Scholars Journal of Engineering and Technology (SJET)

Sch. J. Eng. Tech., 2014; 2(3C):447-450 ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com

Research Article

Relations Among Polygonal Numbers Through The Integer Solutions Of $z^2=6x^2+y^2$

K.Meena¹, S.vidhyalakshmi², M.A.Gopalan³, R. Bhavani^{*4}

¹Former VC, Bharathidasan University, Trichy-620024, Tamilnadu, India. ^{2,3}Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamilnadu, India. ⁴M.Phil student, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamilnadu, India.

*Corresponding author

R. Bhavani Email: <u>bhava5889@gmail.com</u>

Abstract: The ternary quadratic equation given by $Z^2 = 6X^2 + Y^2$ is considered. Employing its non-zero integral solutions, relations among few special polygonal numbers are determined. **Keywords:** Pell equations, Ternary quadratic equation.

INTRODUCTION:

In [1-3], different patterns of m-gonal numbers are presented. In [4] explicit formulas for the rank of Triangular numbers which are simultaneously equal to Pentagonal, Decagonal and Dodecagonal numbers in turn are presented. In [5,6] the relations among the pairs of special m-gonal numbers generated through the solutions of the binary quadratic equations are determined.

In this communication, we consider the ternary quadratic equation given by $Z^2 = 6X^2 + Y^2$ and obtain the relations among the pairs of special m-gonal numbers generated through its solutions.

2010 Mathematics subject classification: 11D09

NOTATIONS:

 T_{mn} : Polygonal number of rank n with m sides

METHOD OF ANALYSIS:

Consider the Diophantine equation

 $Z^2 = 6X^2 + Y^2$

$$X = 6rs$$

$$Y = 6r^{2} - s^{2}$$

$$Z = 6r^{2} + s^{2}$$

where r and s are non-zero positive integers.

CHOICE (1):

The choices

$$2M + 1 = 6r^{2} + s^{2}, 4N - 1 = 6r^{2} - s^{2}$$
in (1) leads to the relation that
$$"4T_{3,M} - 4T_{6,N} = 3\alpha^{2}"$$
(3)

From (3), the values of ranks of the Triangular numbers and Hexagonal numbers are respectively given by

(1)

(2)

$$M = \frac{6r^2 + s^2 - 1}{2}, N = \frac{6r^2 - s^2 - 1}{4}$$

For integer values of M and N, choose r = 2k, s = 2k - 1

TABLE: 1- Examples				
k	M	N	$4(T_{3,M} - T_{6,N})$	
1	12	6	3 (4 ²)	
2	52	22	3 (24 ²)	
3	120	48	3(60 ²)	
4	216	84	3 (112 ²)	

CHOICE (2):

The choices

$$2M + 1 = 6r^{2} + s^{2}, \ 6N - 1 = 6r^{2} - s^{2}$$
in (1) leads to the relation that
(4)

 $''4T_{3,M} - 12T_{5,N} = 3\alpha^{2}''$

From (4), the values of ranks of the Triangular numbers and Pentagonal numbers are respectively given by

$$M = \frac{6r^2 + s^2 - 1}{2}, N = \frac{6r^2 - s^2 + 1}{6}$$

CASE: 1

choose r = 4k - 3, s = 6k - 5. The corresponding integer values of M, N are

 $M = 66k^2 - 102k + 39, N = 10k^2 - 14k + 5$

TABLE: 2- Examples				
k	М	N	$4T_{3,M} - 12T_{5,N}$	
1	3	1	$3(2^2)$	
2	99	17	3 (70 ²)	
3	327	53	3 (234 ²)	
4	687	109	3 (49 4 ²)	

CASE: 2

choose r = 4k - 1, s = 6k - 1. The corresponding integer values of M, N are

 $M = 66k^2 - 30k + 3, N = 10k^2 - 6k + 1$

TABLE: 3- Examples				
k	М	N	$4T_{3,M} - 12T_{5,N}$	
1	39	5	3 (3 0 ²)	
2	207	29	3 (154 ²)	
3	507	73	3 (374 ²)	
4	939	137	3(690 ²)	

CHOICE (3): The choices

$$2M + 1 = 6r^2 + s^2$$
, $3N - 1 = 6r^2 - s^2$
in (1) leads to the relation that

(5)

$$"8T_{3,M} - 3T_{8,N} = 6\alpha^2$$

From (5), the values of ranks of the Triangular numbers and Octagonal numbers are respectively given by $6r^2 + s^2 - 1 \qquad s = 6r^2 - s^2 + 1$

$$M = \frac{1}{2}$$
, $N = \frac{1}{3}$

CASE: 1

choose r = 6k - 2, s = 6k - 1. The corresponding integer values of M, N are

$$M = 126k^2 - 78k + 12 N = 60k^2 - 44k + 8$$

TABLE: 4-Examples				
k	M	N	$8T_{3,M} - 3T_{8,N}$	
1	60	24	6 (40 ²)	
2	360	160	6(220 ²)	
3	912	792	6(544 ²)	
4	1716	416	6(1012 ²)	

CASE: 2

choose r = 6k, s = 6k + 1. The corresponding integer values of M, N are

	TABLE: 5		
k	M	N	$8T_{3,M} - 3T_{8,N}$
1	132	56	6(84 ²)
2	516	232	6(312 ²)
3	1152	528	6 (684 ²)
4	2040	944	6(1200 ²)

$M = 126k^2 + 6k, N = 60k^2 - 4k$

CHOICE (4):

The choices $6M - 1 = 6r^2 + s^2$, 2N

$$\mathbf{V} + \mathbf{1} = \mathbf{6r}^2 - \mathbf{s}^2$$

in (1) leads to the relation that
"
$$8T_{3,M} - 24T_{5,N} = 6\alpha^2$$
"

From (6), the values of ranks of the Triangular numbers and Pentagonal numbers are respectively given by $M = \frac{6r^2 + s^2 - 1}{N} = \frac{6r^2 - s^2 + 1}{N}$

$$M = \frac{1}{2}, N = \frac{1}{6}$$

CASE: 1

choose r = 6k - 2, s = 6k - 1. The corresponding integer values of M, N are

 $M = 126k^2 - 78k + 12, N = 30k^2 - 22k + 4$

TABLE: 6- ExampleskMN
$$8T_{3,M} - 24T_{5,N}$$
16012 $6(40^2)$ 236080 $6(220^2)$ 3912208 $6(544^2)$ 41716396 $6(1012^2)$

(6)

CASE: 2	
choose $r = 6k, s = 6k + 1$. The corresponding integer values of M, N are	
$M = 126k^2 + 6k$, $N = 60k^2 - 4k$	

TABLE: 7- Examples					
k	М	N	$8T_{3,M} - 24T_{8,N}$		
1	132	28	6(84 ²)		
2	516	116	6 (3 1 2 ²)		
3	1152	264	6 (684 ²)		
4	2040	472	6(1200 ²)		

CHOICE (5):

The choices

$$5M-2=6r^2+s^2$$
, $N=6r^2-s^2$

in (1) leads to the relation that
$$T = 6 \alpha^2 - 4 T$$

$$5T_{12,M} - T_{4,N} = 6\alpha^2 - 4$$

From (7), the values of ranks of the Dodecagonal numbers and Square numbers are respectively given by

$$M = \frac{6r^2 + s^2 + 2}{5}, N = 6r^2 - s^2$$

For integer values of M and N, choose r = 5k - 3, s = 5k - 3

TABLE: 8- Examples

k	М	N	$5T_{12,M} - T_{4,N} + 4$
1	6	20	6(8 ²)
2	69	245	6(98 ²)
3	202	720	6 (288 ²)
4	405	1445	6(578 ²)

CONCLUSION:

To conclude, we may search for other relations to (1) by using special polygonal numbers.

ACKOWLEDGEMENT

* The financial support from the UGC, New Delhi (F-MRP-5123/14(SERO/UGC) March 2014) for a part of this paper is gratefully acknowledged.

REFERENCES:

- 1. Dickson LE; History of theory of numbers, Chelisa publishing company, New York, Vol.2, 1971.
- 2. Kapur JN; Ramanujan's Miracles, Mathematical sciences Trust society, 1997
- 3. Shailesh Shirali, Mathematical Marvels, A primer on Number sequences, University press, 2001.
- 4. Gopalan MA, Devibala S; Equality of Triangular numbers with special m-gonal numbers, Bulletin of the Allahabad mathematical society, 2006; 25-29.
- Gopalan MA, Manju somanath, Vanitha N; Observations on $X^2 = 8\alpha^2 + Y^2$. Advances in Theoretical and 5. Applied Mathematics, 2006; 1(3):245-248.
- 6. Gopalan MA, Srividhya G; Observations on $y^2 = 2x^2 + z^2$. Archimedes J.Math, 2012; 2(1):7-15.

(7)