Scholars Journal of Engineering and Technology (SJET)
 Sch. J. Eng. Tech., 2014; 2(2B):243-246

Research Article

Sufficient conditions for certain analytic functions

Hong Liu

Department of Foundation, Harbin Finance University, Harbin 150010, China.

```
*Corresponding author
Hong Liu
Email: hom ghliv@ 126.cm
```

Abstract: Let $\mathrm{f}(\mathrm{z})$ be an analytic function in the open unit disk U normalized with $f(0)=0$ and $f^{\prime}(0)=1$. In this paper, we deal with the question of another conditions different from [6]. This is the extension of their works.
Keywords: Analytic function; Starlike function; Close-to-convex function
2010 Mathematical Subject Classification: 30C45.

INTRODUCTION

Let H denote the class of analytic functions in $U=\{z \in C:|z|<1\}$, and A denote the subclass of H, which consist as functions of the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots U \tag{1}
\end{equation*}
$$

A function $f(z) \in A$ is consist as starlike of order $\alpha(0 \leq \alpha<p)$ in U (see [1]), that is, $f(z) \in S^{*}(\alpha)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, 0 \leq \alpha<1, z \in U \tag{2}
\end{equation*}
$$

with $S^{*}(0):=S^{*}$.
Similarly, a function $f(z) \in A$ is consist as convex of order $\alpha(0 \leq \alpha<1)$ in U (see [1]), that is, $f(z) \in K(\alpha)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, 0 \leq \alpha<1, z \in U \tag{3}
\end{equation*}
$$

with $K(0)=K$.

According to the definitions for the classes $S^{*}(\alpha)$ and $K(\alpha)$, we know that $f(z) \in K(\alpha)$ if and only if $z f^{\prime}(z) \in S^{*}(\alpha)$. Marx [2] and Strohhäcker [3] showed that $f(z) \in K(0)$ implies $f(z) \in S^{*}(1 / 2)$.

Ozaki [4] and Kaplan [5] investigated the following functions: If $f \in A$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f^{\prime}(z)}{g^{\prime}(z)}\right)>0, z \in U \tag{4}
\end{equation*}
$$

for some convex function $g(z)$, then $f(z)$ is univalent function in U. In the view of Kaplan (see [5]), we say that $f(z)$ satisfying the above inequality is close-to-convex in U, that is, $f(z) \in C(0):=C$.

It is well known that the above definition concerning close-to-convex functions, is equivalent to the following condition:

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>0, z \in U \tag{5}
\end{equation*}
$$

for some starlike function $g(z) \in A$.

A function $f(z) \in A$ is consist as close-to-convex of order $\alpha(0 \leq \alpha<p)$ in U with respect to $g(z)$, that is, $f(z) \in C(\alpha)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>\alpha, z \in U \tag{6}
\end{equation*}
$$

for some real $\alpha(0 \leq \alpha<1)$ and for some starlike function $g(z) \in A$.

Nunokawa et al. investigated the order α of close-to-convex functions (see [6]). In this paper, we deal with the question of another conditions different from [6]. This is the extension of their works.

MAIN RESULTS

Lemma 2.1. (see [7])Let $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ be analytic in the unit disc U and suppose that there exists a point $z_{0} \in U$ such that

$$
\begin{equation*}
\operatorname{Rep}(z)>0 \text { for }|z|<\left|z_{0}\right| \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Rep}\left(z_{0}\right)=0 . \tag{8}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
z_{0} p^{\prime}\left(z_{0}\right) \leq-\frac{1}{2}\left(1+\left|p\left(z_{0}\right)\right|^{2}\right) . \tag{9}
\end{equation*}
$$

Making use of Lemma 2.1, we first prove the following Theorem.
Theorem 2.1. Let $f(z) \in A$, and suppose that there exists a starlike function $g(z)$ such that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right)\right\}>-\frac{1}{2}\left(1+\left|\frac{z f^{\prime}(z)}{g(z)}\right|^{2}\right), z \in U \tag{10}
\end{equation*}
$$

then $f(z) \in C$.
Proof. Let us put

$$
\begin{equation*}
p(z)=\frac{z f^{\prime}(z)}{g(z)} \tag{11}
\end{equation*}
$$

then $p(z)$ is analytic in U and $p(0)=1$. Suppose that there exists a point $z_{0} \in U$ which satisfies the conditions (7) and (8) of Lemma 2.1.

Making use of (11), it follows that

$$
\begin{equation*}
\frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}-\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right)=z_{0} p^{\prime}\left(z_{0}\right) . \tag{12}
\end{equation*}
$$

Since the function $p(z)$ and the point z_{0} satisfy all conditions Lemma 2.1, therefore in view of (9), we obtain

$$
\begin{gather*}
\operatorname{Re}\left\{\frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}-\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right)\right\} \leq-\frac{1}{2}\left(1+\left|p\left(z_{0}\right)\right|^{2}\right) \\
=-\frac{1}{2}\left(1+\left|\frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right|^{2}\right) . \tag{13}
\end{gather*}
$$

This is a contradiction with (10) and therefore proof of the Theorem 2.1 is completed.
Theorem 2.2. Let $f(z) \in A$, and suppose that there exists a starlike function $g(z)$ such that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right)\right\}>-\frac{1}{4}\left(1+\left|\frac{z f^{\prime}(z)}{g(z)}\right|^{2}\right), z \in U \tag{14}
\end{equation*}
$$

then $f(z) \in C(1 / 2)$.

Proof. Let us put

$$
\begin{equation*}
p(z)=2\left(\frac{z f^{\prime}(z)}{g(z)}-\frac{1}{2}\right), \tag{15}
\end{equation*}
$$

then $p(z)$ is analytic in U and $p(0)=1$. Suppose that there exists a point $z_{0} \in U$ which satisfies the conditions (7) and (8) of Lemma 2.1.
Now using (15), it follows that

$$
\begin{equation*}
\frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}-\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right)=\frac{1}{2} z_{0} p^{\prime}\left(z_{0}\right) \tag{16}
\end{equation*}
$$

Since the function $p(z)$ and the point z_{0} satisfy all conditions Lemma 2.1, therefore in view of (9), we obtain

$$
\begin{gather*}
\operatorname{Re}\left\{\frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}-\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right)\right\} \leq-\frac{1}{4}\left(1+\left|p\left(z_{0}\right)\right|^{2}\right) \\
=-\frac{1}{4}\left(1+\left|\frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right|^{2}\right) \tag{17}
\end{gather*}
$$

This is a contradiction with (14) and therefore proof of the Theorem 2.2 is completed.
Theorem 2.3. Let $f(z) \in A, 0 \leq \alpha<1$ and suppose that there exists a starlike function $g(z)$ such that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right)\right\}>-\frac{1}{2}(1-\alpha), z \in U \tag{18}
\end{equation*}
$$

then $f(z) \in C(\alpha)$.

Proof. Let us put

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{g(z)}=(1-\alpha) p(z)+\alpha \tag{19}
\end{equation*}
$$

then $p(z)$ is analytic in U and $p(0)=1$. Suppose that there exists a point $z_{0} \in U$ which satisfies the conditions (7) and (8) of Lemma 2.1.
Making use of (19), it follows that

$$
\begin{equation*}
\frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}-\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right)=(1-\alpha) z_{0} p^{\prime}\left(z_{0}\right) \tag{20}
\end{equation*}
$$

Since the function $p(z)$ and the point z_{0} satisfy all conditions Lemma 2.1, therefore in view of (9), we obtain

$$
\begin{align*}
\operatorname{Re}\left\{\frac { z _ { 0 } f ^ { \prime } (z _ { 0 }) } { g (z _ { 0 }) } \left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right.\right. & \left.\left.-\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right)\right\} \leq-\frac{1}{2}(1-\alpha)\left(1+\left|p\left(z_{0}\right)\right|^{2}\right) \\
& \leq-\frac{1}{2}(1-\alpha) \tag{21}
\end{align*}
$$

This is a contradiction with (18) and therefore proof of the Theorem 2.3 is completed.

REFERENCES

1. Robertson MS; On the theory of univalent functions. Ann. of Math, 1936; 37:374-408.
2. Marx A; Untersuchungen über schlichte Abbildungen. Math. Ann, 1933;107:40-67.
3. Strohhäcker E; Beiträge zur Theorie der schlichten Funktionen, Math. Zeit., 1933;37:356-380.

Liu H., Sch. J. Eng. Tech., 2014; 2(2B):243-246
4. Ozaki S; On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daig, 1935; A2:167-188.
5. Kaplan W; Close-to-convex schlicht functions. Michigan Math. J., 1952; 1:169-185.
6. Nunokawa M, Aydogan M, Kuroki K, Yildiz I, Owa S; Some properties concerning close-to-convexity of certain analytic functions. Journal of Inequalities and Applications, 2012;245.
7. Nunokawa M; Goyal SP, Kumar R; Sufficient conditions for starlikeness. Journal of Classical Analysis, 2012; 1(1):85-90.

