Scholars Journal of Engineering and Technology (SJET)
 Sch. J. Eng. Tech., 2014; 2(3C):447-450

Research Article

Relations Among Polygonal Numbers Through The Integer Solutions Of $z^{2}=6 x^{2}+y^{2}$

K.Meena ${ }^{1}$, S.vidhyalakshmi ${ }^{2}$, M.A.Gopalan ${ }^{3}$, R. Bhavani ${ }^{* 4}$

${ }^{1}$ Former VC, Bharathidasan University, Trichy-620024, Tamilnadu, India.
${ }^{2,3}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamilnadu, India
${ }^{4}$ M.Phil student, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamilnadu, India.

*Corresponding author

R. Bhavani

Email:

Abstract: The ternary quadratic equation given by $\boldsymbol{Z}^{2}=\mathbf{6} \boldsymbol{X}^{\mathbf{2}}+\boldsymbol{Y}^{\mathbf{2}}$ is considered. Employing its non-zero integral solutions, relations among few special polygonal numbers are determined.
Keywords: Pell equations, Ternary quadratic equation.

INTRODUCTION:

In [1-3], different patterns of m -gonal numbers are presented. In [4] explicit formulas for the rank of Triangular numbers which are simultaneously equal to Pentagonal, Decagonal and Dodecagonal numbers in turn are presented. In $[5,6]$ the relations among the pairs of special m -gonal numbers generated through the solutions of the binary quadratic equations are determined.

In this communication, we consider the ternary quadratic equation given by $\boldsymbol{Z}^{\mathbf{2}}=\mathbf{6} \boldsymbol{X}^{\mathbf{2}}+\boldsymbol{Y}^{\mathbf{2}}$ and obtain the relations among the pairs of special m-gonal numbers generated through its solutions.

2010 Mathematics subject classification: 11D09

NOTATIONS:

$T_{m . n}$: Polygonal number of rank n with m sides

METHOD OF ANALYSIS:

Consider the Diophantine equation

$$
\begin{equation*}
Z^{2}=6 X^{2}+Y^{2} \tag{1}
\end{equation*}
$$

whose general solutions are
$X=6 r s$
$Y=6 r^{2}-s^{2}$
$\left.Z=6 r^{2}+s^{2}\right\}$
where r and s are non-zero positive integers.
CHOICE (1):
The choices
$2 M+1=6 r^{2}+s^{2}, 4 N-1=6 r^{2}-s^{2}$
in (1) leads to the relation that

$$
" 4 T_{3, M}-4 T_{6, N}=3 \alpha^{2 "}
$$

From (3), the values of ranks of the Triangular numbers and Hexagonal numbers are respectively given by
$M=\frac{6 r^{2}+s^{2}-1}{2}, N=\frac{6 r^{2}-s^{2}-1}{4}$
For integer values of M and N , choose $\boldsymbol{r}=\mathbf{2 k}, \boldsymbol{s}=\mathbf{2 k} \mathbf{- 1}$
TABLE: 1- Examples

\boldsymbol{k}	\boldsymbol{M}	\boldsymbol{N}	$\mathbf{4}\left(\boldsymbol{T}_{3, M}-\boldsymbol{T}_{6, N}\right)$
$\mathbf{1}$	$\mathbf{1 2}$	$\mathbf{6}$	$\mathbf{3 (4 ^ { 2 })}$
$\mathbf{2}$	$\mathbf{5 2}$	$\mathbf{2 2}$	$\mathbf{3 (2 4 ^ { 2 })}$
$\mathbf{3}$	$\mathbf{1 2 0}$	$\mathbf{4 8}$	$\left.\mathbf{3 (6 0}^{2}\right)$
$\mathbf{4}$	$\mathbf{2 1 6}$	$\mathbf{8 4}$	$\mathbf{3 (1 1 2 ^ { 2 })}$

CHOICE (2):
The choices
$2 M+1=6 r^{2}+s^{2}, 6 N-1=6 r^{2}-s^{2}$
in (1) leads to the relation that

$$
" 4 T_{3, M}-12 T_{5, N}=3 \alpha^{2} "
$$

From (4), the values of ranks of the Triangular numbers and Pentagonal numbers are respectively given by $M=\frac{6 r^{2}+s^{2}-1}{2}, N=\frac{6 r^{2}-s^{2}+1}{6}$
CASE: 1
choose $\boldsymbol{r}=\mathbf{4 k}-\mathbf{3}, \boldsymbol{s}=\mathbf{6} \boldsymbol{k}-\mathbf{5}$. The corresponding integer values of M, N are

$$
M=66 k^{2}-102 k+39, N=10 k^{2}-14 k+5
$$

TABLE: 2- Examples

\boldsymbol{k}	\boldsymbol{M}	\boldsymbol{N}	$\mathbf{4 T}_{3, M}-\mathbf{1 2 T}_{5, N}$
$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3 (\mathbf { 2 } ^ { \mathbf { 2 } })}$
$\mathbf{2}$	$\mathbf{9 9}$	$\mathbf{1 7}$	$\left.\mathbf{3 (7 0}^{\mathbf{2}}\right)$
$\mathbf{3}$	$\mathbf{3 2 7}$	$\mathbf{5 3}$	$\left.\mathbf{3 (2 3 4}{ }^{\mathbf{2}}\right)$
$\mathbf{4}$	$\mathbf{6 8 7}$	$\mathbf{1 0 9}$	$\left.\mathbf{3 (4 9 4}{ }^{\mathbf{2}}\right)$

CASE: 2
choose $\boldsymbol{r}=\mathbf{4} \boldsymbol{k}-\mathbf{1}, \boldsymbol{s}=\mathbf{6} \boldsymbol{k}-\mathbf{1}$. The corresponding integer values of M, N are

$$
M=66 k^{2}-30 k+3, N=10 k^{2}-6 k+1
$$

TABLE: 3- Examples

\boldsymbol{k}	\boldsymbol{M}	\boldsymbol{N}	$\mathbf{4 T}_{\mathbf{3}, \boldsymbol{M}}-\mathbf{1 2 T}_{5, N}$
$\mathbf{1}$	$\mathbf{3 9}$	$\mathbf{5}$	$\left.\mathbf{3 (3 0}^{\mathbf{2}}\right)$
$\mathbf{2}$	$\mathbf{2 0 7}$	$\mathbf{2 9}$	$\left.\mathbf{3 (1 5 4}{ }^{\mathbf{2}}\right)$
$\mathbf{3}$	$\mathbf{5 0 7}$	$\mathbf{7 3}$	$\left.\mathbf{3 (3 7 4}{ }^{\mathbf{2}}\right)$
$\mathbf{4}$	$\mathbf{9 3 9}$	$\mathbf{1 3 7}$	$\left.\mathbf{3 (6 9 0}{ }^{\mathbf{2}}\right)$

CHOICE (3):

The choices
$2 M+1=6 r^{2}+s^{2}, 3 N-1=6 r^{2}-s^{2}$
in (1) leads to the relation that

$$
{ }^{4} 8 T_{3, M}{ }^{-3 T} 3, N=6 \alpha^{2 "}
$$

From (5), the values of ranks of the Triangular numbers and Octagonal numbers are respectively given by
$M=\frac{6 r^{2}+s^{2}-1}{2}, N=\frac{6 r^{2}-s^{2}+1}{3}$
CASE: 1
choose $\boldsymbol{r}=\mathbf{6 k}-\mathbf{2}, \boldsymbol{s}=\mathbf{6 k}-\mathbf{1}$. The corresponding integer values of M, N are

$$
M=126 k^{2}-78 k+12 N=60 k^{2}-44 k+8
$$

TABLE: 4-Examples

\boldsymbol{k}	\boldsymbol{M}	\boldsymbol{N}	$\mathbf{8 T}_{3, M}-\mathbf{3 T}_{8, N}$
$\mathbf{1}$	$\mathbf{6 0}$	$\mathbf{2 4}$	$\mathbf{6 (4 0 ^ { 2 })}$
$\mathbf{2}$	$\mathbf{3 6 0}$	$\mathbf{1 6 0}$	$\mathbf{6 (2 2 0 ^ { 2 })}$
$\mathbf{3}$	$\mathbf{9 1 2}$	$\mathbf{7 9 2}$	$\mathbf{6 (5 4 4 ^ { 2 })}$
$\mathbf{4}$	$\mathbf{1 7 1 6}$	$\mathbf{4 1 6}$	$\left.\mathbf{6 (1 0 1 2}^{\mathbf{2}}\right)$

CASE: 2

choose $\boldsymbol{r}=\mathbf{6} \boldsymbol{k}, \boldsymbol{s}=\mathbf{6} \boldsymbol{k}+\mathbf{1}$. The corresponding integer values of M, N are

$$
M=126 k^{2}+6 k, N=60 k^{2}-4 k
$$

TABLE: 5

k	M	N	$8 T_{3, M}-3 T_{8, N}$
1	132	56	6(84 ${ }^{2}$)
2	516	232	6(312 ${ }^{2}$)
3	1152	528	6(684 ${ }^{2}$)
4	2040	944	6(1200 ${ }^{2}$)

CHOICE (4):

The choices

$$
\begin{equation*}
6 M-1=6 r^{2}+s^{2}, 2 N+1=6 r^{2}-s^{2} \tag{6}
\end{equation*}
$$

in (1) leads to the relation that

$$
' 8 T_{3, M}-24 T_{5, N}=6 \alpha^{2 \prime}
$$

From (6), the values of ranks of the Triangular numbers and Pentagonal numbers are respectively given by
$M=\frac{6 r^{2}+s^{2}-1}{2}, N=\frac{6 r^{2}-s^{2}+1}{6}$
CASE: 1
choose $\boldsymbol{r}=\mathbf{6 k}-\mathbf{2}, \boldsymbol{s}=\mathbf{6 k}-\mathbf{1}$. The corresponding integer values of M, N are

$$
M=126 k^{2}-78 k+12, N=30 k^{2}-22 k+4
$$

TABLE: 6- Examples

k	M	N	$\mathbf{8 T} \boldsymbol{3}_{3, M}-\mathbf{2 4 T}_{5, N}$
$\mathbf{1}$	$\mathbf{6 0}$	$\mathbf{1 2}$	$\left.\mathbf{6 (4 0}{ }^{\mathbf{2}}\right)$
$\mathbf{2}$	$\mathbf{3 6 0}$	$\mathbf{8 0}$	$\left.\mathbf{6 (2 2 0}{ }^{\mathbf{2}}\right)$
$\mathbf{3}$	$\mathbf{9 1 2}$	$\mathbf{2 0 8}$	$\left.\mathbf{6 (5 4 4}^{\mathbf{2}}\right)$
$\mathbf{4}$	$\mathbf{1 7 1 6}$	$\mathbf{3 9 6}$	$\mathbf{6 (1 0 1 2 ^ { 2 })}$

CASE: 2
choose $\boldsymbol{r}=\mathbf{6} \boldsymbol{k}, \boldsymbol{s}=\mathbf{6} \boldsymbol{k}+\mathbf{1}$. The corresponding integer values of M, N are

$$
M=126 k^{2}+6 k, N=60 k^{2}-4 k
$$

TABLE: 7- Examples

\boldsymbol{k}	M	N	$\mathbf{8 T}_{3, M}-\mathbf{2 4 T}_{\mathbf{8}, N}$
$\mathbf{1}$	$\mathbf{1 3 2}$	$\mathbf{2 8}$	$\mathbf{6 (8 4 ^ { 2 })}$
2	$\mathbf{5 1 6}$	$\mathbf{1 1 6}$	$\mathbf{6 (3 1 2 ^ { 2 })}$
$\mathbf{3}$	$\mathbf{1 1 5 2}$	$\mathbf{2 6 4}$	$\mathbf{6 (6 8 4 ^ { 2 })}$
$\mathbf{4}$	$\mathbf{2 0 4 0}$	$\mathbf{4 7 2}$	$\mathbf{6 (1 2 0 0 ^ { 2 })}$

CHOICE (5):

The choices
$5 M-2=6 r^{2}+s^{2}, N=6 r^{2}-s^{2}$
in (1) leads to the relation that

$$
{ }^{\prime} 5 T_{12, M}-T_{4, N}=6 \alpha^{2}-4 "
$$

From (7), the values of ranks of the Dodecagonal numbers and Square numbers are respectively given by
$M=\frac{6 r^{2}+s^{2}+2}{5}, N=6 r^{2}-s^{2}$
For integer values of M and N , choose $\boldsymbol{r}=\mathbf{5} \boldsymbol{k}-\mathbf{3}, \boldsymbol{s}=\mathbf{5} \boldsymbol{k}-\mathbf{3}$

TABLE: 8- Examples

\boldsymbol{k}	\boldsymbol{M}	\boldsymbol{N}	$\mathbf{5 T}_{12, M}-\boldsymbol{T}_{\mathbf{4 , N}}+\mathbf{4}$
$\mathbf{1}$	$\mathbf{6}$	$\mathbf{2 0}$	$\mathbf{6 (8 ^ { 2 })}$
2	$\mathbf{6 9}$	$\mathbf{2 4 5}$	$\left.\mathbf{6 (9 8}^{2}\right)$
$\mathbf{3}$	202	$\mathbf{7 2 0}$	$\mathbf{6 (2 8 8 ^ { 2 })}$
$\mathbf{4}$	405	$\mathbf{1 4 4 5}$	$\mathbf{6 (5 7 8 ^ { 2 })}$

CONCLUSION:

To conclude, we may search for other relations to (1) by using special polygonal numbers.

ACKOWLEDGEMENT

* The financial support from the UGC, New Delhi (F-MRP-5123/14(SERO/UGC) March 2014) for a part of this paper is gratefully acknowledged.

REFERENCES:

1. Dickson LE; History of theory of numbers, Chelisa publishing company, New York, Vol.2, 1971.
2. Kapur JN; Ramanujan's Miracles, Mathematical sciences Trust society, 1997
3. Shailesh Shirali, Mathematical Marvels, A primer on Number sequences, University press, 2001.
4. Gopalan MA, Devibala S; Equality of Triangular numbers with special m-gonal numbers, Bulletin of the Allahabad mathematical society, 2006; 25-29.
5. Gopalan MA, Manju somanath, Vanitha N; Observations on $X^{2}=8 \alpha^{2}+Y^{2}$. Advances in Theoretical and Applied Mathematics, 2006; 1(3):245-248.
6. Gopalan MA, Srividhya G; Observations on $y^{2}=2 x^{2}+z^{2}$. Archimedes J.Math, 2012; 2(1):7-15.
