Scholars Journal of Engineering and Technology (SJET)
 Sch. J. Eng. Tech., 2014; 2(4C):661-668

Research Article

Existence results for a coupled system of fourth-order differential equations with two-point boundary conditions
 Ying He

School of Mathematics and Statistics, Northeast Petroleum University, Daqing163318, P.R. China.

*Corresponding author

Ying He
Email: heying65338406@163.com

Abstract

This paper studies a coupled system of fourth-order differential equations with two-point boundary conditions. Applying the Schauder's fixed point theorem, an existence result is proved. Keywords: Coupled systems; Differential equations; Existence; Schauder's fixed point theorem MR(2000) Subject Classifications: $34 B 15$.

INTRODUCTION

Many physical systems cannot be described by a single differential equation but in fact, are modeled by a system of coupled equations. So the study of propagation of signals in a system of electrical cables led to the investigation of a system of linear differential equations. Some results related to these systems have been obtained in [1-3] and others. Coupled systems of differential equations also appear in the study of temperature distribution in a composite heat conductor. In consequence, the subject of coupled systems is gaining much importance and attention. For detail, see [4,6] and the references therein. The aim of this paper is to find positive solutions of coupled systems of fourth-order differential equations of the type

$$
\left\{\begin{array}{l}
\left(p_{1}(t) u^{\prime \prime \prime}\right)^{\prime}+q_{1}(t) u^{\prime \prime}=f_{1}(t, v)+e_{1}(t), \tag{1.1}\\
\left(p_{2}(t) v^{\prime \prime \prime}\right)^{\prime}+q_{2}(t) v^{\prime \prime}=f_{2}(t, u)+e_{2}(t), \\
\alpha_{1} u(0)-\beta_{1} u^{\prime}(0)=0, \gamma_{1} u(1)+\delta_{1} u^{\prime}(1)=0, \\
\xi_{1} u^{\prime \prime}(0)-\eta_{1} u^{\prime \prime \prime}(0)=0, \zeta_{1} u^{\prime \prime}(1)+\theta_{1} u^{\prime \prime \prime}(1)=0, \\
\alpha_{2} v(0)-\beta_{2} v^{\prime}(0)=0, \gamma_{2} v(1)+\delta_{2} v^{\prime}(1)=0, \\
\xi_{2} v^{\prime \prime}(0)-\eta_{2} v^{\prime \prime \prime}(0)=0, \zeta_{2} v^{\prime \prime}(1)+\theta_{2} v^{\prime \prime \prime}(1)=0 .
\end{array}\right.
$$

Throughout this paper, we always suppose that
$\left(S_{1}\right) p_{i}(t) \in C^{1}([0,1], R), p_{i}(t)>0, q_{i}(t) \in C([0,1], R), q_{i}(t) \leq 0, e_{i}(t) \in C([0,1], R), \alpha_{i}, \beta_{i}, \gamma_{i}$,
$\delta_{i} \geq 0, \xi_{i}, \eta_{i}, \zeta_{i}, \theta_{i} \geq 0$, and $\beta_{i} \gamma_{i}+\alpha_{i} \gamma_{i}+\alpha_{i} \delta_{i}>0, \eta_{i} \zeta_{i}+\xi_{i} \zeta_{i}+\xi_{i} \theta_{i}>0(i=1,2) . f_{1}, f_{2} \in$
$C([0,1] \times(0,+\infty),(0,+\infty))$, and may be singular near the zero.
The remaining part of the paper is organized as follows. In Section 2,some preliminary results will be given. In Sections 3,by employing a basic application of Schauder's fixed point theorem, we state and prove the existence results for (1.1) under the non-negativeness of the Green's function associated with (2.2)-(2.3). Our viewpoints shed some new light on problems with weak force potentials

PRELIMINARY

First, we discuss the existence of positive solutions of fourth-order boundary value problem

$$
\left\{\begin{array}{l}
\left(p(t) u^{\prime \prime \prime}\right)^{\prime}+q(t) u^{\prime \prime}=e(t), \tag{2.1}\\
\alpha u(0)-\beta u^{\prime}(0)=0, \gamma u(1)+\delta u^{\prime}(1)=0, \\
\xi u^{\prime \prime}(0)-\eta u^{\prime \prime \prime}(0)=0, \quad \zeta u^{\prime \prime}(1)+\theta u^{\prime \prime \prime}(1)=0 .
\end{array}\right.
$$

Let $Q=I \times I$ and $Q_{1}=\{(t, s) \in Q \mid 0 \leq t \leq s \leq 1\}, Q_{2}=\{(t, s) \in Q \mid 0 \leq s \leq t \leq 1\}$. We denote the Green's functions for the following boundary value problems

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(t)=0, \tag{2.2}\\
\alpha u(0)-\beta u^{\prime}(0)=0 \\
\gamma u(1)+\delta u^{\prime}(1)=0,
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
-\left(p(t) u^{\prime}(t)\right)^{\prime}-q(t) u(t)=0, \tag{2.3}\\
\xi u(0)-\eta u^{\prime}(0)=0, \\
\zeta u(1)+\theta u^{\prime}(1)=0,
\end{array}\right.
$$

by $H(t, s)$ and $G(t, s)$, respectively. It is well known that $H(t, s)$ and $G(t, s)$ can be written by

$$
H(x, y):=\frac{1}{\rho}\left\{\begin{array}{l}
(\beta+\alpha t)(\delta+\gamma(1-s)),(t, s) \in Q_{1} \\
(\beta+\alpha s)(\delta+\gamma(1-t)),(t, s) \in Q_{2}
\end{array}\right.
$$

where $\rho=\beta \gamma+\alpha \gamma+\alpha \delta>0$ and

$$
G(t, s):=\frac{1}{\omega} \begin{cases}m(t) n(s), & (t, s) \in Q_{1} \\ m(s) n(t), & (t, s) \in Q_{2}\end{cases}
$$

Lemma 2.1:Suppose that $\left(S_{1}\right)$ holds, then the Green's function $G(t, s)$, possesses the following properties:
(i) : $m(t) \in C^{2}(I, R)$ is increasing and $m(t)>0, x \in(0,1]$.
(ii) : $n(t) \in C^{2}(I, R)$ is decreasing and $n(t)>0, x \in[0,1)$.
(iii) : $(L m)(t) \equiv 0, m(0)=\eta, m^{\prime}(0)=\xi$.
(iv) : $(L n)(t) \equiv 0, n(1)=\theta, n^{\prime}(1)=-\zeta$.
(v) : ω is a positive constant. Moreover, $p(t)\left(m^{\prime}(t) n(t)-m(t) n^{\prime}(t)\right) \equiv \omega$.
(vi) : $G(t, s)$ is continuous and symmetrical over Q.
(vii) : $G(t, s)$ has continuously partial derivative over Q_{1}, Q_{2}.
(viii) : For each fixed $s \in I, G(t, s)$ satisfies $L G(t, s)=0$ for $s \neq t, t \in I$. Moreover, $\mathrm{R}_{1}(G)=R_{2}(G)=0$ for $s \in(0,1)$.
(viiii) : G_{t}^{\prime} has discontinuous point of the first kind at $t=S$ and

$$
G_{t}^{\prime}(s+0, s)-G_{t}^{\prime}(s-0, s)=-\frac{1}{p(s)}, s \in(0,1)
$$

Suppose that u is a positive solution of (2.1).Then

$$
u(t)=\int_{0}^{1} \int_{0}^{1} H(t, \tau) G(\tau, s) e(s) d s d \tau \quad 0 \leq t \leq 1
$$

We define the function $\gamma_{i}(t):[0,1] \rightarrow R$ by

$$
\gamma_{i}(t)=\int_{0}^{1} \int_{0}^{1} H_{i}(t, \tau) G_{i}(\tau, s) e_{i}(s) d s d \tau, i=1,2
$$

which is the unique solution of

$$
\left\{\begin{array}{c}
\left(p_{i}(t) u^{\prime \prime \prime}(t)\right)^{\prime}+q_{i}(t) u^{\prime \prime}(t)=e_{i}(t), \quad i=1,2 \\
\alpha_{i} u(0)-\beta_{i} u^{\prime}(0)=0, \gamma_{i} u(1)+\delta_{i} u^{\prime}(1)=0 . \\
\xi_{i} u^{\prime \prime}(0)-\eta_{i} u^{\prime \prime \prime}(0)=0, \zeta_{i} u^{\prime \prime}(1)+\theta_{i} u^{\prime \prime \prime}(1)=0 .
\end{array}\right.
$$

Following from Lemma 2.1 and $\left(S_{1}\right)$, it is easy to see that

$$
G_{i}(t, s)>0, H_{i}(t, s)>0 \text { for all }(t, s) \in[0,1] \times[0,1], i=1,2
$$

Let us fix some notation to be used in the following: For a given function $h \in C[0,1]$, we denote the essential supremum and infimum by h^{*} and h_{*}, if they exist. Let, $\gamma_{i *}=\min _{t} \gamma_{i}(t), \gamma_{i}^{*}=\max _{t} \gamma_{i}(t)$,

MAIN RESULTS

1) $\gamma_{1^{*}} \geq 0, \gamma_{2^{*}} \geq 0$

Theorem 3.1.We assume that there exists $b_{i} \geq 0, \hat{b}_{i} \geq 0$ and $0<\alpha_{i}<1$ such that

$$
\left(H_{1}\right) \quad \frac{\hat{b}_{i}(t)}{u^{\alpha_{i}}} \leq f_{i}(t, u) \leq \frac{b_{i}(t)}{u^{\alpha_{i}}}, \text { for all } u>0, \text { a.e. } t \in(0,1), i=1,2
$$

If $\gamma_{1 *} \geq 0, \gamma_{2 *} \geq 0$, then there exists a positive solution of (1.1)
Proof A positive solution of (1.1) is just a fixed point of the completely continuous map $A(u, v)=\left(A_{1} u, A_{2} v\right): C[0,1] \times C[0,1] \rightarrow C[0,1] \times C[0,1]$ defined as

$$
\begin{aligned}
\left(A_{1} u\right)(t) & :=\int_{0}^{1} \int_{0}^{1} H_{1}(t, \tau) G_{1}(\tau, s)\left[f_{1}(s, v(s))+e_{1}(s)\right] d s d \tau \\
& =\int_{0}^{1} \int_{0}^{1} H_{1}(t, \tau) G_{1}(\tau, s) f_{1}(s, v(s)) d s d \tau+\gamma_{1}(t) \\
\left(A_{2} v\right)(t) & :=\int_{0}^{1} \int_{0}^{1} H_{2}(t, \tau) G_{2}(\tau, s)\left[f_{2}(s, u(s))+e_{2}(s)\right] d s d \tau \\
& =\int_{0}^{1} \int_{0}^{1} H_{2}(t, \tau) G_{2}(\tau, s) f_{2}(s, u(s)) d s d \tau+\gamma_{2}(t)
\end{aligned}
$$

By a direct application of Schauder's fixed point theorem, the proof is finished if we prove that A maps the closed convex set defined as

$$
K=\left\{(u, v) \in C[0,1] \times C[0,1]: r_{1} \leq u(t) \leq R_{1}, r_{2} \leq v(t) \leq R_{2}, \text { for all } t \in[0,1]\right\}
$$

into itself, where $R_{1}>r_{1}>0, R_{2}>r_{2}>0$ are positive constants to be fixed properly. For convenience, we introduce the following notations

$$
\beta_{i}(t)=\int_{0}^{1} \int_{0}^{1} H_{i}(t, \tau) G_{i}(\tau, s) b_{i}(s) d s d \tau, \quad \beta_{i}(t)=\int_{0}^{1} \int_{0}^{1} H_{i}(t, \tau) G_{i}(\tau, s) \hat{b}_{i}(s) d s d \tau, \quad i=1,2
$$

Given $(u, v) \in K$, by the nonnegative sign of G_{i} and $f_{i}, i=1,2$ we have

$$
\begin{aligned}
\left(A_{1} u\right)(t)=\int_{0}^{1} \int_{0}^{1} H_{1}(t, \tau) G_{1}(\tau, s) f_{1}(& s, v(s)) d s d \tau+\gamma_{1}(t) \\
\geq \int_{0}^{1} H_{1}(t, \tau) G_{1}(\tau, s) \frac{\hat{b}_{1}(s)}{v^{\alpha_{1}}(s)} & d s d \tau \\
& \geq \int_{0}^{1} H_{1}(t, \tau) G_{1}(\tau, s) \frac{\hat{b}_{1}(s)}{R_{2}^{\alpha_{1}}} d s d \tau \\
& \geq \beta_{1 *} \frac{1}{R_{2}^{\alpha_{1}}}
\end{aligned}
$$

Note for every $(u, v) \in K$

$$
\begin{aligned}
\left(A_{1} u\right)(t) & =\int_{0}^{1} \int_{0}^{1} H_{1}(t, \tau) G_{1}(\tau, s) f_{1}(s, v(s)) d s d \tau+\gamma_{1}(t) \\
& \leq \int_{0}^{1} \int_{0}^{1} H_{1}(t, \tau) G_{1}(\tau, s) \frac{b_{1}(s)}{v^{\alpha_{1}}(s)} d s d \tau+\gamma_{1}^{*} \\
& \leq \int_{0}^{1} \int_{0}^{1} H_{1}(t, \tau) G_{1}(\tau, s) \frac{b_{1}(s)}{r_{2}^{\alpha_{1}}} d s d \tau+\gamma_{1}^{*} \\
& \leq \beta_{1}^{*} \frac{1}{r_{2}^{\alpha_{1}}}+\gamma_{1}^{*}
\end{aligned}
$$

Similarly, by the same strategy, we have

$$
\begin{aligned}
\left(A_{2} v\right)(t) & =\int_{0}^{1} \int_{0}^{1} H_{2}(t, \tau) G_{2}(\tau, s) f_{2}(s, u(s)) d s d \tau+\gamma_{2}(t) \\
& \geq \int_{0}^{1} \int_{0}^{1} H_{2}(t, \tau) G_{2}(\tau, s) \frac{\hat{b}_{2}(s)}{u^{\alpha_{2}}(s)} d s d \tau \\
& \geq \int_{0}^{1} \int_{0}^{1} H_{2}(t, \tau) G_{2}(\tau, s) \frac{\hat{b}_{2}(s)}{R_{1}^{\alpha_{2}}} d s d \tau \\
& \geq \beta_{2 *} \frac{1}{R_{1}^{\alpha_{2}}} \\
\left(A_{2} v\right)(t) & =\int_{0}^{1} \int_{0}^{1} H_{2}(t, \tau) G_{2}(\tau, s) f_{2}(s, u(s)) d s d \tau+\gamma_{2}(t) \\
& \leq \int_{0}^{1} \int_{0}^{1} H_{2}(t, \tau) G_{2}(\tau, s) \frac{b_{2}(s)}{u^{\alpha_{2}}(s)} d s d \tau+\gamma_{2}^{*} \\
& \leq \int_{0}^{1} \int_{0}^{1} H_{2}(t, \tau) G_{2}(\tau, s) \frac{b_{2}(s)}{r_{1}^{\alpha_{2}}} d s d \tau+\gamma_{2}^{*} \\
& \leq \beta_{2}^{*} \frac{1}{r_{1}^{\alpha_{2}}}+\gamma_{2}^{*}
\end{aligned}
$$

Thus $\left(A_{1} u, A_{2} v\right) \in K$ if $r_{1}, r_{2}, R_{1}, R_{2}$ are chosen so that

$$
\begin{aligned}
& \beta_{1 *} \cdot \frac{1}{R_{2}^{\alpha_{1}}} \geq \gamma_{1}, \quad \beta_{1}^{*} \cdot \frac{1}{r_{2}^{\alpha_{1}}}+\gamma_{1}^{*} \leq R_{1} \\
& \beta_{2 *} \cdot \frac{1}{R_{1}^{\alpha_{2}}} \geq \gamma_{2}, \quad \beta_{2}^{*} \cdot \frac{1}{r_{1}^{\alpha_{2}}}+\gamma_{2}^{*} \leq R_{1}
\end{aligned}
$$

Note that $\beta_{i *}>0, \beta_{i^{*}}>0$ and taking $R=R_{1}=R_{2}, r=r_{1}=r_{2}, r=\frac{1}{R}$, it is sufficient to find $R>1$ such that

$$
\begin{aligned}
& \beta_{1 *} \cdot R^{1-\alpha_{1}} \geq 1, \quad \beta_{1}^{*} \cdot R^{\alpha_{1}}+\gamma_{1}^{*} \leq R \\
& \beta_{2 *} \cdot R^{1-\alpha_{2}} \geq 1, \quad \beta_{2}^{*} \cdot R^{\alpha_{2}}+\gamma_{2}^{*} \leq R
\end{aligned}
$$

and these inequalities hold for R big enough because $\alpha_{i}<1$.
2) $\gamma_{1}^{*} \leq 0, \gamma_{2}^{*} \leq 0$

The aim of this section is to show that the presence of a weak singular nonlinearity makes it possible to find positive solutions if $\gamma_{1}^{*} \leq 0, \gamma_{2}^{*} \leq 0$
Theorem 3.2.We assume that there exists $b_{i} \geq 0, \hat{b}_{i} \geq 0$ and $0<\alpha_{i}<1$ such that $\left(H_{1}\right)$ is satisfied .If $\gamma_{1}^{*} \leq 0, \gamma_{2}^{*} \leq 0$ and

$$
\begin{align*}
& r_{1 *} \geq\left[\alpha_{1} \alpha_{2} \cdot \frac{\beta_{1 *}}{\left.\left(\beta_{2}^{*}\right)^{\alpha_{1}}\right]^{\frac{1}{-\alpha \alpha_{2}}}\left(1-\frac{1}{\alpha_{1} \alpha_{2}}\right),}\right. \\
& r_{2 *} \geq\left[\alpha_{1} \alpha_{2} \cdot \frac{\beta_{2 *}}{\left.\left(\beta_{1}^{*}\right)^{\alpha_{2}}\right]^{\frac{1}{1-\alpha \alpha_{2}}}\left(1-\frac{1}{\alpha_{1} \alpha_{2}}\right)}\right. \text {) } \tag{3.1}
\end{align*}
$$

then there exists a positive solution of (1.1)
Proof In this case, to prove that $A: K \rightarrow K$ it is sufficient to find $0<r_{1}<R_{1}$, $0<r_{2}<R_{2}$ such that

$$
\begin{align*}
& \frac{\bar{\beta}_{1}^{*}}{R_{2}^{\alpha_{1}}}+\gamma_{1 *} \geq r_{1}, \frac{\beta_{1}^{*}}{r_{2}^{\alpha_{1}}} \leq R_{1} \tag{3.2}\\
& \frac{\beta_{2 *}}{R_{1}^{\alpha_{2}}}+\gamma_{2 *} \geq r_{2}, \frac{\beta_{2}^{*}}{r_{1}^{\alpha_{2}}} \leq R_{2} \tag{3.3}
\end{align*}
$$

If we fix $R_{1}=\frac{\beta_{1}^{*}}{r_{2}^{\alpha_{1}}}, R_{2}=\frac{\beta_{2}^{*}}{r_{1}^{\alpha_{2}}}$, then the first inequality of (3.3) holds if r_{2} satisfies

$$
\beta_{2 *}\left(\beta_{1}^{*}\right)^{-\alpha_{2}} r_{2}^{\alpha_{1} \alpha_{2}}+\gamma_{2 *} \geq r_{2}
$$

or equivalently

$$
\gamma_{2 *} \geq g\left(r_{2}\right):=r_{2}-\frac{\beta_{2 *}}{\left(\beta_{1}^{*}\right)^{\alpha_{2}}} r_{1}^{\alpha_{1} \alpha_{2}}
$$

The function $g\left(r_{2}\right)$ possesses a minimum at

$$
r_{20}:=\left[\alpha_{1} \alpha_{2} \cdot \frac{\beta_{2 *}}{\left(\beta_{1}^{*}\right)^{\alpha_{2}}}\right]^{\frac{1}{1-\alpha_{1} \alpha_{2}}}
$$

Taking $r_{2}=r_{20}$, then (3.3) holds if

$$
\gamma_{2 *} \geq g\left(r_{20}\right)=\left[\alpha_{1} \alpha_{2} \cdot \frac{\beta_{2 *}}{\left(\beta_{1}^{*}\right)^{\alpha_{2}}}\right]^{\frac{1}{1-\alpha_{1} \alpha_{2}}}\left(1-\frac{1}{\alpha_{1} \alpha_{2}}\right)
$$

Similarly,

$$
\gamma_{1 *} \geq h\left(r_{1}\right):=r_{1}-\frac{\beta_{1 *}}{\left(\beta_{2}^{*}\right)^{\alpha_{1}}} r_{1}^{\alpha_{1} \alpha_{2}}
$$

$h\left(r_{1}\right)$ possesses a minimum at

$$
\begin{gathered}
r_{10}:=\left[\alpha_{1} \alpha_{2} \cdot \frac{\beta_{1 *}}{\left(\beta_{2}^{*}\right)^{\alpha_{1}}}\right]^{\frac{1}{1-\alpha_{1} \alpha_{2}}} \\
\gamma_{1^{*}} \geq\left[\alpha_{1} \alpha_{2} \cdot \frac{\beta_{1^{*}}}{\left(\beta_{2}^{*}\right)^{\alpha_{1}}}\right]^{\frac{1}{1-\alpha_{1} \alpha_{2}}}\left(1-\frac{1}{\alpha_{1} \alpha_{2}}\right)
\end{gathered}
$$

Taking $r_{1}=r_{10}, r_{2}=r_{20}$, then the first inequalities in (3.2) and (3.3) hold if $\gamma_{1 *} \geq h\left(r_{1}\right)$ and $\gamma_{2 *} \geq g\left(r_{2}\right)$, which are just condition (3.1).The second inequalities hold directly from the choice of R_{1} and R_{2}, so it remains to prove that $R_{1}=\frac{\beta_{1}^{*}}{r_{20}^{10}}>r_{10}, R_{2}=\frac{\beta_{2}^{*}}{r_{10}^{\alpha_{2}^{2}}}>r_{20}$ This is easily verified through elementary computations:

$$
\begin{aligned}
& R_{1}=\frac{\beta_{1}^{*}}{r_{20}^{\alpha_{1}}}=\frac{\beta_{1}^{*}}{\left\{\left[\alpha_{1} \alpha_{2} \cdot \frac{\beta_{2}}{\left(\beta_{1}^{*}\right)^{\alpha_{2}}}\right]^{\frac{1}{1-\alpha_{1} \alpha_{2}}}\right\}^{\alpha_{1}}} \\
& =\frac{\beta_{1}^{*}}{\left[\alpha_{1} \alpha_{2} \cdot \frac{\beta_{2 *}}{\left.\left(\beta_{1}^{*}\right)^{*}\right)^{2}}\right)^{\frac{\alpha_{1}}{1-\alpha_{1} \alpha_{2}}}}=\frac{\left(\beta_{1}^{*}\right)^{1+\frac{\alpha, \alpha_{2}}{1-\alpha_{1} \alpha_{2}}}}{\left(\alpha_{1} \alpha_{2} \cdot \beta_{2 *}\right)^{\frac{\alpha_{1}}{1-\alpha_{1} \alpha_{2}}}} \\
& =\frac{\left(\beta_{1}^{*}\right)^{\frac{1}{1-\alpha_{1} \alpha_{2}}}}{\left[\left(\alpha_{1} \alpha_{2} \cdot \beta_{2 *}\right)^{\alpha_{1}}\right]^{\frac{1}{-\alpha \alpha_{1} \alpha_{2}}}}=\left[\frac{\beta_{1}^{*}}{\left.\left(\alpha_{1} \alpha_{2} \cdot \beta_{2 *}\right)^{\alpha_{1}}\right]^{\frac{1}{1-\alpha_{1} \alpha_{2}}}}\right. \\
& =\left[\frac{1}{\left(\alpha_{1} \alpha_{2}\right)^{\alpha_{1}}} \cdot \frac{\beta_{1}^{*}}{\left(\beta_{2 *}\right)^{\alpha_{1}}}\right]^{\frac{1}{1-\alpha_{1} \alpha_{2}}}>\left[\alpha_{1} \alpha_{2} \cdot \frac{\beta_{1 *}}{\left(\beta_{2}^{*}\right)^{\alpha_{1}}}\right]^{\frac{1}{1-\alpha_{1} \alpha_{2}}}=r_{10},
\end{aligned}
$$

since $\beta_{i *} \leq \beta_{i}^{*}, i=1,2$. Similarly, we have $R_{2}>r_{20}$.
3) $\gamma_{1 *} \geq 0, \gamma_{2}^{*} \leq 0\left(\gamma_{1}^{*} \leq 0, \gamma_{2 *} \geq 0\right)$

Theorem 3.3. Assume that $\left(H_{1}\right)$ is satisfied .If $\gamma_{1^{*}} \geq 0, \gamma_{2}^{*} \leq 0$ and

$$
\begin{equation*}
\gamma_{2 *} \geq r_{21}-\beta_{2 *} \cdot \frac{r_{21}^{\alpha_{1} \alpha_{2}}}{\left(\beta_{1}^{*}+\gamma_{1}^{*} r_{21}^{\alpha_{1}}\right)^{\alpha_{2}}} \tag{3.4}
\end{equation*}
$$

where $0<r_{21}<+\infty$ is a unique positive solution of equation

$$
\begin{equation*}
r_{2}^{1-\alpha_{1} \alpha_{2}}\left(\beta_{1}^{*}+\gamma_{1}^{*} \cdot r_{2}^{\alpha_{1}}\right)^{1+\alpha_{2}}=\alpha_{1} \alpha_{2} \beta_{1}^{*} \beta_{2^{*}} \tag{3.5}
\end{equation*}
$$

then there exists a positive solution of (1.1).
Proof We follow the same strategy and notation as in the proof of ahead theorem. In this case,to prove that $A: K \rightarrow K$, it is sufficient to find $r_{1}<R_{1}, r_{2}<R_{2}$ such that

$$
\begin{gather*}
\frac{\beta_{1 *}}{R_{2}^{\alpha_{1}}} \geq r_{1}, \frac{\beta_{2}^{*}}{r_{1}^{\alpha_{2}}} \leq R_{2} \tag{3.6}\\
\frac{\beta_{2 *}}{R_{1}^{\alpha_{2}}}+\gamma_{2 *} \geq r_{2}, \frac{\beta_{1}^{*}}{r_{2}^{\alpha_{1}}}+\gamma_{1}^{*} \leq R_{1} \tag{3.7}
\end{gather*}
$$

If we fix $R_{2}=\frac{\beta_{2}^{*}}{r_{1}^{\alpha_{2}}}$, then the first inequality of (3.6) holds if r_{1} satisfies

$$
\begin{equation*}
\frac{\beta_{1 *}}{\left(\beta_{2}^{*}\right)^{\alpha_{1}}} \cdot r_{1}^{\alpha_{1} \alpha_{2}} \geq r_{1}, \tag{3.8}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
0<r_{1} \leq\left[\frac{\beta_{1 *}}{\left(\beta_{2}^{*}\right)^{\alpha_{1}}}\right)^{\frac{1}{1-\alpha_{1} \alpha_{2}}} \tag{3.9}
\end{equation*}
$$

If we chose $r_{1}>0$ small enough, then (3.9)holds, and R_{2} is big enough.
If we fix $R_{1}=\frac{\beta_{1}^{*}}{r_{2}^{1 / 2}}+\gamma_{1}^{*}$, then the first inequality of (3.7) holds if r_{2} satisfies

$$
\begin{aligned}
\gamma_{2 *} & \geq r_{2}-\frac{\beta_{2 *}}{R_{1}^{\alpha_{2}}} \\
& =r_{2}-\beta_{2 *} \cdot \frac{1}{\left(\frac{\beta_{1}^{*}}{r_{2}}+\gamma_{1}^{*}\right)^{\alpha_{2}}} \\
& =r_{2}-\beta_{2 *} \cdot \frac{1}{\left(\frac{\beta_{1}^{*}+r_{1}^{*} \cdot r_{2}^{\alpha_{1}}}{r_{2}}\right)^{\alpha_{2}}} \\
& =r_{2}-\beta_{2 *} \cdot \frac{r_{2}^{\alpha_{1} \alpha_{2}}}{\left(\beta_{1}^{*}+\gamma_{1}^{*} \cdot r_{2}^{\alpha_{1}}\right)^{\alpha_{2}}},
\end{aligned}
$$

or equivalently

$$
\begin{equation*}
\gamma_{2^{*}} \geq f\left(r_{2}\right):=r_{2}-\beta_{2 *} \cdot \frac{r_{2}^{\alpha_{1} \alpha_{2}}}{\left(\beta_{1}^{*}+\gamma_{1}^{*} \cdot r_{2}^{\alpha_{1}}\right)^{\alpha_{2}}} \tag{3.10}
\end{equation*}
$$

According to

$$
\begin{aligned}
f^{\prime}\left(r_{2}\right)= & 1-\beta_{2 *} \cdot \frac{1}{\left(\beta_{1}^{*}+\gamma_{1}^{*} \cdot r_{2}^{\alpha_{1}}\right)^{2 \alpha_{2}}}\left[\alpha_{1} \alpha_{2} r_{2}^{\alpha_{1} \alpha_{2}-1}\left(\beta_{1}^{*}+\gamma_{1}^{*} \cdot r_{2}^{\alpha_{1}}\right)^{\alpha_{2}}\right. \\
& -r_{2}^{\alpha_{1} \alpha_{2}} \alpha_{2}\left(\beta_{1}^{*}+\gamma_{1}^{*} \cdot r_{\alpha_{1} \alpha_{1}}^{\alpha_{2}-1} \alpha_{1} \gamma_{1}^{*} r_{2}^{\alpha_{1}-1}\right] \\
& =1-\frac{\beta_{2} \alpha_{1} \alpha_{2} r_{2}^{\alpha_{1} \alpha_{2}-1}}{\left(\beta_{1}^{*}+\gamma_{1}^{*} \cdot r_{2}^{\alpha_{1}}\right)^{\alpha_{2}}}\left[1-\frac{r_{2}^{\alpha_{1}} \gamma_{1}^{*}}{\beta_{1}^{*}+\gamma_{1}^{*} \cdot r_{1}^{\alpha_{1}}}\right] \\
= & 1-\alpha_{1} \alpha_{2} \beta_{1}^{*} \beta_{2 *} r_{2}^{\alpha_{1} \alpha_{2}-1}\left(\beta_{1}^{*}+\gamma_{1}^{*} \cdot r_{2}^{\alpha_{1}}\right)^{-1-\alpha_{2}},
\end{aligned}
$$

we have $f^{\prime}(0)=-\infty, f^{\prime}(+\infty)=1$, then there exists r_{21} such that $f^{\prime}\left(r_{21}\right)=0$, and

$$
\begin{aligned}
f^{\prime \prime}\left(r_{2}\right)= & -\left[\alpha_{1} \alpha_{2} \beta_{1}^{*} \beta_{2 *}\left(\alpha_{1} \alpha_{2}-1\right) r_{2}^{\alpha_{1} \alpha_{2}-2}\left(\beta_{1}^{*}+\gamma_{1}^{*} \cdot r_{2}^{\alpha_{1}}\right)^{-1-\alpha_{2}}\right. \\
& \left.+\alpha_{1} \alpha_{2} \beta_{1}^{*} \beta_{2 *} r_{2}^{\alpha_{1} \alpha_{2}-1}\left(-1-\alpha_{2}\right)\left(\beta_{1}^{*}+\gamma_{1}^{*} \cdot r_{2}^{\alpha_{1}}\right)^{-2-\alpha_{2}} \gamma_{1}^{*} \alpha_{1} r_{2}^{\alpha_{1}-1}\right]>0
\end{aligned}
$$

Then the function $f\left(r_{2}\right)$ possesses a minimum at r_{21}, i.e., $f\left(r_{21}\right)=\min _{r_{2} \in(0,+\infty)} f\left(r_{2}\right)$.
Note $f^{\prime}\left(r_{21}\right)=0$, then we have

$$
1-\alpha_{1} \alpha_{2} \beta_{1}^{*} \beta_{2 *} r_{21}^{\alpha_{1} \alpha_{2}-1}\left(\beta_{1}^{*}+\gamma_{1}^{*} \cdot r_{21}^{\alpha_{1}}\right)^{-1-\alpha_{2}}=0
$$

or equivalently

$$
r_{21}^{1-\alpha_{1} \alpha_{2}}\left(\beta_{1}^{*}+\gamma_{1}^{*} \cdot r_{21}^{\alpha_{1}}\right)^{1+\alpha_{2}}=\alpha_{1} \alpha_{2} \beta_{1}^{*} \beta_{2 *}
$$

Taking $r_{2}=r_{21}$, then the first inequality in (3.7)holds if $\gamma_{2 *} \geq f\left(r_{21}\right)$, which is just condition (3.4). The second inequalities hold directly by the choice of R_{1}, and it would remain to prove that $r_{21}<R_{2}$ and $r_{10}<R_{1}$. These inequalities hold for R_{2} big enough and r_{1} small enough.
Remark 1. In theorem 3.3 the right-hand side of condition (3.4)always negative, this is equivalent to proof that $f\left(r_{21}\right)<0$. This is obviously established through the proof of Theorem 3.3.
Similarly, we have the following theorem.
Theorem 3.4.Assume $\left(H_{1}\right)$ is satisfied .If $\gamma_{1}^{*} \leq 0, \gamma_{2 *} \geq 0$ and
$\gamma_{1 *} \geq r_{11}-\beta_{1 *} \cdot \frac{r_{11}^{\alpha_{1} \alpha_{2}}}{\left(\beta_{2}^{*}+\gamma_{2}^{*} r_{11}^{\alpha_{2}}\right)^{\alpha_{1}}}$,
where $0<r_{11}<+\infty$ is a unique positive solution of the equation
$r_{1}^{1-\alpha_{1} \alpha_{2}}\left(\beta_{2}^{*}+\gamma_{2}^{*} r_{1}^{\alpha_{2}}\right)^{1+\alpha_{1}}=\alpha_{1} \alpha_{2} \beta_{2}^{*} \beta_{1 *}$,
then there exists a positive solution of (1.1)

Acknowledgement: Project supported by Heilongjiang province education department natural science research item, China. (12541076).

REFERENCES

1. Yu HLH, Liu H; Positive solutions for singular boundary value problems of a coupled system of differential equations. J. Math. Anal. Appl., 2005; 302:14-29.
2. Agarwal RP, Regan DO; Multiple solutions for a coupled system of boundary value problems. Dynam. Contin. Discrete Impuls. Syst., 2000; 7: 97-106.
3. Agarwal RP, Regan DO; A coupled system of boundary value problems. J. Math. Anal. Appl., 1998; 69:381385.
4. Jiang J, Chu J, Zhang M; Multiplicity of positive periodic solutions to superlinear repulsive singular equations. J. Differential Equations, 2005; 211: 282-302.
5. Torres PJ; Weak singularities may help periodic solutions to exist. J. Differential Equations, 2007; 232:277-284.
6. Chu J, Torres PJ; Applications of Schauder's fixed point theorem to singular differential equations, Bull. London Math. Soc, 2007; 39 :653-660.
