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INTRODUCTION 

Let   denotes the class of functions f  of the form  

 
1

1
( ) n

n

n

f z a z
z





   (1) 

which are analytic in { 0 1}D z C z     . A function f   is said to be meromorphic starlike of order   if it 

satisfies  
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zf z
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f z
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
    (2) 

for some real (0 1)    .We denote by ( )  the class of all meromorphic starlike functions of order  . A 

function ( )f z   is called meromorphic close-to-convex of order   if it satisfies  

 
2{ ( )} ( )Re z f z z D    (3) 

We denote by ( )MC   the class of all meromorphic close-to-convex functions of order  ..  

Several authors [6,7,8] have studied meromorphic close-to-convex functions of order   . We shall unify these functions 

in Definition 1.1.  

 

Definition 1.1. Let ( )g z  be a meromorphic starlike function in    If ( )f z   satisfies the following inequality   

 
( )

{ }
( )

zf z
Re z D

g z

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     (4) 

for some (0 1)   . The function  f  can also be called a meromorphic close-to-convex function,and wo denote it 

by ( )MC     

 

THE MAIN RESULTS 

Lemma 2.1. (see [4])Let 
1

( ) 1 n

n

n

p z a z




   be analytic in the unit disc U  and   be a positive real number. Then 

suppose that there exists a point 0z U  such that   

 0{ ( )}Re p z for z z     (5) 

and   
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0 0{ ( )} ( )Re p z p z      (6) 

Then we have   

 0 0 11 1
2(1 ) 2 2 2
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Lemma 2.2. Let 
1

( ) 1 n

n

n

p z a z




    be analytic in the unit disc U  and  suppose that there exists a point 
0z U  

such that   
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and   

 0 0{ ( )} ( )Re p z p z      (9) 

for some real ( 0)      Then we have   
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Theorem 2.1. Let ( )f z  , and suppose that there exists a meromorphic starlike function ( )g z  such that   
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(ii)for the case 1
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Then we have ( ) ( )f z MC     

 
Proof. Let  
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p z
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then ( )p z  is analytic in U  and (0) 1p  .Now using (15), we have  
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(i) For the case 1
2

0   , if there exists a point 0z U  such that  

 0{ ( )}Re p z for z z     (17) 

and  

 0{ ( )}Re p z    (18) 

then applying Lemma 2.1 and the hypothesis of Theorem 2.1,we have  

 0( )p z    (19) 
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and  
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Then it follows that  
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which contradicts the hypothesis of Theorem 2.1.  

(ii) For the case 1
2

1  , applying the same method as above, we also have that  
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g z
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Therefore the proof of the Theorem 2.1 is completed.  

 

Corollary 2.1. Let ( )f z  . Suppose that for arbitrary  ,  ( )f z  satisfies   

 
2 ( )z f z    (24) 

and the following inequalities:  
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(ii)for the case 1
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Then we have ( ) ( )f z MC     

Proof.Let ( ) 1g z z   in Theorem 2.1,we can obtain Corollary 2.1.  

 

Theorem 2.2. Let ( )f z   and   ( 0  ) be a real number. Suppose that there exists a meromorphic starlike 

function ( )g z  such that   
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for arbitrary (0 1)r r  . Then we have ( ) ( )f z MC     

 

Proof. Let  
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then ( )p z  is analytic in U  and (0) 1p  .Now using (29), we have  
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If there exists a point 0z U  such that  
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0{ ( )}Re p z for z z     (31) 

and  

 
0{ ( )}Re p z    (32) 

then applying Lemma 2.2 and the hypothesis of Theorem 2.2,we have  
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Therefore, applying Lemma 2.2,we have  
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This contradicts the hypothesis of Theorem 2.2,and therefore we have ( ) ( )f z MC     

 

Corollary 2.2. Let ( )f z  , suppose that for arbitrary  ,  ( )f z  satisfies   

 
2 ( )z f z    (36) 

and the following inequalities:  
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 Proof. Let ( ) 1g z z   in Theorem 2.2,we can obtain Corollary 2.2.  
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