Scholars Journal of Engineering and Technology (SJET)

Sch. J. Eng. Tech., 2014; 2(2B):243-246 ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com

ISSN 2321-435X (Online) ISSN 2347-9523 (Print)

Research Article

Sufficient conditions for certain analytic functions

Hong Liu

Department of Foundation, Harbin Finance University, Harbin 150010, China.

*Corresponding author Hong Liu Email: hom ghliv@126.com

Abstract: Let f(z) be an analytic function in the open unit disk U normalized with f(0) = 0 and f'(0) = 1. In this paper, we deal with the question of another conditions different from [6]. This is the extension of their works. Keywords: Analytic function; Starlike function; Close-to-convex function

2010 Mathematical Subject Classification: 30C45.

INTRODUCTION

Let *H* denote the class of analytic functions in $U = \{z \in C : |z| < 1\}$, and *A* denote the subclass of *H*, which consist as functions of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots U$$
(1)

A function $f(z) \in A$ is consist as starlike of order $\alpha(0 \le \alpha < p)$ in U (see [1]), that is, $f(z) \in S^*(\alpha)$, if and only if

$$Re(\frac{zf'(z)}{f(z)}) > \alpha, 0 \le \alpha < 1, z \in U$$
⁽²⁾

with $S^*(0) := S^*$.

Similarly, a function $f(z) \in A$ is consist as convex of order $\alpha(0 \le \alpha < 1)$ in U (see [1]), that is, $f(z) \in K(\alpha)$, if and only if

$$Re(1 + \frac{zf''(z)}{f'(z)}) > \alpha, 0 \le \alpha < 1, z \in U$$
(3)

with K(0) = K.

According to the definitions for the classes $S^*(\alpha)$ and $K(\alpha)$, we know that $f(z) \in K(\alpha)$ if and only if $zf'(z) \in S^*(\alpha)$. Marx [2] and Strohhäcker [3] showed that $f(z) \in K(0)$ implies $f(z) \in S^*(1/2)$.

Ozaki [4] and Kaplan [5] investigated the following functions : If $f \in A$ satisfies

$$Re(\frac{f'(z)}{g'(z)}) > 0, z \in U$$
⁽⁴⁾

for some convex function g(z), then f(z) is univalent function in U. In the view of Kaplan (see [5]), we say that f(z) satisfying the above inequality is close-to-convex in U, that is, $f(z) \in C(0) := C$.

It is well known that the above definition concerning close-to-convex functions, is equivalent to the following condition:

$$Re(\frac{zf'(z)}{g(z)}) > 0, z \in U$$
⁽⁵⁾

for some starlike function $g(z) \in A$.

A function $f(z) \in A$ is consist as close-to-convex of order $\alpha(0 \le \alpha < p)$ in U with respect to g(z), that is, $f(z) \in C(\alpha)$, if and only if

$$Re(\frac{zf'(z)}{g(z)}) > \alpha, z \in U$$
(6)

for some real $\alpha(0 \le \alpha < 1)$ and for some starlike function $g(z) \in A$.

Nunokawa et al. investigated the order α of close-to-convex functions (see [6]). In this paper, we deal with the question of another conditions different from [6]. This is the extension of their works.

MAIN RESULTS

Lemma 2.1. (see [7])Let $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ be analytic in the unit disc U and suppose that there exists a point $z_0 \in U$ such that

$$Rep(z) > 0 for |z| < |z_0|$$
 (7)

and

$$Rep(z_0) = 0. \tag{8}$$

Then we have

$$z_0 p'(z_0) \le -\frac{1}{2} (1+|p(z_0)|^2).$$
(9)

Making use of Lemma 2.1, we first prove the following Theorem.

Theorem 2.1. Let $f(z) \in A$, and suppose that there exists a starlike function g(z) such that

$$Re\{\frac{zf'(z)}{g(z)}(1+\frac{zf''(z)}{f'(z)}-\frac{zg'(z)}{g(z)})\} > -\frac{1}{2}(1+|\frac{zf'(z)}{g(z)}|^2), z \in U$$
(10)

then $f(z) \in C$.

Proof. Let us put

$$p(z) = \frac{zf'(z)}{g(z)},\tag{11}$$

then p(z) is analytic in U and p(0) = 1. Suppose that there exists a point $z_0 \in U$ which satisfies the conditions (7) and (8) of Lemma 2.1.

Making use of (11), it follows that

$$\frac{z_0 f'(z_0)}{g(z_0)} \left(1 + \frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z_0 g'(z_0)}{g(z_0)}\right) = z_0 p'(z_0).$$
(12)

Since the function p(z) and the point z_0 satisfy all conditions Lemma 2.1, therefore in view of (9), we obtain

$$Re\{\frac{z_0 f'(z_0)}{g(z_0)}(1 + \frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z_0 g'(z_0)}{g(z_0)})\} \le -\frac{1}{2}(1 + |p(z_0)|^2)$$
$$= -\frac{1}{2}(1 + |\frac{z_0 f'(z_0)}{g(z_0)}|^2).$$
(13)

This is a contradiction with (10) and therefore proof of the Theorem 2.1 is completed.

Theorem 2.2. Let $f(z) \in A$, and suppose that there exists a starlike function g(z) such that

Liu H., Sch. J. Eng. Tech., 2014; 2(2B):243-246

$$Re\{\frac{zf'(z)}{g(z)}(1+\frac{zf''(z)}{f'(z)}-\frac{zg'(z)}{g(z)})\} > -\frac{1}{4}(1+|\frac{zf'(z)}{g(z)}|^2), z \in U$$
(14)

then $f(z) \in C(1/2)$.

Proof. Let us put

$$p(z) = 2\left(\frac{zf'(z)}{g(z)} - \frac{1}{2}\right),\tag{15}$$

then p(z) is analytic in U and p(0) = 1. Suppose that there exists a point $z_0 \in U$ which satisfies the conditions (7) and (8) of Lemma 2.1.

Now using (15), it follows that

$$\frac{z_0 f'(z_0)}{g(z_0)} \left(1 + \frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z_0 g'(z_0)}{g(z_0)}\right) = \frac{1}{2} z_0 p'(z_0).$$
(16)

Since the function p(z) and the point z_0 satisfy all conditions Lemma 2.1, therefore in view of (9), we obtain

$$Re\{\frac{z_0 f'(z_0)}{g(z_0)}(1 + \frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z_0 g'(z_0)}{g(z_0)})\} \le -\frac{1}{4}(1 + |p(z_0)|^2)$$
$$= -\frac{1}{4}(1 + |\frac{z_0 f'(z_0)}{g(z_0)}|^2).$$
(17)

This is a contradiction with (14) and therefore proof of the Theorem 2.2 is completed.

Theorem 2.3. Let $f(z) \in A, 0 \le \alpha < 1$ and suppose that there exists a starlike function g(z) such that

$$\operatorname{Re}\left\{\frac{zf'(z)}{g(z)}\left(1+\frac{zf''(z)}{f'(z)}-\frac{zg'(z)}{g(z)}\right)\right\} > -\frac{1}{2}(1-\alpha), z \in U$$
(18)

then $f(z) \in C(\alpha)$.

Proof. Let us put

$$\frac{zf'(z)}{g(z)} = (1-\alpha)p(z) + \alpha, \tag{19}$$

then p(z) is analytic in U and p(0) = 1. Suppose that there exists a point $z_0 \in U$ which satisfies the conditions (7) and (8) of Lemma 2.1.

Making use of (19), it follows that

$$\frac{z_0 f'(z_0)}{g(z_0)} \left(1 + \frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z_0 g'(z_0)}{g(z_0)}\right) = (1 - \alpha) z_0 p'(z_0).$$
(20)

Since the function p(z) and the point z_0 satisfy all conditions Lemma 2.1, therefore in view of (9), we obtain

$$Re\{\frac{z_0 f'(z_0)}{g(z_0)}(1 + \frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z_0 g'(z_0)}{g(z_0)})\} \le -\frac{1}{2}(1 - \alpha)(1 + |p(z_0)|^2) \le -\frac{1}{2}(1 - \alpha).$$
(21)

This is a contradiction with (18) and therefore proof of the Theorem 2.3 is completed.

REFERENCES

- 1. Robertson MS; On the theory of univalent functions. Ann. of Math, 1936; 37:374-408.
- 2. Marx A; Untersuchungen über schlichte Abbildungen. Math. Ann, 1933;107:40-67.
- 3. Strohhäcker E; Beiträge zur Theorie der schlichten Funktionen, Math. Zeit., 1933;37:356-380.

Liu H., Sch. J. Eng. Tech., 2014; 2(2B):243-246

- 4. Ozaki S; On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daig, 1935; A2:167-188.
- 5. Kaplan W; Close-to-convex schlicht functions. Michigan Math. J., 1952; 1:169-185.
- 6. Nunokawa M, Aydogan M, Kuroki K, Yildiz I, Owa S; Some properties concerning close-to-convexity of certain analytic functions. Journal of Inequalities and Applications, 2012;245.
- 7. Nunokawa M; Goyal SP, Kumar R; Sufficient conditions for starlikeness. Journal of Classical Analysis, 2012; 1(1):85-90.