Scholars Journal of Engineering and Technology (SJET)

Sch. J. Eng. Tech., 2014; 2(4A):533-535

Research Article

On Special Diophantine Triples
M. A. Gopalan ${ }^{1}$, S. Vidhyalakshmi ${ }^{2^{*}}$, N. Thiruniraiselvi ${ }^{3}$
${ }^{1,2}$ Professor, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu, India
${ }^{3}$ Research Scholar, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu, India

*Corresponding author

S. Vidhyalakshmi

Email: vidhyasizc@zmail.com

Abstract

This paper concerns with the study of constructing a special Diophantine triples ($\mathrm{a}, \mathrm{b}, \mathrm{p}$) such that the product of any two elements of the set added with their sum and increased by a polynomial with integer coefficients is a Perfect square.

Keywords: Diophantine Triples, Pell equation
2010 Mathematics Subject Classification: 11D99

INTRODUCTION

A Set of positive integers $\left(a_{1}, a_{2}, a_{3}, \ldots \ldots a_{m}\right)$ is said to have the property $\mathrm{D}(\mathrm{n}), n \in z-\{0\}$, if $a_{i} a_{j}+n$ is a perfect square for all $1 \leq i \triangleleft j \leq m$ and such a set is called a Diophantine -m -tuple with property $\mathrm{D}(\mathrm{n})$. Many mathematicians considered the problem of the existence of Diophantine quadruples with the property $D(n)$ for any arbitrary integer n [1] and also for any linear polynomial in n . Further, various authors considered the connections of the problems of diophantus, davenport and Fibonacci numbers in [2-19]. In this communication, we find special Diophantine triple ($k, k+3,4 k+8$) in which the product of any two elements of the set added with their sum and increased by ($1-\mathrm{k}$) is a perfect square.

Construction Of Special Diophantine Triple With Property D(1-K)

Let $a=k, b=k+3$ be any two non-zero distinct integers such that $a b+a+b+(1-k)$ is a perfect square. We search for a non-zero distinct integer p such that in the triple ($\mathrm{a}, \mathrm{b}, \mathrm{p}$) the product of any two elements added with their sum and increased by ($1-\mathrm{k}$) is a perfect square.

That is,

$$
\begin{align*}
& p(k+1)+1=\alpha^{2} \tag{1}\\
& p(k+4)+4=\beta^{2} \tag{2}
\end{align*}
$$

Eliminating "p" we get

$$
\begin{equation*}
(k+1) \beta^{2}-(k+4) \alpha^{2}=3 k \tag{3}
\end{equation*}
$$

The introduction of the linear transformations

$$
\begin{align*}
& \alpha=X+(k+1) T \tag{4}\\
& \beta=X+(k+4) T \tag{5}
\end{align*}
$$

In (3) leads to the pell equation

$$
\begin{equation*}
\mathrm{X}^{2}=\left(\mathrm{k}^{2}+3 \mathrm{k}+2\right) \mathrm{T}^{2}+(\mathrm{k}+2) \tag{6}
\end{equation*}
$$

Whose initial solution is $T_{0}=1, X_{0}=k+2$. Thus (4) yields $\alpha_{0}=2 k+3$ and using (1), we get $\mathrm{p}=4 \mathrm{k}+8$

Hence $(a, b, p)=(k, k+3,4 k+8)$ is the required special Diophantine triples with property $D(1-k)$.
The repetition of the above process leads to the generation of special Diophantine triples $\left(\mathrm{F}_{\mathrm{m}+2}^{2} \mathrm{k}+\mathrm{F}_{\mathrm{m}+3}^{2}-1, \mathrm{~F}_{\mathrm{m}+3}^{2} \mathrm{k}+\mathrm{F}_{\mathrm{m}+4}^{2}-1, \mathrm{~F}_{\mathrm{m}+4}^{2} \mathrm{k}+\mathrm{F}_{\mathrm{m}+5}^{2}-1\right)$ with property $\mathrm{D}(1-\mathrm{k})$. Here $F_{-1}=1, F_{0}=1$, $F_{1}=2, F_{2}=3, \ldots$

For illustration, a few examples are presented below

$$
(\mathrm{k}+3,4 \mathrm{k}+8,9 \mathrm{k}+24),(4 \mathrm{k}+8,9 \mathrm{k}+24,25 \mathrm{k}+63),(9 \mathrm{k}+24,25 \mathrm{k}+63,64 \mathrm{k}+168)
$$

$$
(25 k+63,64 k+168,169 k+440),(64 k+168,169 k+440,441 k+1155)
$$

REMARK 1

Note that, when $\mathrm{k}=0$, the triple $(0,3,8)$ is the special Diophantine triple with property $\mathrm{D}(1)$. Observe that $3=2^{2}-1,8=3^{2}-1$, if α_{0} is any non-zero integer such that $\left(0,3,8, \alpha_{0}\right)$ is the special Diophantine quadruples with property $\mathrm{D}(1)$, then it is seen that $\alpha_{0}=24=5^{2}-1$.

The repetition of the above process leads to the generation of special Diophantine tuples $\left\{0, \mathrm{~F}_{1}^{2}-1, \mathrm{~F}_{2}^{2}-1, \mathrm{~F}_{3}^{2}-1, \ldots \ldots . \mathrm{F}_{\mathrm{m}+2}^{2}-1, \ldots.\right\}$ with property $\mathrm{D}(1)$.

Where $\mathrm{F}_{-1}=1, \mathrm{~F}_{0}=1, \mathrm{~F}_{\mathrm{m}+2}=\mathrm{F}_{\mathrm{m}}+\mathrm{F}_{\mathrm{m}+1},(\mathrm{~m}=-1,0,1,2,3 \ldots)$

REMARK 2:

Replacing k by a Gaussian integer and irrational numbers respectively in each of the above triples, it is noted that each resulting triple is a Gaussian triple and irrational triple satisfying the required property.

K	Triples $(\mathbf{a}, \mathbf{b}, \mathbf{p})$	Property
$1+\mathrm{i} \sqrt{3}$	$(4+\mathrm{i} \sqrt{3}, 12+\mathrm{i} 4 \sqrt{3}, 33+\mathrm{i} 9 \sqrt{3}),(12+\mathrm{i} 4 \sqrt{3}, 33+\mathrm{i} 9 \sqrt{3}, 88+\mathrm{i} 25 \sqrt{3})$,	$\mathrm{D}(-\mathrm{i} \sqrt{3})$
	$(33+\mathrm{i} 9 \sqrt{3}, 88+\mathrm{i} 25 \sqrt{3}, 232+\mathrm{i} 64 \sqrt{3}),(88+\mathrm{i} 25 \sqrt{3}, 232+\mathrm{i} 64 \sqrt{3}, 609+\mathrm{i} 169 \sqrt{3})$,	
	$(232+\mathrm{i} 64 \sqrt{3}, 609+\mathrm{i} 169 \sqrt{3}, 1596+\mathrm{i} 441 \sqrt{3})$	
$2+\mathrm{i} 3$	$(5+\mathrm{i} 3,16+\mathrm{i} 12,42+\mathrm{i} 27),(16+\mathrm{i} 12,42+\mathrm{i} 27,113+\mathrm{i} 75)$	
	$(42+\mathrm{i} 27,113+\mathrm{i} 75,296+\mathrm{i} 192),(113+\mathrm{i} 75,296+\mathrm{i} 192,778+\mathrm{i} 507)$,	$\mathrm{D}(-1-\mathrm{i} 3)$
	$(296+\mathrm{i} 192,778+\mathrm{i} 507,2037+\mathrm{i} 1323)$	

CONCLUSION

To conclude, one may search for other choices of triples with suitable property.

Acknowledgement

*The finicial support from the UCG, New Delhi (F-MRP-5123/14(SERO/UCG) dated march 2014) for a part of this work is gratefully acknowledged.

REFERENCES

1. Bashmakova IG editor; Diophantus of Alexandria. In Arithmetics and the Book of Polygonal Numbers. Nauka, Moscow, 1974.
2. Thamotherampillai N; The set of numbers \{1,2,7\}. Bull Calcutta Math Soc., 1980; 72: 195-197.
3. Brown E; Sets in which $x y+k$ is always a square. Math Comp., 1985; 45: 613-620.
4. Gupta H, Singh K; On k-triad sequences. Internet J Math Sci., 1985; 5: 799-804.
5. Beardon AF, Deshpande MN; Diophantine triples. The Mathematical Gazette, 2002; 86: 253-260.
6. Deshpande MN; One interesting family of diophantine triples. Internet J Math Ed Sci Tech., 2002; 33: 253-256.
7. Deshpande MN; Families of diophantine triplets. Bulletin of the Marathawada Mathematical Society, 2003; 4: 1921.
8. Bugeaud Y, Dujella A, Mignotte; On the family of diophantine triples ($\left.k-1, k+1,16 k^{3}-4 k\right)$. Glasgow Math J., 2007; 49: 333-344.
9. Liqun T; On the property P_{-1}. Electronic Journal of Combinatorial Number Theory, 2007; 7: \#A47.
10. Fujita Y; The extensibility of diophantine pairs (k-1,k+1). J Number Theory, 2008; 128: 322-353.
11. Srividhya G; Diophantine quadruples for fibbonacci numbers with property D (1). Indian Journal of Mathematics and Mathematical Science, 2009; 5(2): 57-59.
12. Gopalan MA, Pandichelvi V; The non extendibility of the diophantine triple $\left(4(2 m-1)^{2} n^{2}, 4(2 m-1) n+1,4(2 m-1)^{4} n^{4}-8(2 m-1)^{3} n^{3}\right)$, Impact J Sci Tech., 2011; 5(1): 25-28.
13. Fujita Y, Togbe A; Uniqueness of the extension of the $D\left(4 k^{2}\right)$-triple $\left(k^{2}-4, k^{2}, 4 k^{2}-4\right)$. NNTDM 17, 2011; 4: 42-49.
14. Gopalan MA, Srividhya G; Some non extendable P_{-5} sets. Diophantus J Math., 2012; 1(1): 19-22.
15. Gopalan MA, Srividhya G; Two special diophantine triples. Diophantus J Math., 2012; 1(1): 23-27.
16. Gopalan MA, Srividhya G; Diophantine quadruple for fionacci and lucas numbers with property D(4). Diophantus J Math., 2012; 1(1): 15-18.
17. Flipin A, He B, Togbe A; On a family of two parametric D(4) triples. Glas Mat Ser III, 2012; 47: 31-51.
18. Fujita Y; The unique representation $d=4 k\left(k^{2}-1\right)$ in $\mathrm{D}(4)$-quadruples $\{\mathrm{k}-2, \mathrm{k}+2,4 \mathrm{k}, \mathrm{d}\}$. Math Commun., 2006; 11: 69-81.
19. Filipin A, Fujita Y, Mignotte M; The non extendibility of some parametric families of D(-1)-triples. Q J Math., 2012; 63: 605-621.
