Scholars Journal of Engineering and Technology (SJET)
 Sch. J. Eng. Tech., 2014; 2(5A):676-680

Research Article

On Homogeneous Ternary Quadratic Diophantine Equation $4\left(x^{2}+y^{2}\right)-7 x y=$

 $16 z^{2}$M. A. Gopalan, S. Vidhyalakshmi, R. Maheswari*
Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamilnadu, India

*Corresponding author

R. Maheswari

Email: mahimathematics@gmai1.com

Abstract

The ternary quadratic homogeneous equation representing homogeneous cone given by $4\left(x^{2}+y^{2}\right)-$ $7 x y=16 z^{2}$ is analyzed for its non-zero distinct integer points on it. Five different patterns of integer points satisfying the cone under consideration are obtained. A few interesting properties among the solutions and polygonal numbers are presented.

Keywords: Ternary homogeneous quadratic, Integral solutions.

INTRODUCTION:

The ternary quadratic Diophantine equations offer an unlimited field for research due to their variety [1, 21]. For an extensive review of various problems, one may refer [2-20]. This communication concerns with yet another interesting ternary quadratic equation $4\left(x^{2}+y^{2}\right)-7 x y=16 z^{2}$ representing a cone for determining its infinitely many nonzero integral points. Also, a few interesting relations among the solutions are presented.

Notation: $t_{m, n}$ - Polygonal number of rank n with size m .

METHOD OF ANALYSIS

The ternary quadratic equation to be solved for its non-zero distinct integer solution is

$$
\begin{equation*}
4\left(x^{2}+y^{2}\right)-7 x y=16 z^{2} \tag{1}
\end{equation*}
$$

Note that (1) is satisfied by $(8,6,2),(2,0,1),\left(2 k^{2}+4 k-6,2 k^{2}-8, t_{3, k}+2\right)$ and $\quad\left(30 k^{2}+\right.$ $\left.32 k+8,30 k^{2}+28 k+6,15 t_{3, k}+2\right)$. However, we have the other choices of solutions which are illustrated below. The substitution of the linear transformations

$$
\begin{equation*}
\mathrm{x}=\mathrm{U}+\mathrm{V}, \mathrm{y}=\mathrm{U}-\mathrm{V} \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
\mathrm{U}^{2}=16 \mathrm{z}^{2}-15 \mathrm{~V}^{2} \tag{3}
\end{equation*}
$$

Pattern: 1

$$
\begin{equation*}
\text { Consider } \mathrm{z}=\mathrm{X}-15 \mathrm{~T}, \mathrm{~V}=\mathrm{X}-16 \mathrm{~T} \tag{4}
\end{equation*}
$$

The substitution of (4) in (3) leads to

$$
\begin{equation*}
\mathrm{U}^{2}+240 \mathrm{~T}^{2}=\mathrm{X}^{2} \tag{5}
\end{equation*}
$$

One may write (5) as

$$
\begin{equation*}
\mathrm{U}^{2}+15(4 \mathrm{~T})^{2}=\mathrm{X}^{2}=\mathrm{X}^{2}=1 \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\text { Assume } \mathrm{X}=\mathrm{X}(\mathrm{a}, \mathrm{~b})=\mathrm{a}^{2}+15 \mathrm{~b}^{2} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\text { Write } 1 \text { as, } 1=\frac{(1+i \sqrt{15})(1-i \sqrt{15)}}{16} \tag{8}
\end{equation*}
$$

Substituting (7), (8) in (6) and employing the method of factorization, define

$$
(U+i \sqrt{15}(4 T))=(a+i \sqrt{15} b)^{2} \frac{(1+i \sqrt{15})}{4}
$$

Equating real and imaginary parts, we have .

$$
\begin{align*}
& \mathrm{U}=\frac{1}{4}\left[\mathrm{a}^{2}-30 \mathrm{ab}-15 \mathrm{~b}^{2}\right] \\
& \mathrm{T} \tag{9}
\end{align*}=\frac{1}{16}\left[\mathrm{a}^{2}+2 a b-15 b^{2}\right] .
$$

The choices $\mathrm{a}=4 \mathrm{~A}, \mathrm{~b}=4 \mathrm{~B}$ in (9) and (7) give

$$
\begin{align*}
& U=U(A, B)=4 A^{2}-120 A B-60 B^{2} \\
& T=T(A, B)=A^{2}+2 A B-15 B^{2} \tag{10}\\
& X=X(A, B)=16 A^{2}+240 B^{2}
\end{align*}
$$

From (10), (4) and (2), the integer values of x, y and z satisfying (1) are given by

$$
\begin{aligned}
& x=x(A, B)=4 A^{2}-152 A B+420 B^{2} \\
& y=y(A, B)=4 A^{2}-88 A B-540 B^{2} \\
& z=z(A, B)=A^{2}-30 A B+465 B^{2}
\end{aligned}
$$

Properties

$>\mathrm{x}(\mathrm{A}, 1)-\mathrm{t}_{308, \mathrm{~A}}+\mathrm{t}_{297, \mathrm{~A}} \equiv-24(\bmod 48)$
$>\mathrm{x}(1, \mathrm{~B})+\mathrm{y}(1, \mathrm{~B})+\mathrm{z}(1, \mathrm{~B})-\mathrm{t}_{692, \mathrm{~B}} \equiv 9(\bmod 74)$
$>y(\mathrm{~A}, 1)-\mathrm{t}_{180, \mathrm{~A}}+\mathrm{t}_{172, \mathrm{~A}} \equiv 48(\bmod 84)$
$>\mathrm{y}(\mathrm{A}, 2)+\mathrm{z}(\mathrm{A}, 2)-\mathrm{t}_{12, \mathrm{~A}} \equiv 164(\bmod 232)$
$>\mathrm{x}(1, \mathrm{~A})-\mathrm{t}_{842, \mathrm{~A}} \equiv 4(\bmod 267)$
$>\mathrm{x}(1, \mathrm{~A})-\mathrm{z}(1, \mathrm{~A})+\mathrm{t}_{92, \mathrm{~A}} \equiv 3(\bmod 166)$
Pattern: 2
Instead of (4) consider

$$
\begin{equation*}
\mathrm{z}=\mathrm{X}+15 \mathrm{~T}, \mathrm{~V}=\mathrm{X}+16 \mathrm{~T} \tag{11}
\end{equation*}
$$

The substitution of (11) in (3) leads to

$$
\mathrm{X}^{2}=240 \mathrm{~T}^{2}+\mathrm{U}^{2}
$$

which is satisfied by

$$
\begin{gather*}
T(A, B)=2 A B \\
U(A, B)=240 A^{2}-B^{2} \tag{12}\\
X(A, B)=240 A^{2}+B^{2}
\end{gather*}
$$

From (11), (12) and (2), the integer values of x, y and z satisfying (1) are given by

$$
\begin{aligned}
& x=x(A, B)=480 A^{2}+32 A B \\
& y=y(A, B)=-32 A B-2 B^{2} \\
& z=z(A, B)=240 A^{2}+30 A B+B^{2}
\end{aligned}
$$

Properties

$>\mathrm{x}(1, \mathrm{~B}) \equiv 0(\bmod 32)$
$>\mathrm{x}(1, \mathrm{~B})+\mathrm{y}(1, \mathrm{~B})+\mathrm{z}(1, \mathrm{~B})+\mathrm{t}_{4, \mathrm{~B}} \equiv 0(\bmod 30)$
$>\mathrm{y}(2, \mathrm{~B})+\mathrm{z}(2, \mathrm{~B})+\mathrm{t}_{4, \mathrm{~B}} \equiv 0(\bmod 4)$
$\Rightarrow \mathrm{y}(2, \mathrm{~B})-\mathrm{z}(2, \mathrm{~B})+\mathrm{t}_{8, \mathrm{~B}} \equiv 48(\bmod 126)$

Pattern: 3

Introduction of the linear transformation

$$
\begin{equation*}
\mathrm{U}=\mathrm{X}-15 \mathrm{~T}, \mathrm{~V}=\mathrm{X}+\mathrm{T} \tag{13}
\end{equation*}
$$

in (3) leads to

$$
\begin{equation*}
\mathrm{X}^{2}+15 \mathrm{~T}^{2}=\mathrm{Z}^{2}=\mathrm{Z}^{2} * 1 \tag{14}
\end{equation*}
$$

Assume $\mathrm{z}=\mathrm{a}^{2}+15 \mathrm{~b}^{2}$
Write 1 as $1=\frac{(1+i \sqrt{15})(1-i \sqrt{15}}{16}$
Substituting (15), (16) in (14) and employing the method of factorization, define

$$
(X+i \sqrt{15} T)=(a+i \sqrt{15} b)^{2} \frac{(1+i \sqrt{15})}{4}
$$

Equating real and imaginary parts, we have

$$
\left.\begin{array}{l}
\mathrm{X}=\frac{1}{4}\left[\mathrm{a}^{2}-30 \mathrm{ab}-15 \mathrm{~b}^{2}\right] \\
\mathrm{T}=\frac{1}{4}\left[\mathrm{a}^{2}-2 a b-15 \mathrm{~b}^{2}\right] \tag{17}
\end{array}\right\}
$$

The choices $a=4 A, b=4 B$ in (15) and (17) lead to

$$
\begin{align*}
& X=4 A^{2}-120 A B-60 B^{2} \\
& T=4 A^{2}+8 A B-60 B^{2} \tag{18}\\
& z=16 A^{2}+240 B^{2}
\end{align*}
$$

From (17), (18) and (13), the integer values of x, y and z satisfying (1) are given by

$$
\begin{aligned}
& x=x(A, B)=-48 A^{2}-352 A B+720 B^{2} \\
& y=y(A, B)=-64 A^{2}-128 A B+960 B^{2} \\
& z=z(A, B)=16 A^{2}+240 B^{2}
\end{aligned}
$$

Properties

$>\mathrm{x}(\mathrm{A}, 1)-\mathrm{y}(\mathrm{A}, 1)-\mathrm{t}_{34, \mathrm{~A}} \equiv 178(\bmod 209)$
$>\mathrm{x}(\mathrm{A}, \mathrm{A}+1)-\mathrm{t}_{642, \mathrm{~A}} \equiv 720(\bmod 1407)$
> $\mathrm{x}(1, \mathrm{~B})-\mathrm{y}(1, \mathrm{~B})+\mathrm{z}(1, \mathrm{~B}) \equiv 32(\bmod 224)$
$>\mathrm{x}(2, \mathrm{~A})+\mathrm{z}(2, \mathrm{~A})-960 \mathrm{t}_{4, \mathrm{~A}} \equiv-128(\bmod 704)$

Pattern: 4

Instead of (13), consider

$$
\begin{equation*}
\mathrm{U}=\mathrm{X}+15 \mathrm{~T}, \mathrm{~V}=\mathrm{X}-\mathrm{T} \tag{19}
\end{equation*}
$$

The substitution of (19) in (3) leads to

$$
\mathrm{z}^{2}=\mathrm{X}^{2}+15 \mathrm{~T}^{2}
$$

which is satisfied by

$$
\begin{gathered}
T(A, B)=2 A B \\
X(A, B)=15 A^{2}-B^{2} \\
Z(A, B)=15 A^{2}+B^{2}
\end{gathered}
$$

From (20), (19) and (2), the integer values of x, y and z satisfying (1) are given by $x=x(A, B)=30 A^{2}+28 A B-2 B^{2}$

$$
\begin{aligned}
& y=y(A, B)=32 A B \\
& z=z(A, B)=15 A^{2}+B^{2}
\end{aligned}
$$

Properties

$$
\left.\left.\begin{array}{l}
>x(A, 1)-y(A, 1)-t_{62, A} \equiv-2(\bmod 25) \\
> \\
> \\
> \\
> \\
x(1, A)-y(1, A)-\mathrm{A}(1, A)+6 t_{3, A}+A=15 \\
\end{array}\right)-28 t_{4, A}-56 t_{3, A} \equiv-2(\bmod 4)\right) ~ l
$$

PATTERN: 5

Write (3) as

$$
\begin{equation*}
\mathrm{U}^{2}-\mathrm{z}^{2}=15 \mathrm{z}^{2}-15 \mathrm{~V}^{2} \tag{21}
\end{equation*}
$$

Factorizing (21) we have

$$
(\mathrm{U}+\mathrm{z})(\mathrm{U}-\mathrm{z})=15(\mathrm{z}+\mathrm{V})(\mathrm{z}-\mathrm{V})
$$

which is equivalent to the system of double equations

$$
\begin{aligned}
& B U-A V+(B-A) z=0 \\
& -A U-15 B V+(15 B+A) z=0, \text { where } A, B \neq 0
\end{aligned}
$$

Applying the method of cross multiplication, we get

$$
\begin{aligned}
U= & -A^{2}-30 A B+15 B^{2} \\
V= & A^{2}-2 A B-15 B^{2} \\
& z=-A^{2}-15 B^{2}
\end{aligned}
$$

Employing (2) the values of x, y and z satisfying (1) are given by

$$
\begin{aligned}
& x=x(A, B)=-32 A B \\
& y=y(A, B)=-2 A^{2}-28 A B+30 B^{2} \\
& z=z(A, B)=-A^{2}-15 B^{2}
\end{aligned}
$$

Properties

$>\mathrm{x}(1, \mathrm{~B})-\mathrm{y}(1, \mathrm{~B})+\mathrm{t}_{62, \mathrm{~B}} \equiv 2(\bmod 33)$
$>\mathrm{x}(\mathrm{A}, 2)+\mathrm{y}(\mathrm{A}, 2)+\mathrm{z}(\mathrm{A}, 2)+6 \mathrm{t}_{3, \mathrm{~A}} \equiv 60(\bmod 117)$
$>\mathrm{x}(\mathrm{A}, \mathrm{A}+1)+\mathrm{z}(\mathrm{A}, \mathrm{A}+1)+64 \mathrm{t}_{3, \mathrm{~A}}+\mathrm{t}_{34, \mathrm{~A}} \equiv 0(\bmod 15)$

Remarkable Observations

Let p, q be any two non-zero distinct positive integers such that $\mathrm{p}>\mathrm{q}>0$.
Define $\mathrm{p}=\mathrm{x}+\mathrm{y}$ and $\mathrm{q}=\mathrm{y}$. Treat p, q as the generators of the Pythagorean triangle $\mathrm{T}(\alpha, \beta, \gamma)$ where $\alpha=2 \mathrm{pq}$, $\beta=\mathrm{p}^{2}-\mathrm{q}^{2}, \gamma=\mathrm{p}^{2}+\mathrm{q}^{2}$. Let P , A represent the perimeter and the area of T . Then each of the following expressions is a perfect square.
a: $6 \gamma-4 \alpha-2 \beta-\frac{7}{2} \sqrt{2(\gamma-\alpha)(\gamma-\beta)}$
b: $4 \gamma-2 \alpha-\frac{8 A}{P}-\frac{7}{2} \sqrt{2(\gamma-\alpha)\left(\alpha-\frac{4 A}{P}\right)}$
c: $8 \gamma-6 \alpha-4 \beta+\frac{8 A}{P}-\frac{7}{2} \sqrt{2(\gamma-\alpha)\left(\alpha-\frac{4 A}{P}\right)}$

CONCLUSION

In this paper, we have presented five different patterns of non-zero distinct integer solutions of the homogeneous cone given by $4\left(x^{2}+y^{2}\right)-7 x y=16 z^{2}$. To conclude, one may search for other patterns of non-zero integer distinct solutions and their corresponding properties.

ACKNOWLEDGEMENT

The financial support from the UGC, New Delhi (F.5122/(SERO/UGC) dated March 2014) is gracefully acknowledged.

REFERENCES:

1. Dickson LE; History of Theory of Numbers. Volume 2, Chelsea Publishing Company, New York, 1952.
2. Gopalan MA, Geetha D; Lattice points on the hyperboloid of two sheets. $x^{2}-6 x y+y^{2}+6 x-2 y+$ $5=z^{2}+4$. Impact J Sci Tech., 2010; 4(1): 23-32.
3. Gopalan MA, Pandichelvi V; Integral solutions of ternary quadratic equation $z(x-y)=4 x y$. Impact J Sci Tech., 2011; 5(1): 1-6.
4. Gopalan MA, Rani JK; On ternary quadratic equation $x^{2}+y^{2}=z^{2}+8$. Impact J Sci Tech., 2011; 5(1):39-43
5. Gopalan MA, Vidhyalakshmi S, Kavitha A; Integral points on the homogeneous cone $z^{2}=2 x^{2}-7 y^{2}$. Diophantus J Math., 2012; 1(2): 127-136.
6. Gopalan MA, Vidhyalakshmi S, Sumathi G; Lattice points on the hyperboloid one sheet $4 z^{2}=2 x^{2}+$ $3 y^{2}-4$. Diophantus J Math., 2012; 1(2): 109-115.
7. Gopalan MA, Vidhyalakshmi S, Lakshmi K; Integral points of the hyperboloid of two sheets $3 y^{2}=7 x^{2}-$ $z^{2}+21$. Diophantus J Math., 2012; 1(2): 99-107.
8. Gopalan MA, Srividhya G; Observations on $y^{2}=2 x^{2}+z^{2}$. Archimedes J Math., 2012; 2(1): 7-15.
9. Gopalan MA, Sangeetha G; Observations on $y^{2}=3 x^{2}-2 z^{2}$. Antarctica J Math., 2012; 9(4): 359-362.
10. Gopalan MA, Vijayalakshmi R; On the ternary quadratic equation $x^{2}=\left(\alpha^{2}-1\right)\left(y^{2}-z^{2}\right), \alpha>1$. Zessel J Math., 2012; 2(2): 147-151.
11. Somanath M, Sangeetha G, Gopalan MA; On the homogeneous ternary quadratic Diophantine equation $x^{2}+(2 k+1) y^{2}=(k+1)^{2} z^{2}$. Bessel J Math., 2012; 2(2): 107-110.
12. Somanath M, Sangeetha G, Gopalan MA; Observations on the ternary quadratic equation $y^{2}=3 x^{2}+z^{2}$. Bessel Math., 2012; 2(2): 101-105.
13. Akila G, Gopalan MA, Vidhyalakshmi S; Integral solution $43 x^{2}+y^{2}=z^{2}$. IJOER, 2013; 1(4): 70-74.
14. Nancy T, Gopalan MA, Vidhyalakshmi S; On Ternary quadratic Diophantine equation $47 \mathrm{X}^{2}+\mathrm{Y}^{2}=\mathrm{Z}^{2}$. IJOER, 2013; 1(4): 51-55.
15. Gopalan MA, Vidhyalakshmi S, Nithya C; Integral points on the ternary quadratic Diophantine equation $3 x^{2}+5 y^{2}=128 z^{2}$. Bull Math \& Stat Res., 2014; 2(1): 25-31.
16. Priya S, Gopalan MA, Vidhyalakshmi S; Integral solutions of ternary quadratic Diophantine equation $7 X^{2}+2 Y^{2}$ $=135 Z^{2}$. Bull Math \& Stat Res., 2014; 2(1): 32-37.
17. Meena K, Vidhyalakshmi S, Gopalan MA, Thangam SA; Integer solutions on the homogeneous cone $4 x^{2}+$ $3 y^{2}=28 z^{2}$. Bull Math \& Stat Res., 2014; 2(1): 47-53.
18. Gopalan MA, Vidhyalakshmi S, Umarani J; On the homogeneous ternary quadratic Diophantine equation $6\left(x^{2}+y^{2}\right)-8 x y=21 z^{2}$. Sch J Eng Tech., 2014; 2(2A): 108-112.
19. Meena K, Vidhyalakshmi S, Divya S, Gopalan MA; Integral Points on the cone $Z^{2}=41 X^{2}+Y^{2}$. Sch J Eng Tech., 2014; 2(2B): 301-304.
20. Meena K, Vidhyalakshmi S, Gopalan MA, Thangam SA; On homogeneous ternary quadratic diophantine equation $2\left(x^{2}+y^{2}\right)-3 x y=16 z^{2}$. IJESM, 2014; 3(2): 63-69.
21. Mordell LJ; Diophantine equations. Academic Press, New York, 1969.
