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INTRODUCTION  

  Many physical systems cannot be described by a single differential equation but in fact, are modeled by a system of 

coupled equations. So the study of propagation of signals in a system of electrical cables led to the investigation of a 

system of linear differential equations. Some results related to these systems have been obtained in [1-3] and others. 

Coupled systems of differential equations also appear in the study of temperature distribution in a composite heat 

conductor. In consequence, the subject of coupled systems is gaining much importance and attention. For detail, see [4,6] 

and the references therein. The aim of this paper is to find positive solutions of coupled systems of fourth-order 

differential equations of the type  
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 (1.1) 

 

  Throughout this paper, we always suppose that   
1

1( ) ( ) ([0 1] ) ( ) 0 ( ) ([0 1] ) ( ) 0 ( ) ([0 1] ) , ,i i i i i i i iS p t C R p t q t C R q t e t C R                      

1 20 0 0 0( 1 2)  i i i i i i i i i i i i i i i i iand i f f                                 

  ([0 1] (0 ) (0 ))C      and may be singular near the zero.  

  
 The remaining part of the paper is organized as follows. In Section 2,some preliminary results will be given. In Sections 

3,by employing a basic application of Schauder’s fixed point theorem, we state and prove the existence results for (1.1) 

under the non-negativeness of the Green’s function associated with (2.2)-(2.3). Our viewpoints shed some new light on 

problems with weak force potentials  

 

PRELIMINARY   
  First, we discuss the existence of positive solutions of fourth-order boundary value problem  
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 (2.1) 

 

  Let Q I I   and 
1 2{( ) 0 1} {( ) 0 1}Q t s Q t s Q t s Q s t                 We denote the Green’s 

functions for the following boundary value problems  
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 (2.3) 

by ( )H t s  and ( )G t s ,respectively. It is well known that ( )H t s  and ( )G t s  can be written by  
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where 0        and  
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Lemma 2.1:Suppose that 1( )S  holds, then the Green’s function ( )G t s   possesses the following properties:  

(i) :   
2( ) ( )m t C I R   is increasing and ( ) 0 (0 1]m t x       

(ii) :  
2( ) ( )n t C I R   is decreasing and ( ) 0 [0 1)n t x       

(iii) :  ( )( ) 0 (0) (0)Lm t m m      .  

(iv) :  ( )( ) 0 (1) (1)Ln t n n       .  

(v) :    is a positive constant. Moreover, ( )( ( ) ( ) ( ) ( ))p t m t n t m t n t       

(vi) :  ( )G t s  is continuous and symmetrical over Q .  

(vii) :  ( )G t s  has continuously partial derivative over 1 2Q Q    

(viii) :  For each fixed s I , ( )G t s  satisfies ( ) 0LG t s   for s t t I   . Moreover, R1 2( ) ( ) 0G R G   for 

(0 1)s     

(viiii) :  tG   has discontinuous point of the first kind at t s  and  

 
1

( 0 ) ( 0 ) (0 1)
( )

t tG s s G s s s
p s

             

 

  Suppose that u  is a positive solution of (2.1).Then  

 
1 1

0 0
( ) ( ) ( ) ( ) 0 1u t H t G s e s dsd t          

 

  We define the function ( ) [0 1]i t R     by  

 
1 1

0 0
( ) ( ) ( ) ( ) 1 2i i i it H t G s e s dsd i            

which is the unique solution of  
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Following from Lemma 2 1  and 1( )S , it is easy to see that 

 ( ) 0 ( ) 0 ( ) [0 1] [0 1] 1 2i iG t s H t s for all t s i              

 

  Let us fix some notation to be used in the following: For a given function [0 1]h C  ,we denote the essential 

supremum and infimum by h and h

  if they exist. Let, min ( )i i
t

t     max ( )i i
t

t      

 

MAIN RESULTS   

 

1)
 1 20 0    

   

Theorem 3.1.We assume that there exists 0 0 0 1i ii
b andb       such that  

 1

( ) ( )
( ) ( ) 0 (0 1) 1 2

i i

i i
i

t b tbH f t u for all u a e t i
u u
 

            


 

If 1 20 0     , then there exists a positive solution of (1.1)  

 

Proof A positive solution of (1.1) is just a fixed point of the completely continuous map 

1 2( ) ( ) [0 1] [0 1] [0 1] [0 1]A u v Au A v C C C C            defined as  
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By a direct application of Schauder’s fixed point theorem, the proof is finished if we prove that A maps the closed 

convex set defined as  

 1 1 2 2{( ) [0 1] [0 1] ( ) ( ) [0 1]}K u v C C r u t R r v t R for all t                

into itself, where 1 1 2 20 0R r R r      are positive constants to be fixed properly. For convenience, we introduce the 

following notations  

 
1 1 1 1

0 0 0 0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2i i i i i i ii
t H t G s b s dsd t H t G s s dsd ib                      

Given ( )u v K  ,by the nonnegative sign of iG  and 1 2if i    we have  
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Note for every ( )u v K    
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Similarly, by the same strategy, we have  
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Thus 1 2( )Au A v K   if 1 2 1 2r r R R    are chosen so that  
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Note that  0 0ii
 

    and taking 1
1 2 1 2 R

R R R r r r r         it is sufficient to find 1R   such that  

 





1 1

2 2

1

1 11

1

2 22

1

1

R R R

R R R

 

 

 

 

  



  



     

     
 

and these inequalities hold for R  big enough because 1i     

2)
 1 20 0    

   
  The aim of this section is to show that the presence of a weak singular nonlinearity makes it possible to find positive 

solutions if 1 20 0       

Theorem 3.2.We assume that there exists 0 0 0 1i ii
b andb       such that 1( )H  is satisfied .If 

1 20 0      and  
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    (3.1) 

then there exists a positive solution of (1.1)  

Proof In this case, to prove that A K K   it is sufficient to find 
1 10 r R  , 

2 20 r R   such that  
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If we fix 1 2
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     then the first inequality of (3.3) holds if 2r  satisfies  
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Taking 2 20r r ,then (3.3) holds if  
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  Taking 1 10 2 20r r r r     then the first inequalities in (3.2) and (3.3) hold if 1 1( )h r    and 2 2( )g r     which are 

just condition (3.1).The second inequalities hold directly from the choice of 1R  and 2R , so it remains to prove that 

1

1
20

1 10r
R r



    2

2
10
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   This is easily verified through elementary computations:  
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      Similarly, we have 

2 20R r .  

3)
 1 2 1 20 0( 0 0)    

      
   

Theorem 3.3. Assume that 1( )H  is satisfied .If 
1 20 0  

     and  
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 (3.4) 

where 210 r    is a unique positive solution of equation  

 1 2 1 21 1

2 1 1 2 1 2 1 2
( )r r        

   


    (3.5) 

then there exists a positive solution of (1.1).  

Proof  We follow the same strategy and notation as in the proof of ahead theorem. In this case,to prove that 

A K K    it is sufficient to find 1 1 2 2r R r R    such that  
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If we chose 1 0r   small enough, then (3.9)holds, and 2R  is big enough.  

If we fix 1
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    then the first inequality of (3.7) holds if 2r  satisfies  
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or equivalently  
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we have (0) ( ) 1f f     ,then there exists 21r  such that 21( ) 0f r  , and  
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Then the function 2( )f r  possesses a minimum at 
221 21 (0 ) 2( ) min ( )rr i e f r f r        

Note 21( ) 0f r    then we have  

  1 2 1 21 1

1 2 1 21 1 1 212
1 ( ) 0r r      

    


     

or equivalently  

 1 2 1 21 1

21 1 1 21 1 2 1 2
( )r r        

   


    

Taking 2 21r r   then the first inequality in (3.7)holds if 2 21( )f r     which is just condition (3.4). The second 

inequalities hold directly by the choice of 1R ,and it would remain to prove that 21 2r R  and 10 1r R   These 

inequalities hold for 2R  big enough and 1r  small enough.  

Remark 1. In theorem 3.3 the right-hand side of condition (3.4)always negative, this is equivalent to proof that 

21( ) 0f r    This is obviously established through the proof of Theorem 3.3.  

  Similarly, we have the following theorem.  

Theorem 3.4.Assume 1( )H  is satisfied .If 1 20 0 

    and  
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where 110 r    is a unique positive solution of the equation  
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then there exists a positive solution of (1.1)  
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