Research Article

Non-Homogeneous Sextic Equation with Four Unknowns $(X+Y)\left(X^{3}+Y^{3}\right)=Z^{2} W^{4}$

K. Meena ${ }^{1}$, S.Vidhyalakshmi ${ }^{2}$,M.A.Gopalan ${ }^{3}$, S. Nivetha ${ }^{* 4}$
${ }^{1}$ Former VC of Bharathidasan University, Trichy-620024, Tamilnadu, India.
${ }^{2,3}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002,Tamilnadu, India
${ }^{4}$ M.Phil student, Department of Mathematics, Shrimati Indira Gandhi College

*Corresponding author

S. Nivetha

Email: niveselvam9@gmail.com

Abstract

We obtain infinitely many non-zero integer quadruples(x,y,z,w) satisfying the non-homogeneous sextic equation with four unknowns. Various interesting properties among the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and w are presented Keywords: Sextic equation with four unknowns, integer solutions. 2010 Mathematics Subject Classification: 11D09

INTRODUCTION

The theory of diophantine equations offers a rich variety of fascinating problems [1-4]. In [5-11] sextic equations with four unknowns are analysed for their non-zero integer solutions. This communication analyses yet another sextic equation with four unknowns given by $(x+y)\left(x^{3}+y^{3}\right)=z^{2} w^{4}$. Infinitely many non- zero integer quadruples $(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})$ satisfying the above equation are obtained. Various interesting properties among the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and w are presented

Notations:

$P_{n}^{m} \quad$ - Pyramidal number of rank n with size m .
$T_{m, n} \quad$ - Polygonal number of rank n with size m .
$\mathrm{F}_{4, \mathrm{n}, 3}$ - Four dimensional figurative number of rank n whose generating polygonal is a triangle.
$F_{4, n, 4}$ - Four dimensional figurative number of rank n whose generating polygonal is a square.

METHOD OF ANALYSIS:

The sextic equation with four unknowns to be solved is

$$
\begin{equation*}
(x+y)\left(x^{3}+y^{3}\right)=z^{2} w^{4} \tag{1}
\end{equation*}
$$

Introducing the linear transformations

$$
\begin{equation*}
x=u+v, y=u-v, z=2 u \tag{2}
\end{equation*}
$$

in (1), it is written as

$$
\begin{equation*}
u^{2}+3 v^{2}=w^{4} \tag{3}
\end{equation*}
$$

(3) is solved through different methods and thus, we obtain different patterns of solutions to (1).

PATTERN: 1

$$
\begin{equation*}
\text { Assume } w=\left(a^{2}+3 b^{2}\right) \tag{4}
\end{equation*}
$$

Substituting (4) in (3) and employing the method of factorization, define

$$
(u+i \sqrt{3} v)=(a+i \sqrt{3} b)^{4}
$$

Equating the real and imaginary parts, we get

$$
\begin{aligned}
& u=a^{4}+9 b^{4}-18 a^{2} b^{2} \\
& v=4 a^{3} b-12 a b^{3}
\end{aligned}
$$

In view of (2), the values of x, y, and z are given by

$$
\begin{align*}
& x(a, b)=a^{4}+9 b^{4}-18 a^{2} b^{2}+4 a^{3} b-12 a b^{3} \\
& y(a, b)=a^{4}+9 b^{4}-18 a^{2} b^{2}-4 a^{3} b+12 a b^{3} \tag{5}\\
& z(a, b)=2 a^{4}+18 b^{4}-36 a^{2} b^{2}
\end{align*}
$$

Thus (4) and (5) represent the integral solutions of (1).

PROPERTIES:

* $x(1, b)-9 T_{4, b^{2}}+24 P_{b}^{5}+T_{4, b} \equiv 1(\bmod 1)$
* $\quad \mathrm{x}(\mathrm{a}, 1)-\mathrm{T}_{4, \mathrm{a}^{2}}-8 \mathrm{P}_{\mathrm{a}}^{5}+\mathrm{T}_{46, \mathrm{a}} \equiv 9(\bmod 33)$
* $\mathrm{y}(1, \mathrm{~b})-9 \mathrm{~T}_{4, \mathrm{~b}^{2}}-24 \mathrm{P}_{\mathrm{b}}^{5}+\mathrm{T}_{62, \mathrm{~b}} \equiv 1(\bmod 33)$
* $\quad \mathrm{x}(1, \mathrm{~b})-216 \mathrm{~F}_{4, \mathrm{~b}, 3}-72 \mathrm{P}_{\mathrm{b}}{ }^{5}-\mathrm{T}_{70, \mathrm{~b}} \equiv 1(\bmod 85)$
* $\mathrm{x}(1, \mathrm{~b})-108 \mathrm{~F}_{4, \mathrm{~b}, 4}-28 \mathrm{P}_{\mathrm{b}}{ }^{5}-\mathrm{T}_{38, \mathrm{~b}} \equiv 1(\bmod 53)$
* $\mathrm{z}(1, \mathrm{~b})-432 \mathrm{~F}_{4, \mathrm{~b}, 3}-204 \mathrm{P}_{\mathrm{b}}{ }^{5}-\mathrm{T}_{100, \mathrm{~b}} \equiv 2(\bmod 150)$
* $\mathrm{z}(\mathrm{a}, 1)-48 \mathrm{~F}_{4, \mathrm{a}, 3}-12 \mathrm{P}_{\mathrm{a}}^{5}+\mathrm{T}_{64, \mathrm{a}} \equiv 18(\bmod 24)$

PATTERN: 2

Consider (3) as

$$
\begin{equation*}
\mathrm{u}^{2}+3 \mathrm{v}^{2}=\mathrm{w}^{4} * 1 \tag{6}
\end{equation*}
$$

Write 1 as

$$
\begin{equation*}
1=\frac{(1+i \sqrt{3})(1-i \sqrt{3})}{4} \tag{7}
\end{equation*}
$$

Substituting (7) in (6) and employing the method of factorization, define

$$
(\mathrm{u}+\mathrm{i} \sqrt{3} \mathrm{v})=(\mathrm{a}+\mathrm{i} \sqrt{3} \mathrm{~b})^{4} \frac{(1+\mathrm{i} \sqrt{3})}{2}
$$

Equating the real and imaginary parts, we get

$$
\begin{aligned}
& \mathrm{u}=\frac{1}{2}\left[\mathrm{a}^{4}+9 \mathrm{~b}^{4}-18 \mathrm{a}^{2} \mathrm{~b}^{2}-12 \mathrm{a}^{3} \mathrm{~b}+36 \mathrm{ab}^{3}\right] \\
& \mathrm{v}=\frac{1}{2}\left[\mathrm{a}^{4}+9 \mathrm{~b}^{4}-18 \mathrm{a}^{2} b^{2}+4 a^{3} b-12 a b^{3}\right]
\end{aligned}
$$

In view of (2), the values of x, y, and z are given by

$$
\left.\begin{array}{l}
x(a, b)=a^{4}+9 b^{4}-18 a^{2} b^{2}-4 a^{3} b-24 a b^{3} \tag{8}\\
y(a, b)=12 a b^{3}-8 a^{3} b \\
z(a, b)=2 a^{4}+18 b^{4}-36 a^{2} b^{2}-8 a^{3} b-48 a b^{3}
\end{array}\right\}
$$

Thus (4) and (8) represent the integral solutions of (1).

PROPERTIES:

$\% \quad \mathrm{x}(1, \mathrm{~b})-9 \mathrm{~T}_{4, \mathrm{~b}^{2}}+48 \mathrm{P}_{\mathrm{b}}^{5}-\mathrm{T}_{14, \mathrm{~b}} \equiv 1(\bmod 1)$
$\dot{x}(\mathrm{a}, 1)-\mathrm{T}_{4, \mathrm{a}^{2}}+8 \mathrm{P}_{\mathrm{a}}{ }^{5}+\mathrm{T}_{30, \mathrm{a}} \equiv 9(\bmod 37)$
$\therefore \quad \mathrm{y}(1, \mathrm{~b})-24 \mathrm{P}_{\mathrm{b}}{ }^{5}+\mathrm{T}_{24, \mathrm{~b}} \equiv 0(\bmod 18)$

* $\quad \mathrm{y}(\mathrm{a}, 1)+16 \mathrm{P}_{\mathrm{a}}{ }^{5}-\mathrm{T}_{18, \mathrm{a}} \equiv 0(\bmod 19)$
* $\quad \mathrm{z}(1, \mathrm{~b})+96 \mathrm{P}_{\mathrm{b}}{ }^{5}-\mathrm{T}_{26, \mathrm{~b}} \equiv 2(\bmod 3)$
* $\mathrm{z}(\mathrm{a}, 1)+16 \mathrm{P}_{\mathrm{a}}{ }^{5}-2 \mathrm{~T}_{4, \mathrm{a}^{2}}+\mathrm{T}_{58, \mathrm{a}} \equiv 18(\bmod 21)$
* $\mathrm{z}(\mathrm{a}, 1)-\mathrm{x}(\mathrm{a}, 1)+8 \mathrm{P}_{\mathrm{a}}{ }^{5}-\mathrm{T}_{4, \mathrm{a}^{2}}+\mathrm{T}_{30, \mathrm{a}} \equiv 9(\bmod 37)$

PATTERN: 3

Instead of (7), 1 can be written as

$$
\begin{equation*}
1=\frac{(1+\mathrm{i} 4 \sqrt{3})(1-\mathrm{i} 4 \sqrt{3})}{49} \tag{9}
\end{equation*}
$$

Substituting (4) and (9) in (6) and employing the method of factorization, define

$$
(u+i \sqrt{3} v)=(a+i \sqrt{3} b)^{4} \frac{(1+i 4 \sqrt{3})}{7}
$$

Equating the real and imaginary parts, we get

$$
\begin{aligned}
& u=\frac{1}{7}\left[a^{4}+9 b^{4}-18 a^{2} b^{2}-48 a^{3} b+144 a b^{3}\right] \\
& v=\frac{1}{7}\left[4 a^{4}+36 b^{4}-72 a^{2} b^{2}+4 a^{3} b-12 a b^{3}\right]
\end{aligned}
$$

In view of (2), the values of x, y, and z are given by

$$
\left.\begin{array}{l}
x(a, b)=\frac{1}{7}\left[5 a^{4}+45 b^{4}-90 a^{2} b^{2}-44 a^{3} b+132 a b^{3}\right] \\
y(a, b)=\frac{1}{7}\left[-3 a^{4}-27 b^{4}-54 a^{2} b^{2}-52 a^{3} b+156 a b^{3}\right] \tag{10}\\
z(a, b)=\frac{1}{7}\left[2 a^{4}+18 b^{4}-36 a^{2} b^{2}-96 a^{3} b+288 a^{3}\right]
\end{array}\right\}
$$

Replacing a by 7A, b by 7B in the above equations (10) and (4) the corresponding integer solutions of (1) are

$$
\begin{aligned}
& X(A, B)=1715 A^{4}+15435 \mathrm{~B}^{4}-30870 \mathrm{~A}^{2} \mathrm{~B}^{2}-16660 \mathrm{~A}^{3} \mathrm{~B}+45276 \mathrm{AB}^{3} \\
& \mathrm{Y}(\mathrm{~A}, \mathrm{~B})=-1029 \mathrm{~A}^{4}-9261 \mathrm{~B}^{4}+18522 \mathrm{~A}^{2} \mathrm{~B}^{2}-16268 \mathrm{~A}^{3} \mathrm{~B}+53508 \mathrm{AB}^{3} \\
& \mathrm{Z}(\mathrm{~A}, \mathrm{~B})=686 \mathrm{~A}^{4}+6174 \mathrm{~B}^{4}-12348 \mathrm{~A}^{2} \mathrm{~B}^{2}-32928 \mathrm{~A}^{3} \mathrm{~B}+98784 \mathrm{AB}^{3} \\
& \mathrm{~W}(\mathrm{~A}, \mathrm{~B})=49 \mathrm{~A}^{2}+147 \mathrm{~B}^{2}
\end{aligned}
$$

PROPERTIES:

\& $7 \mathrm{X}(1, \mathrm{~B})-45 \mathrm{~T}_{4, \mathrm{~B}^{2}}-264 \mathrm{P}_{\mathrm{B}}{ }^{5} \equiv 5(\bmod 265)$
$\therefore 7 \mathrm{X}(\mathrm{A}, 1)-5 \mathrm{~T}_{4, \mathrm{~A}^{2}}+88 \mathrm{P}_{\mathrm{A}}^{5}+\mathrm{T}_{94, \mathrm{~A}} \equiv 45(\bmod 91)$

* $7 \mathrm{Z}(1, \mathrm{~B})-18 \mathrm{~T}_{4, \mathrm{~B}^{2}}-576 \mathrm{P}_{\mathrm{B}}^{5}+\mathrm{T}_{650, \mathrm{~B}} \equiv 2(\bmod 418)$
* $7 \mathrm{Y}(1, \mathrm{~B})+27 \mathrm{~T}_{4, \mathrm{~B}^{2}}-312 \mathrm{P}_{\mathrm{B}}^{5}+\mathrm{T}_{422, \mathrm{~B}} \equiv-3(\bmod 261)$
* $7 \mathrm{Y}(\mathrm{A}, 1)+3 \mathrm{~T}_{4, \mathrm{~A}^{2}}+104 \mathrm{P}_{\mathrm{A}}{ }^{5}+\mathrm{T}_{5, \mathrm{~A}} \equiv-27(\bmod 156)$

PATTERN: 4

Rewrite (3) as

$$
\begin{equation*}
w^{2}-u^{2}=3 v^{2} \tag{11}
\end{equation*}
$$

(11) is written in the form of ratio as

$$
\frac{\mathrm{w}^{2}+\mathrm{u}}{\mathrm{v}}=\frac{3 \mathrm{v}}{\mathrm{w}^{2}-\mathrm{u}}=\frac{\alpha}{\beta}, \beta \neq 0
$$

which is equivalent to the system of equations

$$
\begin{aligned}
& \beta w^{2}+\beta u-\alpha v=0 \\
& \alpha w^{2}-\alpha v-3 \beta v=0
\end{aligned}
$$

Applying the method of cross-multiplication, we have

$$
\begin{align*}
& \mathrm{u}=\alpha^{2}-3 \beta^{2} \\
& \mathrm{v}=2 \alpha \beta \tag{12}\\
& \mathrm{w}^{2}=3 \beta^{2}+\alpha^{2}
\end{align*}
$$

Substituting $\beta=2 \mathrm{pq}, \alpha=3 \mathrm{p}^{2}-\mathrm{q}^{2}$ in (12) and (2), the corresponding integer solutions of (1) are

$$
\begin{aligned}
& x(p, q)=9 p^{4}+q^{4}-18 p^{2} q^{2}+12 p^{3} q-4 p q^{3} \\
& y(p, q)=9 p^{4}+q^{4}-18 p^{2} q^{2}-12 p^{3} q+4 p q^{3} \\
& z(p, q)=18 p^{4}+2 q^{4}-36 p^{2} q^{2}
\end{aligned}
$$

PROPERTIES:

\& $\quad \mathrm{x}(1, \mathrm{q})-24 \mathrm{~F}_{4, \mathrm{q}, 3}+20 \mathrm{P}_{\mathrm{q}}{ }^{5}+\mathrm{T}_{40, \mathrm{q}} \equiv 9(\bmod 12)$

* $x(p, 1)-216 \mathrm{~F}_{4, \mathrm{p}, 3}-120 \mathrm{P}_{\mathrm{p}}{ }^{5}-\mathrm{T}_{22, \mathrm{p}} \equiv 1(\bmod 53)$
* $\quad \mathrm{x}(1, \mathrm{q})-12 \mathrm{~F}_{4, \mathrm{q}, 4}+18 \mathrm{P}_{\mathrm{q}}{ }^{5}-\mathrm{T}_{36, \mathrm{q}} \equiv 9(\bmod 14)$
* $x(p, 1)-108 \mathrm{~F}_{4, \mathrm{p}, 4}-56 \mathrm{P}_{\mathrm{p}}^{5}-\mathrm{T}_{38, \mathrm{p}} \equiv 1(\bmod 45)$
* $\mathrm{z}(1, \mathrm{q})-48 \mathrm{~F}_{4, \mathrm{q}, 3}-12 \mathrm{P}_{\mathrm{q}}{ }^{5}+\mathrm{T}_{64, \mathrm{q}} \equiv 18(\bmod 24)$

PATTERN: 5

Also (11) is written in the form of ratio as

$$
\frac{w^{2}+u}{3 v}=\frac{v}{w^{2}-u}=\frac{\alpha}{\beta}, \beta \neq 0
$$

which is equivalent to the system of equations

$$
\begin{aligned}
& \beta w^{2}+\beta u-3 \alpha v=0 \\
& \alpha w^{2}-\alpha v-\beta v=0
\end{aligned}
$$

Applying the method of cross-multiplication, we have

$$
\begin{align*}
& \mathrm{u}=3 \alpha^{2}-\beta^{2} \\
& \mathrm{v}=2 \alpha \beta \tag{13}\\
& \mathrm{w}^{2}=3 \alpha^{2}+\beta^{2}
\end{align*}
$$

Substituting $\quad \alpha=2 \mathrm{pq}, \beta=3 \mathrm{p}^{2}-\mathrm{q}^{2}$ in (13) and (2), the corresponding integer solutions of (1) are

$$
\begin{aligned}
& \mathrm{x}(\mathrm{p}, \mathrm{q})=-9 \mathrm{p}^{4}-\mathrm{q}^{4}+18 \mathrm{p}^{2} \mathrm{q}^{2}+12 \mathrm{p}^{3} \mathrm{q}-4 \mathrm{p} \mathrm{q}^{3} \\
& \mathrm{y}(\mathrm{p}, \mathrm{q})=-9 \mathrm{p}^{4}-\mathrm{q}^{4}+18 \mathrm{p}^{2} \mathrm{q}^{2}-12 \mathrm{p}^{3} \mathrm{q}+4 \mathrm{p} \mathrm{q}^{3}
\end{aligned}
$$

$$
z(p, q)=-18 p^{4}-2 q^{4}+36 p^{2} q^{2}
$$

PROPERTIES:

* $\mathrm{x}(1, \mathrm{q})+24 \mathrm{~F}_{4, \mathrm{q}, 3}+20 \mathrm{P}_{\mathrm{q}}{ }^{5}-\mathrm{T}_{36, \mathrm{q}} \equiv 13(\bmod 22)$
* $\mathrm{x}(\mathrm{p}, 1)+216 \mathrm{~F}_{4, \mathrm{p}, 3}+96 \mathrm{P}_{\mathrm{p}}^{5}+\mathrm{T}_{90, \mathrm{p}} \equiv-1(\bmod 107)$
* $\quad \mathrm{y}(1, \mathrm{q})+24 \mathrm{~F}_{4, \mathrm{q}, 3}+4 \mathrm{P}_{\mathrm{q}}{ }^{5}-\mathrm{T}_{20, \mathrm{q}} \equiv 1(\bmod 10)$
* $\mathrm{y}(\mathrm{p}, 1)+216 \mathrm{~F}_{4, \mathrm{p}, 3}+144 \mathrm{P}_{\mathrm{p}}^{5}+\mathrm{T}_{42, \mathrm{p}} \equiv-1(\bmod 75)$
* $\quad \mathrm{z}(1, \mathrm{q})+48 \mathrm{~F}_{4, \mathrm{q}, 3}+36 \mathrm{P}_{\mathrm{q}}{ }^{5}-\mathrm{T}_{44, \mathrm{q}} \equiv 0(\bmod 2)$

CONCLUSION:

In this paper we have analysed a diophantine equation of degree 6 with 4 unknowns for its non-zero distinct integer solutions. Also, we have presented relations between the solutions and special numbers. To conclude, one may search for other forms of sextic equations and analysed them for their corresponding distinct integer solutions.

REFERENCES:

1. Dickson LE; History of Theory of Numbers, Vol.2,Chelsea Publishing company, New York, 1952.
2. Mordell LJ; Diophantine Equations, Academic Press, London, 1969.
3. Andre W; Number Theory: An approach through history: from hammurapi to legendre Andre weil: Boston (Birkahasuser boston), 1983.
4. Nigel P; Smart, the algorithmic Resolutions of Diophantine equations, Cambridge university press, 1999.
5. Gopalan MA, Vijayasankar A; Integral solutions of the sextic equation with four unknowns $x^{4}+y^{4}+z^{4}=2 w^{6}$. Indian Journal of Mathematics and Mathematical sciences, 2010; 2 :241-245.
6. Gopalan MA, Vidhyalakshmi S, Vijayasankar A; Integral solutions of non-homogeneous sextic equation with four unknowns $x y+z^{2}=w^{6}$. Impact Journal of Science and Technology., 2012; 6(1):47-52.
7. Gopalan MA, Vidhyalakshmi S, Lakshmi K; On the non-homogeneous sextic equation $\mathrm{x}^{4}+2\left(\mathrm{x}^{2}+\mathrm{w}\right) \mathrm{x}^{2} \mathrm{y}^{2}+\mathrm{y}^{4}=\mathrm{z}^{4}$. IJAMA, 2012; 4(2):171-173.
8. Gopalan MA, Vidhyalakshmi S, Lakshmi K; On the non-homogeneous sextic equation $\mathrm{x}^{4}+2\left(\mathrm{x}^{2}-\mathrm{w}\right) \mathrm{x}^{2} \mathrm{y}^{2}+\mathrm{y}^{4}=\mathrm{z}^{4}$. IJAMP, 2012; 4(2):121-123.
9. Gopalan MA, Sumathi G, Vidhyalakshmi S; Integral solutions of $x^{6}-y^{6}=4 z\left[\left(x^{4}+y^{4}\right)+4\left(w^{2}+2\right)^{2}\right]$, interms of generalized Fibonacci and Lucas sequences, Diophantine J. Math, 2013; 2(2):71-75.
10. Vidhyalakshmi S, Gopalan MA, Kavitha A; Observation on the non-homogeneous sextic equation with four unknowns $\mathrm{x}^{3}+\mathrm{y}^{3}=2\left(\mathrm{k}^{2}+3\right) \mathrm{z}^{5} \mathrm{w}$. IJIR SET, 2013; 2(5):1301-1307.
11. Gopalan MA, Sumathi G, Vidhyalakshmi S; Integral solutions of non-homogeneous sextic equation with four unknowns $x^{4}+y^{4}+16 z^{4}=32 w^{6}$. Antarctica, J.Math, 2013; 10(6): 623-629.
