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Abstract: Nowadays, the development of tools for modeling and simulating road traffic flow becomes more and more a 

necessity. This is reflected by the development of many road traffic flow models that can reproduce some traffic 

phenomena. The objective of this paper is to present a hybrid model based on two models developed independently. The 

hybrid scheme is based on the coupling scheme developed by Bourrel. Coupled models are the macroscopic LWR model 

(based on its resolution by GODUNOV’s method) and a microscopic car following model presented in this paper. The 

proposed model is validated by simulation. 
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INTRODUCTION 
For a long time, urban transportation in sub-

Saharan Africa, has been placed among the non-priority 

sectors and become in a recent years a major concern 

for authorities to control and develop the sector. Thus, 

the provision of tools adapted to the context and 

allowing the modeling traffic flow phenomena is a 

necessity. This modeling, which consists to a 

description of the traffic evolution over time and space, 

can help to understand these phenomena. 

 

There are several approaches to model the traffic 

flow. These approaches can be classified into two major 

families which are: the macroscopic approach and the 

microscopic approach [1]. 

 

The microscopic approach focuses on the 

interactions between the vehicles considered 

individually. The models resulting from this approach, 

explicitly represent the dynamic states of vehicles [2]. 

In contrast, the macroscopic approach describes the 

traffic flow in a comprehensive manner [3]. 

 

Each of these types of approaches is adapted to 

specific situations. For example, macroscopic 

approaches fail in describing transitional phases in 

traffic. The microscopic models allow a clear view of 

these transitional phases, but become quickly 

complicated when a large network is considered. In this 

case the computational time is very long compared to 

macroscopic models. 

 

The aim of this paper is to propose a model of 

urban transport system, which can represent singular 

phenomena which may be the origin of disturbances in 

the network. It is well known that the macroscopic 

LWR model is known for its ability to describe the 

overall traffic dynamics [4]. But this model does not 

highlight several types of singularities which have an 

impact on the traffic. 

 

Thus the development of a hybrid model will first 

allow the overall traffic dynamics to be represented by 

the LWR model by solving it with the Godunov’s 

method, and singular elements to be represented by 

using a microscopic traffic flow model that will be 

presented. 

 

In the rest of this paper, the LWR model and its 

resolution by the Godunov’s method will be presented, 

after, the microscopic model will be presented. The 

coupling scheme which is based on the scheme 

proposed by Bourrel [5] with some modifications will 

be described. To conclude, a presentation of some 

simulation results will be made. 

 

THE LWR MODEL 

In this model the traffic is represented as a 

continuous fluid characterized by average quantities 

depending on time and space. These quantities are the 

flow ),( txq , the concentration or density ),( txk and 

the speed flow ),( txv . 
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 The fundamental equation of the model is the 

conservation equation (equation 1), which was first 

used for modeling traffic flow in 1955, by Lighthill and 

Whitham, and independently by Richards in 1956 [6, 

7]. This equation expresses the fact that the number of 

vehicles in a road section at a time dt+t  is equal to 

the number of vehicles in this section at time t , to 

which we add the number of vehicles entered during dt

, minus the number of vehicles exited during dt . 
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 The flow speed is defined as the ratio of flow on the 

density. 

 t)k(x,

 t)q(x,
 =  t)v(x,                              (2) 

 

The LWR model is supplemented by an equilibrium 

fundamental relationship which varies according to 

parameters of studied network. 

 

 Using the macroscopic definition of flow speed, it is 

possible to derive an equilibrium relationship between 

flow and density. This relationship is deduced from 

experimental observations, and is represented by a 

diagram called fundamental diagram [8] (Fig. 1). 

 

 

Fig. 1: Example of parabolic fundamental diagram 

 

The main parameters of a fundamental diagram are: 

 maximum density, denoted maxK , 

 the free speed, denoted lV given by the slope at 

the origin of the fundamental diagram, 

 the critical concentration cK  between the fluid 

and saturated traffic conditions,  

 the maximum flow maxQ  or capacity of the 

section studied, 

 and critical speed cV  or speed of vehicles at 

critical concentration. 

 

In the LWR model, we assumed that the system is 

always in equilibrium. Hence, the speed is function of 

the concentration. 

  t))(k(x,V =  t)v(x, eq                  (3) 

 

RESOLUTION OF THE LWR MODEL BY 

GODUNOV’S APPROACH 

 In the Godunov’s scheme, each road section is 

divided into cells of length x   (Fig. 4). We denote by 

ix the length of a cell whose interfaces are represented 

by points ix  and 1ix , respectively input and output of 

the cell noted by: 

 ] x,[x = C 1iii                  (4) 

 

 The equation (1) applied to the cell Ci leads to the 

following one: 
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 After integration, we have: 
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 The average density (t)k i  of cell iC  is introduced: 


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 We denote by ),q(x(t)Q ii t  the flow on the 

interface ix
 

at time t . Considering the Euler 

approximation of the first order time derivative, the 

conservation equation in the cell iC  (equation 5) leads 

to the following equation: 

0)()(
)()(
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  tQtQ

t

tkttk
ii

ii
     (8) 

 

 The parameters of the numerical scheme (equation 8) 

are defined by supply and demand functions (Fig. 3). 

 



 

Doudou GAYE et al., Sch.  J. Eng. Tech., 2014; 2(4B):566-576 

    568 

    

 

 

 

Fig. 2: Subdivision of a section of road to cells 

 

 

The supply function denoted by  )(Si k  is the 

maximum number of cars that can enter the cell i  

during the time interval t . 

 

 In fluid traffic situation it can be observed that this 

function is equal to the maximum rate that can enter the 

cell, while in congested traffic situation, this function is 

given by an equilibrium relationship )(Qi k deduced 

from the fundamental diagram. 
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 The demand function denoted )(Di k , is the 

maximum number of cars wishing to go out during the 

same interval of time. 

 

 In situations of fluid traffic, this function is given by 

an equilibrium relation )(Qi k , derived from the 

fundamental diagram, while in congested traffic 

situation, this function is equal to the maximum rate 

that can leave the cell. 
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Fig. 3: Supply diagram at left and demand diagram at right 

 

From the determination of the maximum number of 

vehicles that can enter a cell 1iC   and the maximum 

number of vehicles that can leave the upstream cell iC  

for the interval time t , we can calculate the average 

flow )( ttQi   to the point ix  separating the two 

cells. This flow is the minimum between the supply of 

downstream cell 1iC   and the demand of the upstream 

cell iC  at this point during this interval time. Given the 

equation 8, we have: 
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 Hence, from the initial conditions of each cell, we 

can determine the evolution of traffic flow by 

successive time steps. 

 

 For the stability of this scheme, the time step and the 

length of a cell should be chosen so that the computed 

solution to an interface does not interfere with the rest. 

So each cell obeys to the following CFL condition 

(Courant Friedrichs-Lewy) 

lV
t

x





              (12) 

 with x  the length of a cell, t the observation 

time. 

 

 The resolution algorithm is given below: 

 

Fig. 4: Algorithm for solving the LWR model by Godunov’s method 

 

The Godunov’s scheme allows a simple modeling of 

the traffic flow. It is also a model well suited to urban 

environments. However the Godunov’s method does 

not reproduce the transition phases related to incidents 

or vehicle’s starting at the end of a red light, either in 

acceleration or deceleration. 

 

 For example, in the case of a spatial discontinuity (x0 

in Fig. 5) it can be noticed that, for the same speed, 

traffic conditions are transferred from the equilibrium 

state corresponding to this flow on the upstream 

fundamental diagram to that corresponding to the same 

flow on the downstream diagram. The speed is 

discontinuous at this point. 
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Fig. 5: Case of spatial discontinuity: velocity change at the point of discontinuity 

 
THE MICROSCOPIC CAR FOLLOWING 

MODEL 

 In this model, a vehicle i  at a position ix  at time t is 

characterized by its speed   t)(x,iv and its acceleration

  t)(x,ia . 

 

 Lets considering a vehicle 1i  (follower) at 

position 1ix  behind a vehicle i  at time t . To represent 

the dynamical behavior of the driver/vehicle pair 1i  

at time dtt  , the acceleration of this vehicle is defined 

as a function of the relative speed and spacing between 

vehicles. 

))()(),()(()( 111 txtxtvtvfta iiiii           

(13) 

 

 

Fig. 6: Vehicles in a section road 

 

 Let’s take 1Tdt  . The action of the driver at the 

control levers of his vehicle at time 1Tt   is 

proportional to the spacing between the position of the 

vehicle 1i  ( 1ix ) and the position ix  of the vehicle 

i  at time t  (Fig. 7). 

 

 

Fig. 7: Graphical basic scheme of driver-vehicle pair 

 

 The model of the driver’s behavior includes the 

following functions: 

 Detection of the difference between 

the actual and desired spacing, 

 Decision-making and 

 Action on the control levers.. 

 

 Hence, a graphical model of the driver can be 

represented at Fig. 8, in which the action of the driver is 

linked to the spacing between the vehicle 1i  at 
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position 1ix  and the vehicle i  at position ix  at time t , 

by the constant parameter g  (equation 14). 

))()(()( 1)1( txtxgt iiic          (14) 

 

 where g  is a reaction parameter and )1( ic  the 

thrust or braking related to driver’s behavior.  

 

 

Fig. 8: Base model of driver 

 

 In order to take into account the phenomena of 

acceleration and deceleration, it is necessary to 

anticipate a slowdown or acceleration zone. This 

anticipation will help to prevent the too fast advancing 

of vehicles. Thus, in addition to the delay time 1T  

corresponding to the reaction time of drivers, the 

integration of a diverter function for the problem of 

anticipation, offers a new dynamic relationship between 

)()1( tic   and the effective action )()1( tie  , 

represented by equation 15. 

dt
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 where dT is the response time of the diverter. 

 

 The acceleration are related to the effective action by the following relation: 

)()()( 1)1(1 ta
dt

d
t

dt

d
ta iiei             (16) 

 

 Where   is a constant parameter and   the response time of the motor.  

 

 From Equations 15 and 16, we deduce the acceleration, represented by equation 17. 
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 Finally the car following model is represented by the following system 18. 
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 In this model, the acceleration depends not only on the spacing between the following car and its leader and the 

difference between the two speeds, but also on the information on the speed of the following car at time t. 

 

 The equilibrium is characterized by the situation at which vehicles travel at the same speed. At this equilibrium we 

must have: 

 

  eqii Vtvtv  )()(1  
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 Then we have: 
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 From equation 19, we get the following relation: 

g

V
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           (20) 

 

 To determinate the parameter g  from equation 20, we use the definition of the fundamental diagram. This diagram 

provides the fundamental equilibrium relationship between concentration and speed. 

 

 The concentration eqk is related to eqS  by the equation 21: 

eq

eq
k

S
1

            (21) 

  

 The calculated maximum speed should not be greater than that allowed at the fixed free maximum concentration

maxlK . 

 

 For example, with the equilibrium relationship given above, we can define: 

 

max

min

1

K
S   : The minimum equilibrium distance between two vehicles, 

 

max

max

1

lK
S  : The minimum equilibrium distance for which vehicles run at full speed. 

 

Then we must have: 

maxmin .)t(. SgSg c            (22) 

 

 The field observations show that acceleration and deceleration are not symmetric problems. The acceleration response 

time is greater than the response time of deceleration. Thus we define two response times 1  and 2 such as 21   . 

And the term of the acceleration or deceleration is given by the equation 23. 
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COUPLING THE TWO MODELS 

 In order to take into account transitional phases not 

taken by the LWR model, a hybrid model is presented 

here. This model is used to represent some part of 

network by a microscopic model while the other parts 

of the network are represented by the LWR model. The 

coupling scheme we use must allow correct 

transmission of information from one model to another 

 

 Let’s consider a road section with a given length. 

Applying a hybrid model on this road section consist of 

dividing the road section into areas where, either the 

microscopic model or the LWR model are applied. 

 

 In the example in Fig. 9, the road is divided into three 

zones, and the LWR model with its resolution by the 
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Godunov’s scheme is applied in two zones separated by 

a zone in which the car following model is applied. 

 

 At interfaces we define transitional cells. These cells 

are virtual and allow information exchanges between 

the two models at the interfaces. The interest of these 

transition cells is to allow satisfactory boundary 

conditions to each model, and also enable a gradual 

transfer of information from one model to another. 

 

 

Fig. 9: Coupling scheme 

 

 Let a certain instant t  where the state of the system 

is known, and Godt  and mict  the temporal 

discretisation steps applied respectively to the 

macroscopic model and the microscopic model. The 

coupled models are discrete time and the problem is to 

determine the state of the system at Godtt  . 

 

 By imposing micGod tt  N  , we will have 

instants where the two models know the state of the 

system simultaneously, with N a positive integer. Thus 

information is exchanged at the interfaces at each time 

step of the macroscopic model. 

 

 The principle of this scheme is divided into four 

stages: 

 Step 1: We calculate for the Godunov’s model, 

the upstream demand of the microscopic area 

during a time step, and the downstream supply 

 Step 2: After we translate these constraints into 

vehicular constraints for cell transition through 

the generation of vehicles at the interface 

Macroscopic/Microscopic and determination of 

the trajectory of the first vehicle at the interface 

Microscopic/Macroscopic. 

 Step 3: we evolve the whole vehicle of the 

microscopic, based on the car following model, 

from t  to Godtt   per successive time step 

mict , taking into account the constraints at 

interfaces.  

 Step 4: we deduce from these trajectories, the 

density of these cells from t  to Godtt  . 

 

 These flows are used as boundary conditions for the 

macroscopic model and allow the calculation of its state 

at Godtt  . 

 

 At the interfaces of the microscopic area, we impose 

the demand and supply of macroscopic model as 

boundary conditions. 

 

 Thus, the microscopic model should provide to the 

macroscopic model, downstream supply at interface 

Macroscopic/Micoscopic, and upstream demand of the 

interface Microscopic/Macroscopic. 

Conversely, the macroscopic model must provide to the 

microscopic model, the generation times of vehicles at 

the interface Macroscopic/Microscopic, and the 

trajectory of the first vehicle at upstream interface 

Microscopic/Macroscopic. 

 

 Flows are calculated retrospectively: the growth of 

vehicles from t  to Godtt   gives the supply and 

demand of transition cells. 

 

 The generation of vehicles at the interface 

Macroscopic/Microscopic must satisfy both the demand 

on the macroscopic model and downstream traffic 

conditions. It is assumed that the generation of vehicles 

at the entrance of each section will be made uniformly. 

 

 We define: 

 The minimum time interval between two 

generations of vehicle at the interface 

Macroscopic/MicroscopicCI , as the 

inverse of the demand imposed by the 

macroscopic model. 

)(

1

kD
CI   

 Nsas: entry transition sas. This sas is 

designed to materialize at the end of time 

step Godt , the presence of a portion of 

vehicle not sufficient to generate a vehicle 
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and to reduce the oscillations in the hybrid 

model. 

 

 To determine the generation times of vehicles at the 

interface Macroscopic/Microscopic, we calculate the 

first moment of generation, to complete the portion of 

vehicle already present in the cell, given by

CI Nsas)- (1 . 

 

 The predicted generation times of other vehicles are 

calculated using time spacing equal to CI. 

 

 The creation of a vehicle will be made only, if the 

spacing between the last vehicle and the entrance of the 

microscopic area is more than or equal to the 

equilibrium spacing corresponding to the speed of the 

last vehicle, if this speed is less than or equal to the 

speed calculated from the demand at the entrance of the 

microscopic area. 

 

 The trajectory of a vehicle coming out from the 

microscopic area must meet downstream traffic 

conditions. We also determine the exit times of 

vehicles. We define NsasS as the output transition sas. 

 

SIMULATIONS WITH THE HYBRID MODEL 

PROPOSED 

 In this section we will discuss different scenarios to 

study the behavior of the model, especially with regard 

to the spread of information depending on different 

parameters. In simulation, a 6km stretch of road is used. 

A time step s5tGod   is chosen. The section of road 

is divided into cells of length mx 2,88 . The cells 

are numbered from the upstream to downstream; the 

cells 58 and 59, located between 4km and 4.1400km are 

represented by the microscopic model. 

 Scenario 1: Propagation of congestion to upstream 

 For this purpose, we take an equilibrium condition 

where demand at the network entry is set to 0.4167veh/s 

and the supply at the network output is set to 

0.2778veh/s. The initial concentration of cells is set to 

50veh/km. 

 

 Through the results of presented in figure 10, there is 

a congestion propagating upstream. In this figure we 

have represented the evolution of the traffic flow on this 

stretch of road in the plane (x, t). 

 

Fig. 10: Propagation of congestion to upstream: plane (x, t) 

 

Scenario 2: Reduction of congestion 

 This time we are in an equilibrium situation where 

demand at the input of the network is fixed to 

0.3333veh/s and supply at the output of the network is 

set to 0.5000veh/s. The initial concentration of cells is 

set at 260veh/km. 
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Fig. 11: Reduction of congestion in the hybrid model 
 

Through the results presented in figure 11, the 

formation of a range which propagates through the 

microscopic model can be observed without distortion. 

In this figure we have represented the evolution of the 

traffic flow on the stretch of road in the plane(x, t). 

 

Scénario 3: Reduction of capacity 

 The demand at the input of the network is set to 

0.3056veh/s and the supply at the output is set to 

0.2222veh/s. The initial concentration of cells is set at 

50veh/km. 

 

Fig. 12: Results of the simulation with the hybrid model in the case of a reduced capacity 
 

 Through the results presented in figure 12, we 

observe that the hybrid model provides an acceptable 

representation of the traffic, with a representation of the 

traffic evolution at the discontinuity point, keeping the 

flow conservation and considering the speed as a basic 

parameter at the discontinuity point. The simulation 

allowed to observe the evolution of the rise in 

congestion to upstream that is observable in reality. 

 

CONCLUSION 

 In this paper we presented a hybrid traffic flow 

modeling based on the macroscopic LWR model and a 

microscopic traffic flow model developed 

independently. 

 

 The interest of coupling the two models is to 

represent a large network with a macroscopic first order 

model, and using a microscopic model to represent the 

singular elements. 

 

 The results show that with this hybrid model it is able 

to obtain acceptable results for a representation of the 

different characteristics of traffic. This hybrid model 

can also represent phenomena that can be observed at 
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the points of spatial discontinuities, and that are not 

represented by the macroscopic models. 
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