\left[(55+12 \sqrt{21})^{2 n+1}+(55-12 \sqrt{21})^{2 n+1}\right] \\
& g_{2 n+1}=\left[(55+12 \sqrt{21})^{2 n+1}-(55-12 \sqrt{21})^{2 n+1}\right]
\end{aligned}
$$

PROPERTIES:

$$
\begin{array}{ll}
\star & x_{2 n+5}-12098 x_{2 n+3}+x_{2 n+1}=-19008 \\
\star & 266156 x_{2 n+3}-22 x_{2 n+5}-22 x_{2 n+1} \text { is a Nasty number } \\
\star & 14\left(y_{2 n+5}-146639857 y_{2 n+1}\right)-7\left(x_{2 n+3}-12099 x_{2 n+1}\right)+1466265482 \equiv 0(\bmod 12775378) \\
\star & 7\left(x_{2 n+5}-146373701 x_{2 n+1}\right)+1610110700 \equiv 0(\bmod 1330780) \\
\div & 7 y_{2 n+3}+3857 y_{2 n+1}-18480 x_{2 n+1}+26280=0 \\
\div & 7 x_{2 n+3}+18480 y_{2 n+1}-88543 x_{2 n+1}+113829=0
\end{array}
$$

Set IV:

$$
\begin{aligned}
& 14 x_{2 n+1}-22=5 f_{2 n+1}+\frac{21}{\sqrt{21}} g_{2 n+1}, n=0,1,2,3, \ldots \\
& 14 y_{2 n+1}-10=23 f_{2 n+1}+\frac{105}{\sqrt{21}} g_{2 n+1}, \quad n=0,1,2,3, \ldots
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{2 n+1}=\left[(55+12 \sqrt{21})^{2 n+1}+(55-12 \sqrt{21})^{2 n+1}\right] \\
& g_{2 n+1}=\left[(55+12 \sqrt{21})^{2 n+1}-(55-12 \sqrt{21})^{2 n+1}\right]
\end{aligned}
$$

PROPERTIES:

$$
\begin{array}{ll}
\star & 7\left(x_{2 n+3}-12649 x_{2 n+1}\right)+139128 \equiv 0(\bmod 2640) \\
\star & 7 y_{2 n+3}+18480 x_{2 n+1}-88543 y_{2 n+1}+34200=0 \\
\star & 7 x_{2 n+3}+3857 x_{2 n+1}-18480 y_{2 n+1}+7128=0 \\
\star & 406560 y_{2 n+1}-84854 x_{2 n+1}-154 x_{2 n+3} \text { is a perfect square } \\
\star & -399 y_{2 n+3}-1053360 x_{2 n+1}+5046951 y_{2 n+1} \text { is a Nasty number }
\end{array}
$$

NOTE:

Instead of (18), if we consider the linear transformations

$$
Y=p-7 q \text { and } \alpha=p-3 q
$$

then, the corresponding two sets (setV, setVI) of integer solutions to (1) are obtained as

Set V:

$$
\begin{aligned}
& 7 x_{n+1}-2=-f_{n+1}, n=1,3,5, \ldots \\
& 14 y_{n+1}-10=-5 f_{n+1}-\frac{21}{\sqrt{21}} g_{n+1}, n=1,3,5, \ldots
\end{aligned}
$$

Set VI:

$$
\begin{aligned}
& 14 x_{n+1}-4=-23 f_{n+1}-\frac{105}{\sqrt{21}} g_{n+1}, n=1,3,5, \ldots \\
& 14 y_{n+1}-10=-5 f_{n+1}-\frac{21}{\sqrt{21}} g_{n+1}, \quad n=1,3,5, \ldots
\end{aligned}
$$

where

$$
f_{n+1}=\left[(55+12 \sqrt{21})^{n+1}+(55-12 \sqrt{21})^{n+1}\right]
$$

$$
g_{n+1}=\left[(55+12 \sqrt{21})^{n+1}-(55-12 \sqrt{21})^{n+1}\right]
$$

CONCLUSION:

As the binary quadratic equations are rich in variety, one may consider other choices of hyperbolas and search for their non-trivial distinct integral solutions along with the corresponding properties.

2010 Mathematics Subject Classification: 11D09

REFERENCES:

Dickson LE; History of Theory of numbers,Vol.2, Chelsea publishing company, Newyork,1952.
Mordel LJ; Diophantine Equations, Academic press, Newyork,1969.
3. Andre weil, Number Theory: An approach through history: from hammurapi to legendre \backslash Andre weil: Boston (Birkahasuser boston), 1983.
4. Nigel p. Smart, the algorithmic Resolutions of Diophantine equations, Cambridge university press, 1999.
5. Smith DE, History of mathematics Vol.I and II, Dover publications, New York, 1953.
6. Gopalan MA, Vidyalakshmi S, Devibala S; On the Diophantine equation $3 x^{2}+x y=14$. Acta Ciencia Indica, 2007; XXXIIIM(2):645-646.
7. Gopalan MA, Janaki G; Observations on $Y^{2}=3 X^{2}+1$ ", Acta ciencia Indica, 2008; XXXIVM(2):693-695.
8. Gopalan MA, Vijayalakshmi R; Special Pythagorean triangles generated through the integral solutions of the equation $y^{2}=\left(K^{2}+1\right) x^{2}+1$. Antarctica J.Math, 2010; 7(5):503-507.
9. Gopalan MA, Sivagami B; Observations on the integral solutions of $y^{2}=7 x^{2}+1$. Antartica J.Math, 2010; 7(3):291-296.
10. Gopalan MA, Vijayalakshmi R; Observation on the integral solutions of $y^{2}=5 x^{2}+1$. Impact J.Sci.Tech, 2010; 4(4):125-129.
11. Gopalan MA, Sangeetha G; A remarkable observation on $y^{2}=10 x^{2}+1$. Impact J. Sci. Tech, 2010; 4(1):103106.
12. Gopalan MA, Parvathy G; Integral points on the Hyperbola $x^{2}+4 x y+y^{2}-2 x-10 y+24=0$. Antarctica J. Math, 2010; 7(2):149-155.
13. Gopalan MA, Palanikumar R; Observations on $y^{2}=12 x^{2}+1$. Antarctica J. Math, 2011; 8(2):149-152.
14. Gopalan MA, Devibala S, Vijayalakshmi R; Integral points on the hyperbola $2 x^{2}-3 y^{2}=5$. American Journal of Applied Mathematics and Mathematical Sciences, 2012; 1(1):1-4.
15. Gopalan MA, Vidyalakshmi S, Usha Rani TR, Mallika S; Observations on $y^{2}=12 x^{2}-3$. Bessel J.Math, 2012; 2(3):153-158.
16. Gopalan MA, Vidyalakshmi S, Sumathi G, Lakshmi K; Integral points on the Hyperbola $x^{2}+6 x y+y^{2}+40 x+8 y+40=0$. Bessel J. Math, 2012; 2(3):159-164.
17. Gopalan MA, Geetha K; Observations on the Hyperbola $y^{2}=18 x^{2}+1$. Retell, 2012; 13(1):81-83.
18. Gopalan MA, Sangeetha G, Manju Somanath; Integral points on the Hyperbola $(a+2) x^{2}-a y^{2}=4 a(k-1)+2 k^{2}$. Indian Journal of Science, 2012; 1(2):125-126.
19. Gopalan MA, Vidyalakshmi S, Kavitha A; Observations on the Hyperbola $a x^{2}-(a+1) y^{2}=3 a-1$. Discovery, 2013; 4(10):22-24.
20. Gopalan MA , Vidyalakshmi S, Kavitha A; Integral points on the Hyperbola $x^{2}-6 x y+y^{2}+4 x=0$ ", Sch.J.Eng.Tech., 2014; 2(1):14-18.

