

 591

Scholars Journal of Engineering and Technology (SJET) ISSN 2321-435X (Online)

Sch. J. Eng. Tech., 2014; 2(4B):591-596 ISSN 2347-9523 (Print)
©Scholars Academic and Scientific Publisher

(An International Publisher for Academic and Scientific Resources)

www.saspublisher.com

Research Article

An Efficient Modified Derivative-Free Method on Bound Constrained

Optimization
Xiaoli Zhang, Qinghua Zhou*

College of Mathematics and Computer Sciences, Hebei University, Baoding, 071002, Hebei Province, China

*Corresponding author

Qinghua Zhou

Email:

Abstract: This paper introduces an efficient modified derivative-free method for bound constrained optimization

problems. It is based on the coordinate search method. During the running of the algorithm, it incorporates the

progressive obtained local information into the current iteration. Actually, after we find two different suitable descent

directions, we introduce the composite expansion step. By doing these, a new point is produced through some kind of

line search techniques. Then we test the efficiency of our new method on the benchmarking. The computational results

shows the efficiency of the modified algorithm.

Keywords: bound constrained optimization; derivative-free method; line search

INTRODUCTION

In this work, we consider the bound constrained minimization problem

  Min f x (1)

 . .s t l x u  (2)

Where , , nx l u R , with l u , and : nf R R , a continuously differentiable function. We suppose that the

first order derivatives can not be explicitly calculated or approximated. We set both
il    and

iu  for some

 1,2, , ni  to denote the relevant variables are unbounded.  :nF x R l x u    means the

feasible set.  and , signify the Euclidean norm and inner product, respectively. The identity matrix is denoted by

I and its i -th column by ie . The j th component of a vector
nv R is indicated by

jv . Finally, F denotes

the boundary of the feasible set F .

Derivative-free optimization methods (also named direct search methods) which neither compute nor approximate

derivatives are attracted more and more attentions in recent years. In order to overcome the lack of gradient information,

many globally convergent derivative-free algorithms are proposed in literature. And most of them are based on the idea

of performing finer and finer samplings of the objective function along suitable sets of search directions [1-3].

In 2002, Lucidi [4] proposed an algorithm to solve the above bound constrained optimization problem. Whenever a

“suitable” descent feasible coordinate direction is detected, a new point is produced by performing a derivative free line

search along this direction (expansion step). Li and Zhou [5] improved the algorithm in [4] by the following ways. When

the algorithm detects the second decent direction, then it does not use line search any more, but to introduce a composite

search directions and execute the expansion step. The results show the efficiency of the simple strategy. Inspired by

them, we introduce a different composite search technique. We think the strategies in [4] and [5] neglect the local

information to some extent circling the current iteration point. Considering the intuitive of simplex methods, we construct

a composite direction whenever the algorithm find two different descent directions and then execute the expansion step.

http://www.saspublisher.com/

Qinghua Zhou et al., Sch. J. Eng. Tech., 2014; 2(4B):591-596

 592

The main features of our algorithm are the following: In order to reduce the complexity of the algorithm, we do not

perform the “sufficiently” large step length along every direction after we find a “suitable” point. We calculate the new

point by performing a line search along composite direction of the obtained two descent directions, but not the detected

one. According to this simple skill, we make considerable progress in reducing the numbers of function evaluations.

The paper is organized as follows. In Section 2, we describe our algorithm for solving the bound constrained problem

by combining the local information which is progressively obtained during the iterations of the algorithm. In Section 3,

the primary numerical results are presented. Finally a short discussion about conclusion and future work is given in

section 4.

THE MODIFIED ALGORITHM

At this part, we present a new derivative-free algorithm for the minimization of a continuously differentiable

function, in the case of that some of (or all) the variables are bounded. As we all know, the successfully coordinate

directions must be the set of descent directions, which we can search and remain feasible for a sufficiently long distance

in the box constraints. On the basis of the previous constrained methods, we propose a different composite search

technique. Moreover, It samples the objective function along the coordinate directions, with the aim of detecting a

feasible direction. Furthermore, this set of search directions and the used particular sampling technique allow us to

overcome the lack of gradient information and ensure that every limit point of the sequence produced is a stationary point

for problem [1]. Then, we have all we need to state our algorithm now.

Algorithm 1 The modified algorithm

Start with
0 0, (0,1), 0, 0 ,i

i ix F d e         , 1,2, ,i n  . Let

0, 1k i  be given.

(1) Compute
maxi ， s.t. maxk i ix d F  and set  maxmin ,i

i k i   . If 0i  and

    2

k i i k if x d f x    , then go to step (4).

(2) Compute
maxi ， s.t. maxk i ix d F  and set  maxmin ,i

i k i   . If 0i  and

    2

k i i k if x d f x    , then go to step (4); else go to step (3).

(3) Set
10, i

k k i    ,  mod , 1,i i n  go to step (1).

(4) Use the similar program as (1)、（ 2） to find another descent direction
jd .

(5) Compute com by composite expansion step  , , , ,i j i jd d    .Set

 1k k com i jx x d d    .

(6)  mod , 1, ,j j n i j   go to step (1).

Composite expansion step  , , , ,i j i jd d   

Data.  1 2, , 0,1    .

Step1. Let

max

1

min , i
i i


 



 
  

 



jmax

2

min ,
j

j


 



 
  

 



If maxi i  , then compute k by the expansion step  max, , ,j j jd    ;

Qinghua Zhou et al., Sch. J. Eng. Tech., 2014; 2(4B):591-596

 593

If
jmaxj  , then compute k by the expansion step  imax, , ,i id    ;

If   2 2
i jk i j k i jf x d d f x    

  
       

   

  

, update the best point and stop.

Step2. If ,i ji j    
 

, go to step1.

Expansion step  max, , ,i i id   

Data.  0,1 

Step1. let
maxmin , i

i


 



 
  

 



. If maxi i  or

  2

k i kf x d f x 
 

   
 



, set k i  and stop.

Step2. set i 


, go to step1.

Particularly, the steps of the algorithm can be detailed explanation as follows:

 In the first step, we compute the maximum feasible step-length
imax , the direction id is checked on the aim of

determining a feasible point where the objective function is sufficiently decreased. Next, the trial stepsize i is

determined by choosing the minimum between maxi and
i

k . Certainly, the scalar
i

k has been computed on the

basis of the behavior of the objective function along the same direction showed in the previous iterations. Therefore, the

scalar
i

k should provide a promising initial stepsize for the direction id . Finally, it is verified if the moving of length

i along id produces a feasible point where the function is sufficiently reduced. If such a point is produced then we

could directly go to find another descent point immediately. Otherwise, the direction id is considered (Step 2).

 The second step is similar to the first one by replacing id with its opposite direction id . In this case, we still need

to calculate the maximum feasible step-length imax and decide the trial stepsize i along with the direction id . If

the trial point k i ix d can produce a sufficient decrease of f then we go to the fourth step directly. Otherwise, we

perform the next step.

 In the third step, let the stepsize k is equal to zero and reduce the scalar
i

k , which means the line search is

failed to find a possible descent point in the current direction. Then, the algorithm goes back to the first step to check

other directions.

The purpose of the fourth step is to find another descent direction, where the main process is quite similar to steps

(1) and (2).

In the fifth step, we use a composite search technique. Details are as follows, a comparative larger stepsize
com is

computed by the composite expansion step, the aim is to accelerate the algorithm and make suitable progress in reducing

the numbers of function evaluations.

Qinghua Zhou et al., Sch. J. Eng. Tech., 2014; 2(4B):591-596

 594

NUMERICAL RESULTS

In this section, we implement our new algorithm and compare it with the method of Lucidi [4] and Li [5]. The test

problems are those given by [6], which are obtained from the set of functions suggested in [7]. During all the tests, the

parameters appeared in the algorithm model have been set as follows:

610  , 0.25  , 1 2 0.5   , 0.5  ,
0 0.5, 1, ,i i n   

 Note that we have not performed an extensive empirical tuning of the parameters in the algorithm. We have adapted

choices usually adopted in linesearch techniques of gradient based algorithms.

 About the stopping criterion, we have adapted the same approach proposed in [6]. Let 0f be the value of f at the

starting point 0x and
*f be the best known function value. Then we introduce the quotient

*

*

0

k
k

f f
q

f f





 (2)

Which can be considered a measure of the convergence speed and we have terminated an algorithm whenever

 kq  (3)

Where  is a prefixed value. We can got an idea on the efficiency of an algorithm when the values of  are

different. However, in some test problems the global minimum is not the unique stationary point. Therefore, an algorithm

could generate a sequence converging towards a stationary point x


, with
*f x f

 
 

 



, and could never satisfy the

criterion (2). To tackle this possible occurrence, Lucidi [4] have also introduced the following stopping criterion

  5

1,2, ,nmax 10i

i k


  .

Finally, an algorithm is terminated when it has performed a number max 1000N  of function evaluations

which is not accordance with any of the two the stopping criterions.

We use the same numbering system as that in [5]. And we have tested our algorithm on the set of problem with

these different values of  , namely
1 3 610 , 10 , 10       . Next we give the results of compared

different value in table 1.

Where p represents the problem, ni represents the number of iterations. nf and f represent the numbers of

function calculations and function values, respectively. Additionally, the symbols “×” means that the algorithm

terminates because the number of function evaluation exceeds 1000.

Table-1: The computational results with different value

 110 
310 

610 

P ni/nf f ni/nf f ni/nf f

1 3(16) 226.000000000000000 8(50) 1.744249056521678 27(140) 9.904221353475555E-001

2 10(87) 8.069403313633597E-002 × 3.185557319949477E-002 × 3.185557319949477E-002

3 2(11) 1.872979626928002E-008 7(36) 1.229773350044900E-008 15(75) 1.128199030219998E-008

4 1(33) 3.332684828862538E-002 2(48) 8.992110460296558E-004 × 1.885276454801245E-006

5 0(104) 87.924516358860330 0(144) 9.045313242136058E-001 25(249) 5.501810695295482E-001

6 0(8) 28873.250000000020000 0(9) 531.411600000000600 × 7087.800000000000000

7 0(7) 1.039771219166782 × 4.393713051614986E-002 × 4.393713051614986E-002

8 0(6) 1.842048983570117 × 8.061138392749635E-002 × 8.061138392749635E-002

9 × 126558.065240000000000 × 127270.565230000000000 × 127270.565230000000000

10 0(5) 4.040932327162389E-002 7(55) 2.044972255680543E-003 19(131) 1.048460241963999E-005

Qinghua Zhou et al., Sch. J. Eng. Tech., 2014; 2(4B):591-596

 595

11 2(13) 8.205588889092597 3(20) 4.079890300419146E-002 21(246) 4.523609729460724E-004

12 1(29) 783.999999999355500 1(29) 783.999999999355500 1(29) 783.999999999355500

13 × 5155325.263149790000000 × 5155325.263149790000000 × 5155325.263149790000000

14 25(153) 5.121685717389848 25(153) 5.121685717389848 25(153) 5.121685717389848

15 27(255) 4.303011410533279E-003 27(255) 4.303011410533279E-003 27(255) 4.303011410533279E-003

16 8(53) 1.557738104462623 29(140) 2.500000011141310E-001 29(140) 2.500000011141310E-001

17 1(10) 20.937500000000000 11(87) 1.100158691406250E-001 15(125) 1.999666072661058E-004

18 0(8) 8.876953125000000E-001 4(16) 0.000000000000000E+000 4(16) 0.000000000000000E+000

19 0(12) 1548.775000000000000 9(83) 10.361914062500000 52(454) 7.876417263871907

20 18(159) 3.114016303330327E-003 × 1.677046996345801E-003 × 1.677046996345801E-003

21 26(213) 7.013697702361832E-003 × 4.157200717201540E-003 × 4.157200717201540E-003

22 31(243) 2.754576149125480E-003 × 1.947492266966226E-004 × 1.947492266966226E-004

23 19(180) 9.041782069466963E-003 72(679) 6.531053039722382E-003 72(719) 6.503013632708789E-003

 From the table 1, We can clearly see that, for
110  ，most of the test problems can be solved by our method.

But with the increasing of the precision, the number of function evaluations is also increasing. However, with the degree

of required precision becoming higher, our function evaluations are smaller than precious.

Then, we compare our algorithm both with Li [5] and Lucidi [4]. The results are listed in Table 2 and Table 3.

Furthermore, for depicting the performance of different algorithms, we say that an algorithm wins only if the number of

function calculations required to solve a test problem is smaller than or equal to 95% of the one required by another

algorithm. Particularly, the modified new algorithm is defined by "newalg".

Table-2 The statistic results of experiments

 Algorithms No. of wins in terms

of
fn

No. of balances

110  newalg 13 1

110  Lucidi [4] 8 1

310  newalg 10 3

310  Lucidi [4] 9 3

610  newalg 15 2

610  Lucidi [4] 6 2

Table-3: The statistic results of experiments

 Algorithms No. of wins in terms

of
fn

No. of balances

110  newalg 12 5

110  Li [5] 6 5

310  newalg 9 7

310  Li [5] 7 7

610  newalg 8 8

610  Li [5] 7 8

Clearly, Table 2 shows that, on the whole, the result of our algorithm is better than the one in Lucidi [4], especially

when there is a high precision. That is to say, higher the degree of required precision, more efficient of our algorithm.

Furthermore, For the comparative results with Li [5], our strategy is more competitive. In general, our algorithm is

Qinghua Zhou et al., Sch. J. Eng. Tech., 2014; 2(4B):591-596

 596

efficient in reducing the number of function evaluations then the exist ones, which is the most often used indicator in

derivative free optimization problems.

CONCLUSIONS AND FUTURE WORKS
 In this paper, we investigate the performance of a new derivative-free algorithm for solving the bound constrained

optimization problems. The algorithm is based on the coordinate search method. After we find two suitable descent

directions, we construct and execute the socalled composite expansion step. By introducing this simple strategy, the

number of function calculations is improved significantly for most test problems. In general, we think the new method

should be more effective in practice. In the near future, we will still devote ourselves to studying the effect with different

choices of the descent directions and construct more efficient search strategies.

Acknowledgements

This work is supported by the National Nature Science Foundation of China (Grant No. 11101115) and the Natural

Science Foundation of Hebei Province (Grant No. A2014201003, A2014201100).

REFERENCES

1. Torczon V; On the convergence of pattern search algorithms. SIAM J. Optim, 1997; 7:1-25.

2. Lewis RM, Torczon V; Pattern search methods for bound constrained minimization. SIAM Journal on

Optimization, 1999; 9: 1082–1099.

3. Hooke R, Jeeves TA; Direct search” solution of numerical and statistical problems. J.ACM, 1961; 8: 212-229.

4. Lucidi S, Sciandrone M; A Derivative-Free Algorithm for Bound Constrained Optimization. Computational

Optimization and Applications , 2002; 21: 119-142 .

5. Yan Li, Qinghua Zhou; A modified derivative-free algorithm for bound constrained optimization. Machine Learning

and Cybernetics, 2006 International Conference on. pp. 2242 – 2245.

6. Elster C, Neumaier A; A grid algorithm for bound constrained optimization of noisy functions. IMA Journal of

Numerical Analysis, 1995; 15:585–608.

7. Mor´e JJ, Garbow BS, Hillstrom KE; Testing unconstrained optimization software, ACM Trans. On Math. Software,

1981; 7:17–41.

http://scholar.google.com/citations?user=3n2JXcYAAAAJ&hl=zh-CN&oi=sra
http://scholar.google.com/citations?user=g2hzthgAAAAJ&hl=zh-CN&oi=sra
http://link.springer.com/journal/10589
http://link.springer.com/journal/10589
http://link.springer.com/journal/10589
http://link.springer.com/journal/10589/21/2/page/1
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4028021
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4028021
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4028021

