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INTRODUCTION 

Let ( )nA p  denote the class of functions of the form  
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

          (1) 

which are analytic and p -valent in the open unit disk { 1}U z z   .  

A function ( )nf A p  is said to be p -valently starlike functions of order   (0 p  )in U  if it satisfies the 

following inequality:  
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We denote this class by ( )nS p   .  

Similarly, a function ( )nf A p  is said to be p -valently convex functions of order   (0 p  )in U  if  
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It follows from expression (2) and (3) that f  is convex if and only if, zf   is starlike.A function ( )nf A p  is said to 

be close-to-convex functions of order   (0 p  ) in U  if  
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We denote by ( )nC p  .  

A function ( )nf A p  is said to belong to the class of p -valently close-to-convex functions of order   and type   in 

U, if there exists a function ( ) ( )ng z S p    such that  
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We denote the class of all such functions by ( )pK   .  
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The class ( 0)nS p   was introduced by Goodman[1], whereas Patil and Thakare[2] generalized this idea to get the class 

( )nS p   .Owa[3] introduced the class ( )nC p  ,also ( 0)nC p  was introduced by Goodman[2].The class 

( )pK    was studied by Aouf[4] and the class 
1( )K    was studied by Libera[5].  

The following lemma (popularly known as Jack’s lemma) will be required in our present investigation.  

 

Lemma 1. (see [6,7]) Let the (nonconstant) function ( )w z  be analytic in U  with (0) 0w  . If ( )w z   attains its 

maximum value on the circle 1z r    at a point 
0z U , then  

 0 0 0( ) ( )z w z kw z    (6) 

where k  is a real number and 1k  .  

 

MAIN RESULTS AND THEIR CONSEQUENCES 

Theorem 1. Let ( ) {0} 0nf A p w C p p N z U            ‚  and also let the function H  be defined by  
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where ( )ng S p   . If ( )H z  satisfies one of the following conditions:  

  2 2{ ( )} { } { } 0 (8) 0 { } 0 (9) { } { } 0 (10)Re H z w Re w if Re w if Re w w Re w if Re w              

or  

  2 2{ ( )} { } { } 0 (11) 0 { } 0 (12) { } { } 0 (13)Im H z w Im w if Im w if Im w w Im w if Im w              

then  
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where the value of complex power in (10) is taken to be as its principal value.  

Proof.. We define the function   by  
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( ) ( ) ( )
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wzf z
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where {0} 0 ( )nw C p p N z U f H p           ‚  and ( )ng S p   .  

We see clearly that the function   is regular in U  and (0) 0  . Making use of the logarithmic differentiation of 

both sides of (11) with respect to the known complex variable z , we can get  
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and if we make use of equality (11) once again, we can find that  
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Assume that there exists a point 0z U  such that  
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Applying Lemma 1, we can obtain  

 0 0 0( ) ( ) 1z z c z c       (19) 

Then (15) yields  
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so that  
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 2 2

0{ ( )} { } { } 0 (24) 0 { } 0 (25) { } { } 0 (26)Im H z w Im w if Im w if Im w w Im w if Im w              

But the inequalities in (17) and (18) contradict, respectively, the inequalities in (8) and (9). Hence, we conclude that 

( ) 1z    for all z U . Consequently, it follows from (11) that  
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g z
 
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Therefore, the desired proof is completed.   

The Theorem 1 immediately yields the following interesting and important consequences.  

 

Corollary 2. Let ( ) ( ) {0} 0n nf A p g S p R p p N z U                 ‚  and let the function H  be 

defined by (7). Also, if ( )H z  satisfies the following conditions:  

  1 1{ ( )} 0 (28) 0 or { ( )} 0 (29)Re H z if if Im H z
 

            

then  
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Proof.. We choose   as a real number and {0}w R  ‚  in Theorem 1, then we obtain the corollary.   

 

Corollary 3. Let ( ) ( ) 0n nf A p g S p p p N z U                and let the function H  be defined by (7). 

Also, if ( )H z  satisfies the following conditions:  

 { ( )} 1or { ( )} 0Re H z Im H z    (31) 

 

then ( )pK   , that is, f  is a p -valent close-to-convex function of order   and type   in U .  

Proof.. Putting 1w   in the Theorem 1, we can get the corollary.   

 

Corollary 4. Let ( ) 0nf A p p p N z U          and let the function H  be defined by  
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If ( )H z  satisfies the following conditions:  

 { ( )} 1or { ( )} 0Re H z Im H z    (33) 

 

then ( )nf S p   , that is, f  is a p -valent starlike function of order   in U .  

Proof.. Putting ( ) ( )g z f z  in the the corollary 3.   

 

Corollary 5. Let ( ) 0nf A p p p N z U          and let the function H  be defined by  
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H z p

f z pz f z
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If ( )H z  satisfies the following conditions:  

 { ( )} 1or { ( )} 0Re H z Im H z    (35) 

 

then ( )nf C p   , that is, f  is a p -valent close-to-convex function of order   in U .  

Proof.. Putting ( ) pg z z  in the the corollary 3.   
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