# Scholars Journal of Engineering and Technology (SJET) <br> Sch. J. Eng. Tech., 2014; 2(4C):645-649 

## Research Article

Integer Points on the Homogeneous Cone $7 x^{2}-2 y^{2}=10 z^{2}$<br>Gopalan. M. A ${ }^{1}$, Vidhyalakshmi . $\mathbf{S}^{2}$, Geetha . $\mathbf{T}^{* 3}$<br>${ }^{1,2,3}$ Department of Mathematics,Shrimati Indira Gandhi college ,Trichy 620002 ,Tamil Nadu,India

## *Corresponding author <br> Geetha .T

Email: vishaa125509@gmail.com


#### Abstract

The ternary quadratic $7 x^{2}-2 y^{2}=10 z^{2}$ representing a homogeneous cone is analysed for its non-zero distinct integral points. A few interesting properties among the solutions and polygonal numbers are presented. Given an integrer solution, six different triples of integers generating infinitely many integer solutions are exhibited.


Keywords: ternary quadratic, homogeneous cone, integer points
Mathematics subject classification:11D09

## INTRODUCTION

The ternary homogeneous quadratic diophantine equation offers an unlimited field for research because of their variety[1-2]. For an extensive review of various problems one may refer [3-11]. In this context, one may also see [12-16] for integer points satisfying special three dimensional graphical representations. This communication concerns with yet another interesting ternary quadratic equation $7 x^{2}-2 y^{2}=10 z^{2}$ representing homogeneous cone for determining its infinitely many non-zero integer solutions. A few interesting properties among the solutions and special numbers are presented. Also given an integer solution, six different triples of integers generating infinitely many integer solutions are exhibited

## NOTATION USED

.$t_{m, n}$ - polygonal number of rank n with size m

## METHOD OF ANALYSIS

The ternary quadratic eqution studied for its non distinct integer solutions is given by

$$
\begin{equation*}
7 x^{2}-2 y^{2}=10 z^{2} \tag{1}
\end{equation*}
$$

We illustrate below the different patterns of integer solutions to (1)

## Pattern I

Introduction of the linear transformations

$$
\begin{equation*}
x=X+2 T, y=X+7 T \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
X^{2}-14 T^{2}=2 Z^{2} \tag{3}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
X^{2}-16 T^{2}=2\left(Z^{2}-T^{2}\right) \tag{4}
\end{equation*}
$$

Rewrite (4) in the form of ratio as

$$
\begin{equation*}
\frac{X+4 T}{Z+T}=\frac{2(Z-T)}{X-4 T}=\frac{A}{B} \quad \text { where B } \neq 0 \tag{5}
\end{equation*}
$$

(5) is equivalent to the following two equations

$$
\begin{equation*}
B X+T(4 B-A)-A Z=0,-A X+T(4 A-2 B)+2 B Z=0 \tag{6}
\end{equation*}
$$

By the method of cross multiplication, we get

$$
\begin{equation*}
X=12 A^{2}-4 A B, T=A^{2}-2 B^{2} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
Z=-A^{2}-2 B^{2}+8 A B \tag{8}
\end{equation*}
$$

From (2) and (7), the corresponding non-zero integer values of $x$ and $y$ are given by

$$
\begin{equation*}
x(A, B)=14 A^{2}-4 B^{2}-4 A B, y(A, B)=19 A^{2}-14 B^{2}-4 A B \tag{9}
\end{equation*}
$$

Thus (8) and (9) represent the distinct integer point on the cone (1).

## PROPERTIES

1. $x(A, 1)+z(A, 1)-t_{28, A} \equiv 0(\bmod 16)$
2. $6\left\lfloor x\left(1,4-6 n-n^{2)}+y\left(1,4-6 n-n^{2}\right)+t_{14,4-6 n-n^{2}}\right\rfloor\right.$ is a nasty number 3 .
$y(1,4 n-3)+z(1,4 n-3)+t_{547, n}-5 \equiv 0(\bmod 145)$
3. $y(1,4 n-3)+z(1,4 n-3)+544 t_{3, n-1} \equiv-5(\bmod 144)$

## NOTE

Equation (3) can be also be written in the following ways

1. $\frac{X+4 Z}{2(T+Z)}=\frac{7(T-Z)}{X-4 Z}=\frac{A}{B} \quad$ 2. $\frac{X-4 Z}{2(T+Z)}=\frac{7(T-Z)}{X+4 Z}=\frac{A}{B}$
2. $\frac{X+4 Z}{7(T+Z)}=\frac{2(T-Z)}{X-4 Z}=\frac{A}{B} \quad$ 4. $\frac{X-4 Z}{7(T+Z)}=\frac{2(T-Z)}{X+4 Z}=\frac{A}{B}$
3. $\frac{X+4 Z}{T+Z}=\frac{14(T-Z)}{X-4 Z}=\frac{A}{B}$
4. $\frac{X-4 Z}{T+Z}=\frac{14(T-Z)}{X+4 Z}=\frac{A}{B}$
5. $\frac{X+4 Z}{14(T+Z)}=\frac{T-Z}{X-4 Z}=\frac{A}{B} \quad$ 8. $\frac{X-4 Z}{14(T+Z)}=\frac{T-Z}{X+4 Z}=\frac{A}{B}$ where $B \neq 0$

Proceeding as above, different choices of integer solutions to (1) are obtained

## PATTERN:2

Introducing the linear transformations
$x=4 X+2 \alpha \pm 4 \beta, y=4 X+7 \alpha \pm 14 \beta, Z=\alpha \pm 14 \beta$
in (1), and performing a few algebra , the corresponding two sets (I,II) of non- zero distinct integer solutions to (1) are represented as follows.

## SET:I

$x(p, q)=168 p^{2}+2 q^{2}+8 p q$
$y(p, q)=308 p^{2}-3 q^{2}+28 p q$
$z(p, q)=28 p^{2}-q^{2}-28 p q$

## PROPERTIES:

1. $x(1, q)-y(1, q)-8 t_{3, p} \equiv-12(\bmod 16)$
2. $x(1, n)+y(1, n)+4 t_{3, n} \equiv 14(\bmod 34)$
3. $x(p, 1)+y(p, 1)+z(p, 1)+t_{226, p} \equiv-4(\bmod 159)$

## SET:II

$x(p, q)=168 p^{2}+2 q^{2}-8 p q$
$y(p, q)=308 p^{2}-3 q^{2}-28 p q$
$z(p, q)=28 p^{2}-q^{2}+28 p q$

## PROPERTIES:

1. $y(p, 1)-x(p, 1)-5 t_{58, p} \equiv 2(\bmod 7)$
2. $x(1, z)-z(1, z)-t_{8, z} \equiv 4(\bmod 34)$
3. $x(1, n)+z(1, n)-2 t_{3, n} \equiv 7(\bmod 21)$

## REMARKS:

Instead of (2), one may also consider the linear transformations to be

$$
x=X-2 T, y=X-7 T
$$

Following the procedures presented in patterns I\&II, the corresponding 3 sets (III,IV,V) of integer solutions to (1)are as follows .

## SET:III

$x(A, B)=10 A^{2}+4 B^{2}-4 A B$
$y(A, B)=5 A^{2}-4 A B+14 B^{2}$
$z(A, B)=-A^{2}-2 B^{2}+8 A B$

## SET:IV

$x(p, q)=56 p^{2}+6 q^{2}-8 p q$
$y(p, q)=-84 p^{2}+11 q^{2}-28 p q$
$z(p, q)=28 p^{2}-q^{2}-28 p q$

## SET:V

$x(p, q)=56 p^{2}+6 q^{2}+8 p q$
$y(p, q)=-84 p^{2}+11 q^{2}+28 p q$
$z(p, q)=28 p^{2}-q^{2}+28 p q$

## GENERATION OF SOLUTIONS

Let $\left(x_{0}, y_{0}, z_{0}\right)$ be the initial solution of (1).Then each of the following triples of non-zero distinct integers based on $\left(x_{0}, y_{0}, z_{0}\right)$ also satisfies (1).

TRIPLE:I $\left(3^{n} x_{0}, y_{n}, z_{n}\right)$

$$
\text { here } \begin{aligned}
y_{n} & =\frac{3^{n-1}}{2}\left[\left(5+(-1)^{n}\right) y_{0}+\left((-1)^{n} 5-5\right) z_{0}\right] \\
z_{n} & =\frac{3^{n-1}}{2}\left[\left((-1)^{n}-1\right) y_{o}+\left(1+(-1)^{n} 5\right) z_{0}\right]
\end{aligned}
$$

TRIPLE:II $\left(x_{n}, 3^{n} y_{0}, z_{n}\right)$
here

$$
x_{n}=3^{n-1}\left[\left(10-7(-1)^{n}\right) x_{0}+\left((-1)^{n} 10-10\right) z_{0}\right]
$$

$$
z_{n}=3^{n-1}\left[\left(7-7(-1)^{n}\right) x_{0}+\left((-1)^{n} 10-7\right) z_{0}\right]
$$

TRIPLE:III $\left(x_{n}, y_{n}, 3^{n} z_{0}\right)$
where

$$
\begin{aligned}
& x_{n}=3^{n-1}\left[\left(24+(-1)^{n}(-21)\right) x_{0}+\left((-1)^{n} 12-12\right) y_{0}\right] \\
& y_{n}=3^{n-1}\left[\left(42+(-1)^{n}(-42)\right) x_{0}+\left((-1)^{n} 24-21\right) y_{0}\right]
\end{aligned}
$$

## TRIPLE:IV $\left(3^{n} x_{0}, y_{n}, z_{n}\right)$

where

$$
\begin{aligned}
& y_{n}=\frac{1}{2 \sqrt{5}}\left[\sqrt{5}\left((2+i \sqrt{5})^{n}+(2-i \sqrt{5})^{n}\right) y_{0}+i 5\left((2+i \sqrt{5})^{n}-(2-i \sqrt{5})^{n}\right) z_{0}\right] \\
& z_{n}=\frac{1}{2 \sqrt{5}}\left[-i\left((2+i \sqrt{5})^{n}-(2-i \sqrt{5})^{n}\right) y_{0}+\sqrt{5}\left((2+i \sqrt{5})^{n}+(2-i \sqrt{5})^{n}\right) z_{0}\right]
\end{aligned}
$$

TRIPLE:V $\left(x_{n}, 3^{n} y_{0}, z_{n}\right)$
in which

$$
\begin{aligned}
& x_{n}=\frac{1}{2 \sqrt{70}}\left[\sqrt{70}\left((17+2 \sqrt{70})^{n}+(17-2 \sqrt{70})^{n}\right) x_{0}+10\left((17+2 \sqrt{70})^{n}-(17-2 \sqrt{70})^{n}\right) z_{0}\right] \\
& z_{n}=\frac{1}{2 \sqrt{70}}\left[7\left((17+2 \sqrt{70})^{n}+(17-2 \sqrt{70})^{n}\right) x_{0}+\sqrt{70}\left((17+2 \sqrt{70})^{n}-(17-2 \sqrt{70})^{n}\right) z_{0}\right]
\end{aligned}
$$

TRIPLE:VI $\left(x_{n}, y_{n}, z_{0}\right)$
in which

$$
\begin{aligned}
& x_{n}=\frac{1}{2}\left[(15+4 \sqrt{14})^{n}+(15-4 \sqrt{14})^{n}\right] x_{0}+\frac{1}{\sqrt{14}}\left[(15+4 \sqrt{14})^{n}-(15-4 \sqrt{14})^{n}\right] y_{0} \\
& y_{n}=\frac{\sqrt{14}}{2}\left[(15+4 \sqrt{14})^{n}-(15-4 \sqrt{14})^{n}\right] x_{0}+\frac{1}{2}\left[(15+4 \sqrt{14})^{n}+(15-4 \sqrt{14})^{n}\right] y_{0}
\end{aligned}
$$

## OBSERVATION

Let $x, y$ represent non- zero distinct positive integer solutions to (1). Denote $x+y$ by $P$ and y by $q$.
Treat $p, q \quad$ as the generators of the pythagorean triangle $s(\alpha, \beta, \gamma)$ where $\alpha=2 p q, \beta=p^{2}-q^{2}, \gamma=p^{2}+q^{2}$. It is seen that $s(\alpha, \beta, \gamma)$ is such that

1) $6 \gamma+\beta-7 \alpha \equiv 0(\bmod 10)$
2) $7 \gamma-8 \alpha+\frac{4 A}{p} \equiv 0(\bmod 10)$

## CONCLUSION

In this paper, we have obtained inifinitely many integer points satisfying the cone $7 x^{2}-2 y^{2}=10 z^{2}$.As ternary quadratic diophantine equations are rich in variety, one may consider other choices of ternary quadratic diodhantine equations and search for their integer solutions.

## REFERENCES:

1. Dickson LE ; History of theory of numbers, Vol 2, Chelsea Publishing company, New York, 1952.
2. Mordell U; Diophantine equations, Academic Press, New York, 1969.
3. Gopalan MA, Pandichelvi V; Integer solution of ternary quadratic equation $z(x+y)=4 x y$. Acta Ciencia Indica, 2008; XXXVIM(3):1353-1358
4. Gopalan MA, Kalinga Rani J; Observations on the Diophantine equation $y^{2}=D x^{2}+z^{2}$. Impact J. Sci. Tech, 2008; 2(2):91-95.
5. Gopalan MA, Manju S, Vanitha N ; Integer solutions of ternary quadratic Diophantine equation $x^{2}+y^{2}=\left(k^{2}+1^{2}\right) z^{2}$. Impact J. Sci. Tech, 2008; 2(4):175-178.
6. Gopalan MA, Manju S; Integer solutions of ternary quadratic Diophantine equation $x y+y z=z x$. Antartica J . Math., 2008; 5:1-5.
7. Gopalan MA, Pandichelvi V; Integer solution of ternary quadratic equation $z(x-y)=4 x y$. Impact J .Sci. Tech, 2011; 5(1):1-6.
8. Gopalan MA , Kalinga R; On ternary Quadratic equation $x^{2}+y^{2}=z^{2}+8$. Impact J. Sci. Tech, 2011; 5(1): 39-43.
9. Gopalan MA, Geetha D; Lattice points on the hyperboloid of two sheets $x^{2}-6 x y+y^{2}+6 x-2 y+5=z^{2}+4$. Impact J.Sci. Tech, 2011; 4(1):23-32.
10. Gopalan MA,Vidyalakshmi S, Kavitha A; Integer points on the homogeneous cone $z^{2}=2 x^{2}-7 y^{2}$ Diophantus J. Math, 2012;1(5):127-136.
11. Gopalan MA, Vidyalakshmi S, Sumathi G; Lattice points on the hyperboloid of two sheets Diophantus J. Math, 2012, 1(2):109-115.
12. Gopalan MA, Vidyalakshmi S, Lakshmi K; Lattice points on the hyperboloid of two sheets . $3 y^{2}=7 x^{2}-z^{2}+21$. Diophantus J. Math, 2012; 1(2):99-107.
13. Gopalan MA,Vidyalakshmi S, Usha Rani TR, Mallika S; Observation on $6 z^{2}=2 x^{2}-3 y^{2}$. Impact J .Sci. Tech, 2012, 6(1):7-13
14. Gopalan MA, Vidyalakshmi S, Usha Rani TR: Integer points on the non- homogeneous cone $2 z^{2}+4 x y+8 x-4 z+2=0$. Global J .Sci. Tech, 2012; 2(1): 61-67.
15. Gopalan MA, Vidyalakshmi $S$, Umarani J; Integer points on the homogeneous cone $x^{2}+4 y^{2}=37 z^{2}$. Cayley J Math, 2013;2(2): 101-107.
16. Gopalan MA,Vidyalakshmi $S$, Maheswari $D$; Integer points on the homogeneous cone $2 x^{2}+3 y^{2}=35 z^{2}$, Indian Journal of science, 2014; 7(17):6-10.
