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INTRODUCTION  

A Set of positive integers ( maaaa ,......,, 321 ) is said to have the property D(n),  ,0 zn  if  naa ji   is 

a perfect square for all mji  1  and such a set is called a Diophantine –m-tuple with property D(n). Many 

mathematicians considered the problem of the existence of Diophantine quadruples with the property D(n) for any 

arbitrary integer n [1] and also for any linear polynomial in n. Further, various authors considered the connections of the 

problems of diophantus, davenport and Fibonacci numbers in [2-19]. In this communication, we find special Diophantine 

triple (k, k+3,4k+8) in which the product of any two elements of the set added with their sum and increased by (1-k) is a 

perfect square. 

Construction Of Special Diophantine Triple With Property D(1-K) 

Let 3,  kbka be any two non-zero distinct integers such that )1( kbaab   is a perfect square. 

We search for a non-zero distinct integer p such that in the triple (a,b,p) the product of any two elements added with their 

sum and increased by (1-k) is a perfect square. 

 

That is, 

 
21)1( kp           (1)        

 
24)4( kp            (2)                      

 Eliminating “p’’ we get       

   kkk 3)4()1( 22              (3) 

 The introduction of the linear transformations 

   TkX )1(                 (4) 

   TkX )4(                 (5) 

 In (3) leads to the pell equation   

   )2k(T)2k3k(X 222           (6) 

 Whose initial solution is 2,1 00  kXT . Thus (4) yields 320  k and using (1), we get  8k4p    
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Hence (a,b,p) = (k, k+3, 4k+8) is the required special Diophantine triples with property )k1(D  . 

The repetition of the above process leads to the generation of special Diophantine triples 

)1FkF,1FkF,1FkF( 2
5m

2
4m

2
4m

2
3m

2
3m

2
2m    with property )k1(D  . Here ,1,1 01  FF  

,...3,2 21  FF   

 

 For illustration, a few examples are presented below 

 
)1155k441,440k169,168k64(),440k169,168k64,63k25(

),168k64,63k25,24k9(),63k25,24k9,8k4(),24k9,8k4,3k(




 

 

REMARK 1 

 Note that, when k=0, the triple (0, 3, 8) is the special Diophantine triple with property )1(D .  Observe that

138,123 22  , if 0  is any non-zero integer such that ),8,3,0( 0 is the special Diophantine quadruples with 

property )1(D , then it is seen that 1524 2
0  .    

  

The repetition of the above process leads to the generation of special Diophantine tuples 

 ,....}1F,.......1F,1F,1F,0{ 2
2m

2
3

2
2

2
1    with property ).1(D  

 

 Where ...)3,2,1,0,1m(,FFF,1F,1F 1mm2m01    

 

REMARK 2: 

 Replacing k by a Gaussian integer and irrational numbers respectively in each of the above triples, it is noted that each 

resulting triple is a Gaussian triple and irrational triple satisfying the required property. 

K Triples (a,b,p) Property 

3i1  

)3441i1596,3169i609,364i232(

),3169i609,364i232,325i88(),364i232,325i88,39i33(

),325i88,39i33,34i12(),39i33,34i12,3i4(







 

)3i(D   

3i2   

)1323i2037,507i778,192i296(

),507i778,192i296,75i113(),192i296,75i113,27i42(

)75i113,27i42,12i16(),27i42,12i16,3i5(







 

)3i1(D   

 

CONCLUSION 

 To conclude, one may search for other choices of triples with suitable property. 
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