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Abstract: The nonlinear fourth-order boundary value problem   
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is studied in this paper, where 0
2


  .The existence result of at least one positive solution to above fourth-order 

boundary value problem is obtained by using Fixed Point theorem in cones. 
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INTRODUCTION 

In this paper, we consider the nonlinear fourth-order boundary value problems (BVP for short) 

          
        4 4 ,u t u t f t u t  , 0 1,t                                      1.1                          

where 0
2


   is a parameter , :f    0,1 0, R   is a nonnegative and continuous function. With 

boundary conditions 

      (1) 0 1 0 0u u u u                                               1.2  

In this case, a beam deformation with one endpoint simply supported and the other one sliding clamped. By a 

positive solution of BVP  1.1 and  1.2 ,we call a function  u t  which is positive on  0,1 and 

     3 40,1 0,1u t C C  such that  u t satisfied differential equation  1.1 and the boundary conditions  1.2 .It 

is assumed throughout that 

 1 :H  ,f t u is integral for each fixed u    0,1 0,  ，and   
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The nonlinear fourth-order equations appear in some physical problems as, for example, the bending of an elastic 

beam with several types of two point boundary conditions, describing how the beam is supported at the two endpoints, 

see [1-13] .The positive solution has profound practical significance. 

 

In 1996, Dalmasso first proved the existence of single positive solution of problem  
            4

, , , 0,1 \u t h t f t u t u t t E   

under two -point boundary conditions 

       0 0 1 1 0u u u u       
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By comparing the first value of associated linear problem with the limits  

 
0limsupu

f u

u


  
 

liminfu

f u

u
  

When      , 1, ,E h t f t u f u   and    : 0, 0,f    is continuous.  

For boundary conditions considering every derivative until order there, similar results can be obtained, since the 

second and third derivative are given in different endpoints. More precisely, considering Eq.(1.1) with one of the 

following boundary conditions  

       0 1 1 0 0u u u u       

       1 0 0 1 0u u u u       

 

Inspired and motivated by the works mentioned above, in this paper, we will consider the existence of positive 

solution to the nonlinear BVP (1.1) and (1.2). The purpose of this paper is to fill in the gap in this area.The results 

obtained extend and complement some known results. 

 

The rest of the article is organized as follows, In Section 2, we present some preliminaries and the fixed point theory 

in cone that willed be used in Section 3.The main results and proofs will be given in Section 3. 

 

PRELIMINARIES AND LEMMAS  

    Consider the Banach space  0,1C with norm  
0 1
max

t
u u t

 
 and let                       

      0,1 0,1 ; 0,0 1 ,C u C u t t           
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it is easy to check that K  is a cone of nonnegative function in  0,1C . 

     Consider the nonlinear second order boundary problem   

                            2u t u t v t                                                        2.1  

                            1 0, 0 0u u                                                             2.2  

    A direct check implies that the problem  2.1 ,  2.2 is equivalent to the following integral equation 
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                              2.4     

 Consider the nonlinear second order boundary problem   

                              2 ,v t v t f t u t                                                2.5   

                           1 0, 0 0v v                                                          2.6  

The same method  
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  we can easily compute         
1 1

1 2
0 0

, , , d du t G t s G s f u s       

   Clearly if  u t is a positive solution of the problem  2.1 and  2.2  and let    u t u t , it is easy to know  u t

is the positive solution of the BVP  1.1 ,  1.2 . 

Lemma 2.1: Foe all      , 0,1 0,1s t   ，we have  
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 Proof: It is clearly to see  
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It is obvious that    1 1, ,G t s G s s .The proof is complete. 

Define an integral operator    : 0,1 0,1C C   by  

                                
1 1

1 2
0 0

, , , d du t G t s G s f u s                                2.9  

Then, only if nonzero fixed point  u t of mapping   defined by  2.9 is a positive solution of  1.1 and 1.2  

Lemma 2.2:     K K   

Proof:  For anyu K , from lemma 2.1we have  
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And inequalities  
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1 1

1 2
0 0

, , , d dG s s G s f u s        

                     u t u       

Thus,  k K      

    It is clear that : K K  is a completely continuous mapping. 

    Let E be a Banach space, and let K E  be a cone in E .Assume 1 2,  are open subsets of E  with 10 ,

1 2    and let 2 1: ( \ )K K     be a completely continuous operator such that either  

（1） || || || ||u u  ， 1u K  ，and || || || ||u u  ， 2u K  ;or 

（ 2） || || || ||u u  ， 1u K  ，and || || || ||u u  ， 2u K  ，  

Then   has a fixed point in 2 1( \ )K   . 

We will apply the first and second parts of the above Fixed Point Theorem to the super-linear and sub-linear cases. 

 

MAIN RESULTS  

Theorem 3.1: Assume that    1 2,H H hold, then the problem  1.1 and 1.2 has at least one positive solution.  

Proof:  Since 2( )H , we may choose 0r  so that ( , )f t u u ,for 0 u r  ，where 0  satisfies 
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    Then shows || || || ||u u  ．  

Further, since 2( )H there exists 1 0R  such that ( , )f t u u ， 1u R where 0  chosen so that 
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                   u  

    Hence, || || || ||u u   for 2u K    

    Therefore, by the first part of the Fixed Point Theorem, it follows that has a fixed point in 2 1( \ )K   . Further, 

since  1 2, ( , )d d 0G t s G s s   , it follows that ( ) 0u t  for 0 1t  .This completes the super-linear part of the 

theorem. 

Theorem 3.2: Assume that    1 3,H H hold, then the Problem  1.1 and  1.2 has at least one positive solution.  

Proof:  Since 3( )H we first choose 0r  such that ( , )f t u u , for 0 u r  where 0   satisfies 
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So that || || || ||u u  ．  

    Now since 3( )H , there exists 1 0R  so that ( , )f t u u ， for 1u R  where 0   satisfies     

1 1
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0 0

( , ) ( , )d d 1G s s G s s     ． 1u K   . 

We consider two case: 

    Suppose ( , )f t u is unbounded for 0 u R   , we have    f u f R , 1max{ , }
R

R r
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 Let 2 { [0,1];|| || }u C u R    ， for 2u K    therefore 
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  So that || || || ||u u  ．  

Suppose ( , )f t u is bounded ， there exists 0N  ， for [0,1]t and [0, )u  we have ( , )f t u N ,

1 1

1 2
0 0

max{ , ( , ) ( , )d d }R r N G s s G s s    , 

    Let 2 { [0,1];|| || }u C u R    ,for 2u K   , from lemma 2.1 ，we have  
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( , ) ( , ) , d du t G s s G s f u s        

 
1 1
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                           R u   

So that || || || ||u u  ．  

Therefore, in either case we may put 2 { [0,1];|| || }u C u R    and for 2u K   we have 

|| || || ||u u  .By the second part of the Fixed Point Theorem it follows that BVP    1.1 , 1.2 has a positive solution, 

and this completes the proof of the theorem. 
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