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INTRODUCTION 

Let H  denote the class of analytic functions in { 1}U z C z    , and A  denote the subclass of H , which consist 

as functions of the form  

 
2 3

2 3( )f z z a z a z   U  (1) 

 

A function ( )f z A  is consist as starlike of order (0 )p    in U  (see [1]), that is, ( ) ( )f z S  , if and only 

if  

 
( )

( ) 0 1
( )

zf z
Re z U

f z
 


       (2) 

with (0)S S    

Similarly, a function ( )f z A  is consist as convex of order (0 1)    in U  (see [1]), that is, ( ) ( )f z K  , if 

and only if  

 
( )

(1 ) 0 1
( )

zf z
Re z U

f z
 


      


 (3) 

with (0)K K    

 

According to the definitions for the classes ( )S 
 and ( )K  , we know that ( ) ( )f z K   if and only if

'( ) ( )zf z S  . Marx [2] and Strohhäcker [3] showed that ( ) (0)f z K  implies ( ) (1 2)f z S  .  

 

Ozaki [4] and Kaplan [5] investigated the following functions : If f A  satisfies  

 
( )

( ) 0
( )

f z
Re z U

g z


  


 (4) 

for some convex function ( )g z , then ( )f z  is univalent function in U . In the view of Kaplan (see [5]), we say that 

( )f z  satisfying the above inequality is close-to-convex in U , that is, ( ) (0)f z C C  .  

 

It is well known that the above definition concerning close-to-convex functions, is equivalent to the following condition:  

 
( )

( ) 0
( )

zf z
Re z U

g z


    (5) 
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for some starlike function ( )g z A .  

 

A function ( )f z A  is consist as close-to-convex of order (0 )p    in U  with respect to ( )g z , that is, 

( ) ( )f z C  , if and only if  

 
( )

( )
( )

zf z
Re z U

g z



    (6) 

for some real (0 1)    and for some starlike function ( )g z A .  

 

Nunokawa et al. investigated the order   of close-to-convex functions (see [6]). In this paper, we deal with the question 

of another conditions different from [6]. This is the extension of their works.  

 

MAIN RESULTS 

Lemma 2.1. (see [7])Let 
2

1 2( ) 1p z c z c z     be analytic in the unit disc U  and suppose that there exists a 

point 0z U  such that   

 0( ) 0Rep z for z z     (7) 

and   

 0( ) 0Rep z    (8) 

Then we have   

 
2

0 0 0

1
( ) (1 ( ) )

2
z p z p z        (9) 

 

Making use of Lemma 2.1, we first prove the following Theorem.  

 

Theorem 2.1. Let ( )f z A , and suppose that there exists a starlike function ( )g z  such that   

 
2( ) ( ) ( ) 1 ( )

{ (1 )} (1 )
( ) ( ) ( ) 2 ( )

zf z zf z zg z zf z
Re z U

g z f z g z g z

   
        


 (10) 

then ( )f z C    

 
Proof. Let us put  

 
( )

( )
( )

zf z
p z

g z


   (11) 

then ( )p z  is analytic in U  and (0) 1p  . Suppose that there exists a point 0z U  which satisfies the conditions (7) 

and (8) of Lemma 2.1.  

 

Making use of (11), it follows that  

 0 0 0 0 0 0
0 0

0 0 0

( ) ( ) ( )
(1 ) ( )

( ) ( ) ( )

z f z z f z z g z
z p z

g z f z g z

  
   


 (12) 

Since the function ( )p z  and the point 0z  satisfy all conditions Lemma 2.1, therefore in view of (9), we obtain  

 
20 0 0 0 0 0

0

0 0 0

( ) ( ) ( ) 1
{ (1 )} (1 ( ) )

( ) ( ) ( ) 2

z f z z f z z g z
Re p z

g z f z g z

  
      


 

 
20 0

0

( )1
(1 )

2 ( )

z f z

g z


       (13) 

 

 
This is a contradiction with (10) and therefore proof of the Theorem 2.1 is completed.  

 

Theorem 2.2. Let ( )f z A , and suppose that there exists a starlike function ( )g z  such that   
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2( ) ( ) ( ) 1 ( )

{ (1 )} (1 )
( ) ( ) ( ) 4 ( )

zf z zf z zg z zf z
Re z U

g z f z g z g z

   
        


 (14) 

then ( ) (1 2)f z C     

 

Proof. Let us put  

 
( ) 1

( ) 2( )
( ) 2

zf z
p z

g z


    (15) 

then ( )p z  is analytic in U  and (0) 1p  . Suppose that there exists a point 
0z U  which satisfies the conditions (7) 

and (8) of Lemma 2.1.  

Now using (15), it follows that  

 0 0 0 0 0 0
0 0

0 0 0

( ) ( ) ( ) 1
(1 ) ( )

( ) ( ) ( ) 2

z f z z f z z g z
z p z

g z f z g z

  
   


 (16) 

Since the function ( )p z  and the point 0z  satisfy all conditions Lemma 2.1, therefore in view of (9), we obtain  

 
20 0 0 0 0 0

0

0 0 0

( ) ( ) ( ) 1
{ (1 )} (1 ( ) )

( ) ( ) ( ) 4

z f z z f z z g z
Re p z

g z f z g z

  
      


 

 
20 0

0

( )1
(1 )

4 ( )

z f z

g z


       (17) 

 

 

This is a contradiction with (14) and therefore proof of the Theorem 2.2 is completed.  

 

Theorem 2.3. Let ( ) 0 1f z A      and suppose that there exists a starlike function ( )g z  such that   

 
( ) ( ) ( ) 1

{ (1 )} (1 )
( ) ( ) ( ) 2

zf z zf z zg z
Re z U

g z f z g z


  
      


 (18) 

then ( ) ( )f z C     

 

Proof. Let us put  

 
( )

(1 ) ( )
( )

zf z
p z

g z
 


     (19) 

then ( )p z  is analytic in U  and (0) 1p  . Suppose that there exists a point 0z U  which satisfies the conditions (7) 

and (8) of Lemma 2.1.  

Making use of (19), it follows that  

 0 0 0 0 0 0
0 0

0 0 0

( ) ( ) ( )
(1 ) (1 ) ( )

( ) ( ) ( )

z f z z f z z g z
z p z

g z f z g z


  
    


 (20) 

Since the function ( )p z  and the point 0z  satisfy all conditions Lemma 2.1, therefore in view of (9), we obtain  

 
20 0 0 0 0 0

0

0 0 0

( ) ( ) ( ) 1
{ (1 )} (1 )(1 ( ) )

( ) ( ) ( ) 2

z f z z f z z g z
Re p z

g z f z g z


  
       


 

 
1

(1 )
2

     (21) 

 

 

This is a contradiction with (18) and therefore proof of the Theorem 2.3 is completed.  
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