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Abstract: Recently, non-monotone technique attracts the attention of many scholars and there are various articles about 

this subject. The non-monotone line search technique performs well especially in the case of the bottom of a curved 

narrow valley, which is a common occurrence in nonlinear problems. The purpose of this paper is to discuss the main 

developments of non-monotone techniques used in trust region algorithms for unconstrained optimization. 
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INTRODUCTION 

Trust region method is a robust iterative method for solving the unconstrained problem as following: 

Minimize  f x   

where x nR  and f is a twice differentiable real-valued function from R  to 
nR .   is the Euclidean norm. At each 

given iteration point
kx ,  the algorithm calculates a trial step 

ks  by solving the sub problem: 

Minimize    
1

2

T T

k k k ks f x g s s B s                         (1)                 

. . ks t s    

where  k s is a quadratic approximation of the objective function.  k kg f x   is the gradient of f at kx . 
kB  is a 

symmetric matrix which is either an approximation for the Hessian matrix or the exact Hessian matrix of the objective 

function. ks is called trial step. k is the trust region radius. After getting the trial step
ks

, the ratio kr  which plays an 

important role in deciding the acceptance of the trial step has to be computed: 

   

   0

k k k

k

k k k

f x f x s
r

s 

 



                                 (2) 

When kr  is greater than  0,1u which is a preconditioned constant, the trial step ks is accepted. Therefore we get 

a new iteration point 1k k kx x s   . The trust region radius has to be updated to 1k  according to the scheduled 

rules at the same time. Otherwise the trial is considered failed and we have to calculate ks  again in a shrunken trust 

region radius.  

 

DEVELOPMENTS OF THE NON-MONOTONE TECHNIQUES                           
The ideal of non-monotone technique can be traced back to the watchdog technique proposed by Chamberlain 

which is aimed to overcome Marotos effect for constrained optimization by relaxing some standard linear search 

condition [9]. Inspired by this idea, Grippo et al. establish a generalization of Armijo's rule and demonstrate the global 

convergence to a stationary point in [10]. The non-monotone Armijo rule is described as follows: 

 
 

 
0
maxp p T

k k k j k k
j m k

f x d f x g d   
 

   
 

          (3) 
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where the parameter    0, 0,1 , 0,1     .  m k is preconditioned and satisfy the condition: 

     0 0, min 1 1,m m k m k M      , M  is a constant stands for a nonnegative integer. kp is the smallest 

nonnegative integer which satisfies (3). The new trail step is compared with the maximum point in the previous steps. 

Then the new iteration point can be obtained from the equation 1k k k kx x d   kp

k   . The search direction kd

has to meets two demands instead of just one angle criterion:  
2

1 2,T

k k k k kg d c g d c g    

 

where c1,c2 are positive constants. In paper [12], Grippo et al. combine the relaxed Armijo rule with truncated Newton 

method and analysis the advantages of the algorithm. In paper [13], Grippo and his co-writers illustrate an even further 

relaxation of the original linear search rule. Concisely speaking, some steps could be accepted automatically without 

satisfying (3), if the corresponding kd  is short enough. The value of objective function is checked once in a while to 

decide whether a proper decrease has been obtained when compared to 
0,1,

maxk l j
j p

r f 





. l  represents the last iteration 

at which the value of the objective function is evaluated and checked to be decreased sufficiently. The mechanism to get 

kr  is rather complicated, but it has a great inspiration for other studies.  

 

In paper [11], Philippe L Toint concludes the two algorithm proposed in [10, 13] and their convergence. Later after 

that, several studies about the non-monotone technique referred in [10] appear [8, 15, 18, 19, 20, 24, 25]. Besides the 

relaxation of Armijo's rule, Wenyu Sun et al. explored the non-monotone Goldstein linear search rule and the non-

monotone Wolfe linear search rule in [24]. They prove the convergence under mild assumptions such as Newton-type 

search directions, bounded level set and so on. They also combined forcing functions referred in [20] with the non-

monotone line search technique and give a general line search rule for unconstrained minimization problems which is 

called the non-monotone F-rule. 

 

DEVELOPMENTS OF TRUST REGION METHOD 

Trust region method has been studied by lots of researchers due to its strong convergence to a stationary point which 

satisfies the second-order necessary conditions, see [1-7]. In order to guarantee the convergence, the sequence of the 

objective function value has been forced to be monotonous. This monotonicity property may be considered as natural, 

but not without drawbacks. Some studies [10,12,18] indicate that the monotonicity of the objective function may slow 

down the convergence rate of the algorithm, for example the minimization of Rosenbrock function. The reason is that the 

algorithm may be trapped in the neighborhood of narrow curved valleys. To overcome this deficiency, the non-monotone 

technique is introduced to the trust region method. 

 

In [8, 16], Xiao, Zhou and their co-writers first applied non-monotone technique to trust region algorithm for 

unconstrained optimization. Zhou and Xiao [17], Xiao and Chu [21] develop the idea further. The main creation of [8] is 

changing the constant u  which is the criterion to decide whether the iteration is successful or not to a variable ku

according to following rule: 

    
   

, 0
0

, 0

k k kl k

k k k k

f f x g
M

u s

u M



 

   
 

  




                       (4) 

 min ,k ku u u                                                  (5) 

where     
 
 

0
max k jl k l k

j m k
f f x f 

 
  ,       0 0, min 1 1,m m k m k M    . Thus ku is not necessarily 

positive. Therefore, the objective function value  1kf x   at the new acceptable iteration point may not monotonically 

decrease compared to  kf x  while it does decrease when compared to  l k
f . When M=0, the algorithm becomes 

traditional trust region method. Equation (2), (4), (5) and the acceptability criterion k kr u  together imply that

   1k k kl k
f f x g   . In fact, this inequality is quite similar to the relaxed Armijo's rule in [10]. Because the use 
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of ku , the acceptability criterion would not be too strict, for example, the trial step is acceptable when  kk uur , . 

They prove the convergence properties of this algorithm under certain assumptions including:  

2k ks c g                                                (6) 

 

and propose a specialized algorithm for the subproblem which ensures the solution of the approximate model satisfies 

(6). 

 

Toint in [22] once points out that condition (6) may prevent large steps in case of saddle points or the bottom of 

valleys. He insists that the validity of condition (6) still has to be discussed. Toint also advances a new non-monotone 

trust region algorithm in [22] .The key technique of it is a modification on the acceptance rule of the trial point. The non-

monotone ratio in [22] is as follows: 

   

 1,

, 0
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 
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
,  kkk rrr ,2,1 ,max  

where    0k k k kd s   . At variance with the scheme in [8], the proposed non-monotone method requires the 

storage of the last p terms of the sequence kd . p stands for how far the current iterate to search in the past for its 

associated reference iteration. To overcome some unwanted occurrences like successive increasing function values of 

successful iterations, Toint proposes an adaptive mechanism for the associated function value used in the ration. Dai and 

Y.H in [15] have also suggested that a standard Armijo line search rule should be adopted when condition (3) is not 

satisfied. 

 

As is known, trust region method is sensitive to the initial radius 0  and the way to update k . Zhang et al. in [14] 

utilize adaptive trust region radius technique to the non-monotone algorithm and study its convergence properties. They 

try to find the solution of the subproblem in k which is constructed of the information of kg and
kB  as follows: 

1,10,  kkkk

p

k BMcMgc


 

p  is a nonnegative integer,  kB


can be obtained through Schnabel and Eskow modified Cholesky factorization and is a 

positive definite matrix. They define the ratio in [14] is as follows: 

   

 kk

kkkl

k

k

k
s

sxff

ed

Ared
r

 




)0(Pr
                                   (7) 

 

          It is the widely used in many papers. Wenyu Sun in [18] explore the ration (7) in depth and prove convergence 

properties of the algorithm based on it. In a subsequent paper [23], Jinhua Fu and Wenyu Sun propose another non-

monotone adaptive trust region method. They make a modification on Pr ked  of (7) as follows: 

   kkklk sfed Pr  

 

       They solve the subproblem through the truncated conjugate gradient method instead of solving it exactly as in [14]. 

In 2004, H.C. Zhang and W.W. Hager propose a new non-monotone algorithm based on weighted average of the 

function values [26]. They use the following 
kC  to replace  

0 ( )
max k j

j m k
f x 

 

 
 

 in the right hand of (3). 
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where 
 maxmin1 , k ,

   min max max0, , 0,1   
. Jiangtao Mo et al. in [27] propose that  kQ  should be 

abandoned. They constructs 
kD  to instead of  l k

f  in (7). kD  is described as follows: 

 

   1

1

1 2

k

k

k k

f x k
D

D f x k 


 

  
 

 

        In [30], Jinghui Liu and his co-writers propose another non-monotone line search rule and establish a ration kr  

based on 
kD  in [30]. They use line search technique to resolve the subproblem when the iteration is unsuccessful. M. 

Ahookhoshet al. in [28,29] introduce a new formula instead of  klf  in (7), say: 

    kkklkk ffR   1 , 

 

         where  maxmin , k ,    1,,1,0 minmaxmin   . They advise that a weaker non-monotone strategy should 

be used when the iteration point is close to the minimum while a stronger strategy should be adopted in the opposite case. 

This idea to adjust the nonmonotonicity of the algorithm can be realized by selecting k .The idea is also true to the step 

length. 

 

 ANALYSIS  

The non-monotone techniques have lots of advantages, however, it also suffers from some drawbacks. One is that 

ks  produced at each iteration is essentially abandoned according to the maximum function value  klf  in the previous 

iterations. To overcome it, some researchers begin to change to the reference function value  klf  in Pr ked of the ratio 

kr , see [26-30]. In general, there are two ways about choosing reference function value: one is based on the previous 

maximum function value  klf , the other is a linear combination of several function values. There are not sufficient 

studies on comparing calculation efficiency between them. Another drawback is that non-monotone line search method 

seems unsuitable for functions that do not have strong nonlinearity. For example, the Brown and Dennis function. Papers 

[15, 22] provide some advices to deal with it. Besides, we realize that the ratio kr  of actual descent and predicted descent 

is essential both in selecting the new iteration point and updating the trust region radius k . In fact, the key content of 

many papers is the modification on kr . Nevertheless, there is no explicit research about how the mechanism of obtaining 

 m k  and the construction of Pr ked  affect the efficiency of the non-monotone trust region algorithm.  

 

From the above analysis we can learn that although most of the researches about the non-monotone trust region 

algorithm are promising, there are still lots of problems to tackle with. 

 

Acknowledgements  

 This work is supported by the National Nature Science Foundation of China (Grant No. 11101115) and the Natural 

Science Foundation of Hebei Province (Grant No. A2014201003, A2014201100). 

 

REFERENCES 

1. Fletcher R; Practical Method of Optimization. Unconstrained Optimization, Volume 1, 1980.  

2. More JJ; Recent developments in algorithms and software for trust region methods. Mathematical 

Programming: The State of the Art,1983; 258-287. 

3. Powell MJD; Convergence properties of class minimization algorithms. Nonlinear Programming,  1975; 2:l-27  

4. Powell MJD; On the global convergence of trust region algorithms for unconstrained optimization. Math. Prog, 

1984; 29:297-303. 

5. Schultz GA, Schnabel RB, Byrd RH; A family of trust region-based algorithms for unconstrained minimization 

with strong global convergence. SIAM J. Namer. Anal, 1985; 22:47-67.  

6. Yuan Y; On the convergence of trust region algorithms, Mathematics Numerica Sinica, 1996; 16:333-346. 

7. Yuan Y, Sun W; Optimization: Theorem and Application, (in Chinese), Science Publish House of China, 1997. 

8. Deng NY, Xiao Y, Zhou FJ; Nonmonotonic trust region algorithm. J. Optim. Theory Appl, 1993; 76:259–285.  

http://www.iciba.com/linear_combination
http://www.iciba.com/mechanism


 

Qinghua Zhou et al., Sch.  J. Eng. Tech., 2014; 2(4B):586-590 

    590 

    

 

 

9. Chamberlain RM, Powell MJD, Lemarechal C, Pedersen HC; The watchdog technique for forcing convergence 

in algorithms for constrained optimization. Math. Program. Study.  1982;16:1–17. 

10. Grippo L, Lamparillo F, Lucidi S; A nonmonotone line search technique for Newton’s method. SIAM Journal of 

Numerical Analysis,1986; 23:707–716. 

11. Toint PhL; An assessment of nonmonotone linesearch technique for unconstrained optimization. SIAM Journal 

of Scientific Computing, 1996; 17: 725–739. 

12. Grippo L, Lamparillo F, Lucidi S; A truncated Newton method with nonmonotone line search for unconstrained 

optimization. Journal of Optimization Theory and Applications, 1989; 60:401–419. 

13. Grippo L, Lamparillo F, Lucidi S; A class of nonmonotone stabilization methods in unconstrained optimization. 

Numerical Mathematics, 1991; 59:779–805. 

14. Zhang JL, Zhang XS; A nonmonotone adaptive trust region method and its convergence. Computers and 

Mathematics with Applications, 2003; 45:1469–1477. 

15. Dai YH; On the nonmonotone line search, J. Optim. Theory Appl, 2002; 112:315–330. 

16. Xiao Y, Zhou FJ; Nonmonotone trust region methods with curvilinear path in unconstrained optimization. 

Computing, 1992; 48:303–317. 

17. Zhou F, Xiao Y; A class of nonmonotone stabilization trust region methods. Computing,  1994; 53(2):119–136. 

18. Sun WY; Nonmonotone trust region method for solving optimization problems. Appl. Math. Comput, 2004; 

156(1):59–174. 

19. Grippo L, Sciandrone M; Nonmonotone globalization techniques for the Barzilai-Borwein gradient method. 

Comput. Optim, 2002; 23:143–169. 

20. Ortega JM, Rheinboldt WC; Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, 

1970. 

21. Xiao Y, Chu EKW; Nonmonotone trust region methods. MonashUniversity, Technical Report, 1995; 95/17. 

22. Toint PhL; Non-monotone trust region algorithm for nonlinear optimization subject to convex constraints. Math. 

Program, 1997; 77:69–94. 

23. Fu J, Sun W; Nonmotone adaptive trust region method for unconstrained optimization problems. Appl. Math. 

Comput, 2005; 163(1):489–504. 

24. Sun WY, Han JY, Sun J; Global convergence of nonmonotone descent methods for unconstrained optimization 

problems. J. Comput. Appl. Math, 2002; 146: 89–98. 

25. Liu G, Han J, Sun D; Global convergence of BFGS algorithm with nonmonotone linesearch. Optim, 1995; 

34:147–159. 

26. Zhang HC, Hager WW; A nonmonotone line search technique and its application to unconstrained 

optimization”. SIAM J. Optim, 2004; 14 (4):1043–1056. 

27. Mo J，  Liu C，  Yan S; A nonmonotone trust region method based on nonincreasing technique of weighted 

average of the successive function values. Journal of Computational and Applied Mathematics  2007;209:97-

108. 

28. Ahookhosh M, Amini K; A nonmonotone trust region method with adaptive radius for unconstrained 

optimization problems. Computers and Mathematics with Applications, 2010;  60: 411-422.  

29. Ahookhosh M, Amini K, Peyghami MR; A nonmonotone trust region line search method for large-scale 

unconstrained optimization.  Applied Mathematical Modelling, 2012; 36:478-487. 

30. Liu J, Ma C; A nonmonotone trust region method with new inexact line search for unconstrained optimization. 

Numerical Algorithms, 2013; 64(1):1-20. 

http://link.springer.com/journal/11075

